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The two-dimensional stationary flow of a fluid over an obstacle lying on the
bottom of a stream is discussed. We take into account the gravity and we neglect
the effects of the surface tension. An existence theory for the solution of this
problem is established by the implicit function theorem, for small obstacles and
Froude numbers in an interval included in ]0,1[.

1. Introduction

This paper considers the problem of determining the free surface flow of an
ideal fluid down an infinitely long channel of uniform width. We suppose that
the bottom of the channel is perturbed by an obstacle represented by a regular
function with a compact support. Free surface flows of an ideal fluid are non-
linear problems; the nonlinearity is essentially due to the dynamic condition
written at the free surface.

The practical applications of this type of flow arise both in the hydraulic engi-
neering of fast flow in a channel or a river. The numerical study of this problem
has been treated by various authors. Bouhadef [3] has given a numerical study
of the problem in the fluvial and torrential case. King and Bloor [6] have given a
generalization of the Schwarz-Christoffel transformation to formulate the prob-
lem of free streamline jet flow over curved wall as a pair of coupled equations
for the tangential angles onto the free surface and the wall shape. Linearized
solutions and nonlinear numerical solutions are presented for a variety of wall
shapes. But no theoretical result has been given. However several authors have
given theoretical results of this problem in the linear case. Abergel and Bona [1]
have considered a steady, two-dimensional of an incompressible, Newtonian
fluid flowing under gravity down an inclined channel; they have established an
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existence theory for steady, highly viscous flow. In this paper, we want to es-
tablish a theoretical result of existence and unicity of a solution which decrease
exponentially at infinity. The plan of this paper is as follows.

In Section 2, we formulate the governing equations of the problem in dimen-
sionless form. In Section 3, we introduce the stream function in these equations.
In Section 4, the resolution of the dynamic equation written at the free surface
boils down to a fixed point problem and here we apply the implicit function
theorem. We achieve this work by a conclusion given in Section 5.

2. The governing equations

We consider a steady two-dimensional flow of an ideal fluid in a channel in
which an obstacle described by the equation y = b(x) has been placed. We
denote by �

γ

b the domain occupied by the fluid, where b is the equation of the
obstacle and γ is the perturbation of the free surface. We put

�
γ

b = {
(x,y) ∈ R

2 | −∞ < x < +∞, b(x) < y < y0 +γ (x)
}
, (2.1)

(x,y) is a coordinate system in which x and y, respectively, the horizontal and
positive vertical directions, see Figure 2.1.

 

Figure 2.1

The function b(x) verifies 0 ≤ b(x) < y0 and is regular, with a compact
support. The problem is formulated as follows: given a bottom configuration b,
find a function γ : R → R (free boundary) and a vector field �u (velocity of the
fluid) such that:

Governing equations in �
γ

b

div �u = 0 in �
γ

b , (2.2)

curl �u = 0 in �
γ

b . (2.3)

Equation (2.2) expresses the incompressibility of the fluid, (2.3) is given by the
irrotationality of the flow.
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Boundary conditions

�u · �ν = 0 for y = b(x), (2.4)

�u · �ν = 0 for y = y0 +γ (x), (2.5)

where �ν is the exterior normal to the boundary of �
γ

b . Equations (2.4) and (2.5)
describe the impermeability of the flow at the boundary of the domain �

γ

b .

Conditions at infinity. We suppose that the flow is asymptotically uniform and
horizontal far upstream and downstream of the obstacle. We then write

lim|x|→∞ �u(x,y) = (
u0,0

)
(2.6)

hence

lim|x|→∞γ (x) = 0. (2.7)

Condition across the free surface. The dynamic condition of continuity of the
pressure across the free surface is given by the Bernoulli equation

ρ

2

∣∣�u∣∣2 +ρgy = c, (2.8)

where ρ is the density of the fluid, g is the downward acceleration due to the
gravity, and c is a constant.

Dimensionless equations. Dimensionless variables are defined by referring all
lengths to the quantity y0, and all velocities to u0. We put

�u = u0 �u∗, x = y0x
∗, y = y0y

∗. (2.9)

Systems (2.2), (2.3), (2.4), and (2.5) become

divu∗ = 0, in �
γ ∗
b∗ ,

curlu∗ = 0 in �
γ ∗
b∗ ,

u∗ · �ν = 0 for y∗ = b∗(x∗),
u∗ · �ν = 0 for y∗ = 1+γ ∗(x∗),

(2.10)

where

�
γ ∗
b∗ = {(

x∗,y∗) ∈ R
2 | −∞ < x∗ < +∞, b∗(x∗) < y∗ < 1+γ ∗(x∗)},

b∗(x∗) = 1

y0
b
(
y0x

∗), γ ∗(x∗) = 1

y0
γ
(
y0y

∗).
(2.11)

The conditions at infinity become

lim|x|→∞ �u∗(x∗,y∗) = (1,0). (2.12)
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The Bernoulli equation takes the form

F 2

2

∣∣�u∗∣∣2 +1+γ ∗(x∗) = c, (2.13)

where F = u0/
√

gy0 is the Froude number of the flow.

3. Formulation of the problem in stream function

In what follows, we write all the variables without the symbol ∗.
The irrotationality and the incompressibility of the fluid lead us to define a

harmonic stream function � such that

�u =




∂�

∂y

−∂�

∂x


 . (3.1)

Equation (2.4) will be written as



∂�

∂y

−∂�

∂x


 ·

(
b′(x)

−1

)
= 0 (3.2)

and becomes

b′(x)
∂�

∂y
+ ∂�

∂x
= 0 in y = b(x). (3.3)

This is equivalent to

∂�

∂τ
= 0 in y = b(x). (3.4)

In the same way, (2.5) gives

∂�

∂τ
= 0 in y = 1+γ (x). (3.5)

We deduce that � is constant in y = b(x) and y = 1+γ (x).
Thanks to the condition at infinity, we evaluate the constant which appears

in (2.13) and the values of � at the bound of �
γ

b . In fact, at infinity we have

lim|x|→∞�(x,y) = y +k. (3.6)

The function � is a stream function then we can choose k = 0. Hence

lim|x|→∞�(x,y) = y. (3.7)
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Replacing these limits in (2.13) we obtain

F 2

2
+1 = c. (3.8)

Moreover, we deduce from (3.7) that

� = 0 in y = b(x),

� = 1 in y = 1+γ (x).
(3.9)

Then the stream function � verifies

�� = 0 in �
γ

b ,

� = 0 in y = b(x),

� = 1 in y = 1+γ (x),

(3.10)

lim|x|→∞�(x,y) = y, (3.11)

F 2

2
|��|2(x,1+γ (x)

)+γ (x) = F 2

2
. (3.12)

Taking into account condition (3.11), we can write

� = y +ψ, (3.13)

where ψ is the perturbation of the stream function.
Problems (3.10), (3.11), and (3.12) will be written as

�ψ = 0 in �
γ

b ,

ψ = −b(x) in y = b(x),

ψ = −γ (x) in y = 1+γ (x),

(3.14)

lim|x|→∞ψ(x,y) = 0, (3.15)

F 2

2

(
|�ψ |2 +2

∂ψ

∂y
+1

)
+γ (x) = F 2

2
in y = 1+γ (x). (3.16)

4. Solution of the free surface problem

We transform (3.16) in

γ (x) = −F 2

2

[
|∇ψ |2(x,1+γ (x)

)+2
∂ψ

∂y

(
x,1+γ (x)

)]
(4.1)

and we put

T (b,γ ) = −F 2

2

[
|∇ψ |2(x,1+γ (x)

)+2
∂ψ

∂y

(
x,1+γ (x)

)]
. (4.2)
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The problem can be formulated as follows: given a function y = b(x) which
represents an obstacle, find a function γ : R → R (free surface) such that
T (b,γ ) = γ with ψ solution of problems (3.14) and (3.15).

This is equivalent to solving the equation

T1(b,γ ) = γ −T (b,γ ) = 0 for a fixed b. (4.3)

For b = γ = 0, ψ = 0 verifies (3.14), (3.15), and (3.16). So T (0,0) = 0 and
T1(0,0) = 0. To solve T1(b,γ ) = 0, we use the implicit function theorem at a
neighbourhood of (b,γ ) = (0,0).

Consider the change of variables

x̃ = x, ỹ = y −b(x)

1+γ (x)−b(x)
(4.4)

we transform the domain �
γ

b in the following infinite strip Q:

Q = {
(x,y) ∈ R

2 | −∞ < x < +∞, 0 < y < 1
}
. (4.5)

We put ψ(x,y) = ψ̃(x̃, ỹ) then ψ̃ verifies

�ψ̃ +�
γ

b ψ̃ = 0 in Q,

ψ̃
(
x̃,0

) = −b
(
x̃
)
, ψ̃

(
x̃,1

) = −γ
(
x̃
)
, x̃ ∈ R

(4.6)

�
γ

b is an operator defined by

�
γ

b = a1
∂2

∂x̃∂ỹ
+a2

∂2

∂ỹ2
+a3

∂

∂ỹ
, (4.7)

where

a1 = ỹ
(
b′ −γ ′)−b′

1+γ −b
, a2 =

(
a1

2

)2

−1+ 1

(1+γ −b)2
,

a3 = −1

1+γ −b

[
b′′ + ỹ

(
γ ′′ −b′′)]+ 2

(1+γ −b)2

(
γ ′ −b′)[b′ + ỹ

(
γ ′ −b′)].

(4.8)
The symbols ′ and ′′ denote, respectively, the first and second derivative.

The gradient operator becomes

∇̃b,γ =




∂

∂x̃
+ −b′ − ỹ

(
γ ′ −b′)

(1+γ −b)2

∂

∂ỹ

1

1+γ −b

∂

∂ỹ


 . (4.9)

Equation (4.1) will be written

γ
(
x̃
) = −F 2

2

[∣∣∇̃b,γ ψ̃
∣∣2(

x̃,1
)+ 2

1+γ −b

∂ψ̃

∂ỹ

(
x̃,1

)]
, (4.10)
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where b is given and γ is searched in the space

B2,λ
c (R) =

{
v ∈ C2,λ(R)

∑
0≤k≤2

sup
x∈R

ec|x|∣∣Dk
xv(x)

∣∣ < ∞
}

(4.11)

and ψ̃ in the space

B2,λ
c

(
Q̄

) =
{
v ∈ C2,λ

(
Q̄

)
sup

k+l≤2
sup

(x̃,ỹ)∈Q

ec|x̃|∣∣Dk
x̃D

l
ỹv

∣∣ < ∞
}
, (4.12)

where 0 < λ < 1 and c > 0 [1].
The choice of these spaces will appear evident later.

Remark 4.1. (i) The space B
m,λ
c (Q̄) defined by

Bm,λ
c

(
Q̄

) =
{
v ∈ Cm,λ

(
Q̄

)
sup

k+l≤m

sup
(x̃,ỹ)∈Q

ec|x̃|∣∣Dk
x̃D

l
ỹv

∣∣ < ∞
}

(4.13)

equipped with the norm

‖v‖m,c,λ =
∑

k+l≤m

sup
(x̃,ỹ)∈Q

ec|x̃|∣∣Dk
x̃D

l
ỹv

∣∣

+ sup
k+l=m

sup
(x̃,ỹ)�=(x̃′,ỹ′)

∣∣Dk
x̃
Dl

ỹ
v
(
x̃, ỹ

)−Dk
x̃
Dl

ỹ
v
(
x̃′, ỹ′)∣∣

[(
x̃ − x̃′)2 +(

ỹ − ỹ′)2]λ/2

(4.14)

is a Banach algebra.
(ii) The space B

m,λ
c (R) defined by

Bm,λ
c (R) =

{
v ∈ Cm,λ(R)

∑
0≤k≤m

sup
x∈R

ec|x|∣∣Dk
xv(x)

∣∣ < ∞
}

(4.15)

equipped with the norm

‖v‖m,c,λ =
∑

0≤k≤m

sup
x∈R

ec|x|∣∣Dk
xv

∣∣+ sup
(x,x′)∈R

2

x �=x′

∣∣Dm
x v(x)−Dm

x v
(
x′)∣∣∣∣x −x′∣∣λ (4.16)

is also a Banach algebra.

Now we are able to state the main result of this section.

Theorem 4.2. There exists c̃ > 0, K < 1 such that for all λ,0 < λ < 1, and
all c, 0 < c < c̃, there exists a neighbourhood � of zero in B

2,λ
c (R) such that

for all F ∈]0,K[ problems (3.14), (3.15), and (3.16) have a unique solution ψ

such that ψ̃ belongs to B
2,λ
c (Q̄), and there exists a mapping g of class �1 such

that γ = g(b).
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This theorem is equivalent to the following one.

Theorem 4.3. There exists c̃ > 0, K < 1, and an open ball � of radius r0

centered at the origin of B
2,λ
c (R)×B

2,λ
c (R) where c ∈ ]0, c̃ [, and 0 < λ < 1,

there exists a neighbourhood �b of zero in B
2,λ
c (R), there exists a mapping

g : �b −→ B2,λ
c (R) (4.17)

of class �1, such that for all F ∈ ]0,K[, { for all (b,γ ) ∈ �,T1(b,γ ) = 0} ⇔
{b ∈ �b,γ = g(b)}.

Proof. In the next subsections, we will verify the hypothesis of the implicit
function theorem. �

4.1. Differentiability of the operator T1 with respect to (b,γ ). We have
T1(b,γ ) = γ − T (b,γ ); to show the differentiability of T1 with respect to b

and γ , it suffices to study the differentiability of T with respect to b and γ . For
this we use the following results.

Theorem 4.4. There exists c̃ > 0 such that for all c ∈ ]0, c̃ [ and λ ∈ ]0,1[,
there exists an open ball � of radius r0 > 0, centered at the origin in B

2,λ
c (R)×

B
2,λ
c (R) such that whenever (b,γ ) ∈ �, the following statements hold:

(a) the problem

�ψ = 0 in �
γ

b ,

ψ
(
x,1+γ (x)

) = −γ (x), ψ
(
x,b(x)

) = −b(x), x ∈ R

(4.18)

has a unique solution ψ such that ψ̃ , the transform of ψ by (4.4) is in
B

2,λ
c (Q̄);

(b) the mapping S : (b,γ ) 
→ ψ̃ is continuously differentiable from � into
B

2,λ
c (Q̄).

To prove this theorem, we use the following proposition which is proved in
the annex.

Proposition 4.5. Let the boundary value problem

�v = b1 in Q,

v
(
x̃,1

) = b2
(
x̃
)
, v

(
x̃,0

) = b3
(
x̃
)
, x̃ ∈ R,

(4.19)

where (b1,b2,b3) ∈ B
0,λ
c (Q̄)×B

2,λ
c (R)×B

2,λ
c (R), then there exists c̃ > 0 such

that whenever 0 < c < c̃, problem (4.19) has a unique solution v ∈ B
2,λ
c (Q̄).

Furthermore the solution map is a topological isomorphism between the corre-
sponding spaces.
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Proof of Theorem 4.4

Proof of (a). Denote by �
γ

b the linear operator defined by

�
γ

b : B2,λ
c

(
Q̄

) −→ B0,λ
c

(
Q̄

)×B2,λ
c (R)×B2,λ

c (R) = �,

v 
−→ (
�v+�

γ

b v,v(·,0),v(·,1)
)
,

(4.20)

and � = �0
0. We will verify that

∥∥(
�−�

γ

b

)
v
∥∥

�
≤ L

(
‖b‖

B
2,λ
c (R)

,‖γ ‖
B

2,λ
c (R)

)
·‖v‖

B
2,λ
c (Q̄)

, (4.21)

where L(·, ·) is a continuous function on R
2 verifying L(0,0) = 0. We have

(�−�
γ

b )v = (−�
γ

b v,0,0).
Then ∥∥(

�−�
γ

b

)
v
∥∥

�
= ∥∥�

γ

b v
∥∥

B
0,λ
c (Q̄)

=
∥∥∥∥a1

∂2

∂x̃∂ỹ
+a2

∂2

∂ỹ2
+a3

∂

∂ỹ

∥∥∥∥
B

0,λ
c (Q̄)

.
(4.22)

We need the following lemma which is evident to prove.

Lemma 4.6. Let (b,γ ) ∈ B
2,λ
c (R)×B

2,λ
c (R). We have (a1,a2,a3) ∈ (B

0,λ
c (Q̄))3

furthermore, ‖ai‖B
0,λ
c (Q̄)

≤ Li(‖b‖
B

2,λ
c (R)

,‖γ ‖
B

2,λ
c (R)

), 1 ≤ i ≤ 3 where Li(·, ·)
is a continuous function verifying Li(0,0) = 0.

Then we have

∥∥�
γ

b v
∥∥

B
0,λ
c (Q̄)

≤
∥∥∥∥a1

∂2v

∂x̃∂ỹ

∥∥∥∥
B

0,λ
c (Q̄)

+
∥∥∥∥a2

∂2v

∂ỹ2

∥∥∥∥
B

0,λ
c (Q̄)

+
∥∥∥∥a3

∂v

∂ỹ

∥∥∥∥
B

0,λ
c (Q̄)

≤
(∥∥a1

∥∥
B

0,λ
c (Q̄)

+∥∥a2
∥∥

B
0,λ
c (Q̄)

+∥∥a3
∥∥

B
0,λ
c (Q̄)

)
‖v‖

B
2,λ
c (Q̄)

(4.23)

and using the last lemma we obtain

∥∥�
γ

b v
∥∥

B
0,λ
c (Q̄)

≤
(
L1

(
‖b‖

B
2,λ
c (R)

,‖γ ‖
B

2,λ
c (R)

)
+L2

(
‖b‖

B
2,λ
c (R)

,‖γ ‖
B

2,λ
c (R)

)

+L3

(
‖b‖

B
2,λ
c (R)

,‖γ ‖
B

2,λ
c (R)

))
‖v‖

B
2,λ
c (Q̄)

.

(4.24)

So ∥∥(
�−�

γ

b

)
v
∥∥

�
≤ L

(
‖b‖

B
2,λ
c (R)

,‖γ ‖
B

2,λ
c (R)

)
‖v‖

B
2,λ
c (Q̄)

, (4.25)

where L(·, ·) is a continuous function verifying L(0,0) = 0.
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The operator � being an isomorphism, this shows that �
γ

b is also an isomor-
phism for small b and γ .

Thus the problem

�ψ̃ +�
γ

b ψ̃ = 0 in Q,

ψ̃
(
x̃,0

) = −b
(
x̃
)
, ψ̃

(
x̃,1

) = −γ
(
x̃
)
, x̃ ∈ R,

(4.26)

has a unique solution in B
2,λ
c (Q̄). This gives the proof of Theorem 4.4(a). �

Now we will prove (b), that is, the application

S : �
(
0, r0

) ⊂ B2,λ
c (R)×B2,λ

c (R) −→ B2,λ
c

(
Q̄

)
(b,γ ) 
−→ ψ̃

(4.27)

is continuously differentiable.
We define S1 and S2 as follows:

S1 : B(
0, r0

) −→ �
(
B2,λ

c

(
Q̄

)
,�

)
,

(b,γ ) 
−→ �
γ

b

S2 : Isom
(
B2,λ

c

(
Q̄

)
,�

) −→ Isom
(
�,B2,λ

c

(
Q̄

))
,

L 
−→ L−1

(4.28)

and we put

�(b,γ ) = (
0,−b

(
x̃
)
,−γ

(
x̃
)) = �

γ

b ψ̃ in �. (4.29)

We have

S2 ◦S1(b,γ ) = (
�

γ

b

)−1 with (b,γ ) ∈ B
(
0, r0

)
,

S(b,γ ) = (
S2 ◦S1(b,γ )

)
�(b,γ ) = (

�
γ

b

)−1(
�

γ

b ψ̃
) = ψ̃.

(4.30)

The differentiability of ψ̃ is given by the differentiability of S1, S2, and �(b,γ ).
It is evident that �(b,γ ) is continuously differentiable with respect to b and γ .
S2 is a �∞ operator. It remains to prove the continuous differentiability of S1.

We have

S1 : (b,γ ) −→ �
γ

b = �+a1
∂2

∂x̃∂ỹ
+a2

∂2

∂ỹ2
+a3

∂

∂ỹ
. (4.31)

It is sufficient to prove that ai , 1 ≤ i ≤ 3, which are rational functions in b, γ ,
b′, γ ′, b′′, γ ′′, are continuously differentiable with respect to b and γ . For this
we use the next lemma which is evident to prove [1].
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Lemma 4.7. Let p be a rational function of k variables which is devoid of poles
in a neighbourhood of the origin in R

k (k a positive integer) such that p(0) = 0.
Then the mapping

P : �1≤i≤kB
ni,λ
c (R)−→Bn0,λ

c (R),

(
g1, . . . ,gk

) 
−→ P
(
g1, . . . ,gk

)
,

(4.32)

where ni ∈ N, 1 ≤ i ≤ k, n0 = min{ni,1 ≤ i ≤ k} is continuously differentiable
in a neighbourhood of the origin in �1≤i≤kB

ni,λ
c (R).

The coefficients a1, a2, and a3 verify the hypothesis of Lemma 4.7, then they
are continuously differentiable with respect to b and γ . This gives continuous
differentiability of S1 with respect to b and γ . Then Theorem 4.4 is proved.

In the new variables x̃, ỹ, the operator T (b,γ ) takes the form

T (b,γ ) = −F 2

2

{[
∂ψ̃

∂x̃

(
x̃,1

)− γ ′

(1+γ −b)2

∂ψ̃

∂ỹ

(
x̃,1

)]2

+ 1

(1+γ −b)2

(
∂ψ̃

∂ỹ

(
x̃,1

))2

+ 2

1+γ −b

∂ψ̃

∂ỹ

(
x̃,1

)}

= −F 2

2

{[
∂ψ̃

∂x̃

(
x̃,1

)+λ1(b,γ )
∂ψ̃

∂ỹ

(
x̃,1

)]2

+λ2
2(b,γ )

(
∂ψ̃

∂ỹ

(
x̃,1

))2

+2λ2(b,γ )
∂ψ̃

∂ỹ

(
x̃,1

)}

(4.33)

with

λ1(b,γ ) = − γ ′

(1+γ −b)2
; λ2(b,γ ) = 1

1+γ −b
. (4.34)

Theorem 4.8. Under the hypothesis of Theorem 4.4 the operator T is continu-
ously Gâteaux differentiable on B.

Proof. We have shown that ψ̃ is continuously differentiable with respect to b and
γ . Moreover, it is evident that λ1(b,γ ) and λ2(b,γ ) are continuously differen-
tiable with respect to b and γ . We deduce that T (b,γ ) is continuously Gâteaux
differentiable with respect to b and γ . Then T1 is continuously differentiable
on B. �

4.2. Expression of (∂T1/∂γ )(0,0). In the last subsection, we have seen that
ψ̃ is the solution of the problem

�ψ̃ +�
γ

b ψ̃ = 0 in Q,

ψ̃
(
x̃,0

) = −b
(
x̃
)
, ψ̃

(
x̃,1

) = −γ
(
x̃
)
, x̃ ∈ R.

(4.35)
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We have ψ̃|b=γ=0 = 0 in Q and �0
0ψ̃ = 0.

Let h ∈ B
2,λ
c (R). We put b = 0 in system (4.35), we derive with respect to γ

in the direction h and we evaluate the derivative at γ = 0. We put

w = ∂ψ̃

∂γ

∣∣∣
b=γ=0

. (4.36)

We obtain

�w+�0
0w+ ∂

∂γ

(
�

γ

0

)
|γ=0ψ̃|b=γ=0 ·h = 0 in Q,

w
(
x̃,0

) = 0, w
(
x̃,1

) = −h
(
x̃
)
, x̃ ∈ R

(4.37)

and we get the following result.

Theorem 4.9. Let h ∈ B
2,λ
c (R) and w = w(h) = (∂ψ̃/∂γ )(·,1)|b=γ=0 ·h. Then

w(h) is the unique solution of the problem

�w = 0 in Q,

w
(
x̃,0

) = 0, w
(
x̃,1

) = −h
(
x̃
)
, x̃ ∈ R

(4.38)

and satisfies ∥∥w(h)
∥∥

B
2,λ
c (Q̄)

≤ k‖h‖
B

2,λ
c (R)

, k > 1. (4.39)

Proof. For the existence and uniqueness, we use Proposition 4.5. Now to prove
inequality (4.39), we need the next lemma proved in the annex. �

Lemma 4.10. Let h be in the space B
2,λ
c (R). Then the function (x̃, ỹ) 
→

h(x̃)ỹ is in the space B
2,λ
c (Q̄) and verify‖h(x̃)ỹ‖

B
2,λ
c (Q̄)

≤k‖h‖
B

2,λ
c (R)

, where
k > 1.

Now we are able to establish relation (4.39). We can write

w
(
x̃, ỹ

) = u
(
x̃, ỹ

)−h
(
x̃
)
ỹ, (4.40)

where u is the solution of the problem

�u = h′′(x̃)
ỹ in Q,

u
(
x̃,0

) = 0, u
(
x̃,1

) = 0, x̃ ∈ R.
(4.41)

From Proposition 4.5 we have

‖u‖
B

2,λ
c (

∑
)
≤ k1‖�u‖

B
0,λ
c (

∑
)
, k1 > 1 (evident)

≤ k1
∥∥h′′(x̃)

ỹ
∥∥

B
0,λ
c (Q̄)

≤ k1k2‖h‖
B

2,λ
c (R)

, k2 > 1 (Lemma 4.10)

≤ k3‖h‖
B

2,λ
c (R)

, where k3 = k1k2.

(4.42)
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Using Lemma 4.10 we obtain∥∥w(h)
∥∥

B
2,λ
c (Q̄)

≤ k3‖h‖
B

2,λ
c (R)

+k4‖h‖
B

2,λ
c (R)

≤ k‖h‖
B

2,λ
c (R)

, k > 1,
(4.43)

where k = k3 +k4. Now we can evaluate (∂T1/∂γ )(0,0). We have

∂T1

∂γ
(0,0) ·h =

[
Id−∂T

∂γ
(0,0)

]
·h, h ∈ B2,λ

c (R), (4.44)

where Id is the identity mapping of B
2,λ
c (R).

We calculate (∂T /∂γ )(0,0) ·h

T (0,γ ) = −F 2

2

{[
∂ψ̃

∂x̃
(·,1)− γ ′

(1+γ −b)2

∂ψ̃

∂ỹ
(·,1)

]2

+ 1

(1+γ −b)2

(
∂ψ̃

∂ỹ
(·,1)

)2

+ 2

1+γ −b

∂ψ̃

∂ỹ
(·,1)

}
|b=0

.

(4.45)

We derive with respect to γ in the direction h at γ = 0

∂T

∂γ
(0,0) ·h = −F 2

2

{
2

[
∂ψ̃

∂x̃
(·,1)− γ ′

(1+γ )2

∂ψ̃

∂ỹ
(·,1)

]
|b=γ=0

× ∂

∂γ

[
∂ψ̃

∂x̃
(·,1)− γ ′

(1+γ )2

∂ψ̃

∂ỹ
(·,1)

]
·h

+ ∂

∂γ

(
∂ψ̃

∂ỹ

)2

(·,1)|b=γ=0 ·h−2

[
∂ψ̃

∂ỹ |b=γ=0
(·,1)

]2

·h

−2

[
∂ψ̃

∂ỹ |b=γ=0
(·,1)

]
·h+2

∂

∂γ

(
∂ψ̃

∂ỹ
(·,1)|b=γ=0

)
·h

}

(4.46)

which gives

∂T

∂γ
(0,0) ·h = −F 2

{
∂

∂γ

(
∂ψ̃

∂ỹ
(·,1)|b=γ=0

)
·h

}

= −F 2
{

∂

∂ỹ

(
∂ψ̃

∂γ
(·,1)|b=γ=0

)
·h

}

= −F 2 ∂

∂ỹ

(
w(h)

)
.

(4.47)

We replace (∂T /∂γ )(0,0) ·h by its expression in (4.44) and we find

∂T1

∂γ
(0,0) ·h =

[
Id+F 2 ∂w

∂ỹ

]
·h. (4.48)
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4.3. Inversibility of (∂T1/∂γ )(0,0). To prove the inversibility of (∂T1/∂γ )

(0,0) = Id+F 2(∂w/∂ỹ), it suffices to show that∥∥∥∥F 2 ∂w

∂ỹ

∥∥∥∥
�(B

2,λ
c (R),B

1,λ
c (R))

< 1. (4.49)

We have∥∥∥∥F 2 ∂w

∂ỹ

∥∥∥∥
�(B

2,λ
c (R),B

1,λ
c (R))

= F 2 sup
h�=0

∥∥∂w/∂ỹ
∥∥

B
1,λ
c (R)

‖h‖
B

2,λ
c (R)

≤ F 2 sup
h�=0

∥∥w(h)
∥∥

B
2,λ
c (R)

‖h‖
B

2,λ
c (R)

≤F 2 sup
h�=0

k‖h‖
B

2,λ
c (R) ‖h‖

B
2,λ
c (R)

(see Theorem 4.9)

≤ F 2k.

(4.50)

It suffices that F 2k < 1 for the inversibility of (∂T1/∂γ )(0,0). Then the in-
versibility of (∂T1/∂γ )(0,0) is obtained for F ∈ ]0,1/

√
k [. These results

achieve the proof of Theorem 4.3 and then the proof of Theorem 4.2.

Remark 4.11. We have a result of existence and uniqueness for Froude numbers
F < 1.

5. Conclusion

The conclusion of this work is that we have established a local result of existence
and uniqueness of the solution for the values of Froude number in ]0,k [⊂]0,1[.
Precisely, for a given small obstacle b in B

2,λ
c (R) there exists a unique function

γ in B
2,λ
c (R) which describes the perturbation of the free surface. The result

established here does not exclude the existence of solutions in other spaces.
In [5], it is said that there is no uniqueness of the solution when F < 1. This
result has been confirmed numerically in [5] where moreover the existence and
uniqueness of the solution are established after linearization of the equations. In
our paper, without linearization, we have solved the problem of existence and
uniqueness using the implicit function theorem in subspaces of Hölder spaces.

Annex

Proof of Proposition 4.5.
Consider the homogeneous problem

�v = f1 in Q,

v(·,1) = v(·,0) = 0 in R.
(5.1)
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First of all, f1 belongs to B
0,λ
c (Q̄) then f1 obviously belongs to L2(Q). So

there exists a weak solution v ∈ H 1
0 (Q). In fact v ∈ H 2(Q) ∩ H 1

0 (Q). Be-

cause f1 ∈ B
0,λ
c (Q̄) we conclude that v is a classical solution in �2,λ(Q̄)

(see [4]).
To prove that v ∈ B

2,λ
c (Q̄), we must show that

sup
k+l≤2

sup
Q

ec|x|∣∣Dk
xD

l
yv

∣∣ < ∞. (5.2)

For this we use the result established in [2] where we replace the operator L

by −�. We conclude that there exists c̃ > 0 such that for each c ∈]0, c̃ [, problem
(5.1) has a unique solution in B

2,λ
c (Q̄) when f1 is given in B

0,λ
c (Q̄).

We return to the nonhomogeneous problem

�v = b1 in Q,

v(x,1) = b2(x), v(x,0) = b3(x), x ∈ R.

(5.3)

We put v(x,y) = v1(x,y)+(1−y)b3(x)+yb2(x) where v1 verifies

�v1 = b1 −�
(
(1−y)b3(x)

)−�
(
yb2(x)

) = F(x,y) in Q,

v1(x,1) = 0, v1(x,0) = 0, x ∈ R.

(5.4)

It is evident that F ∈ B
0,λ
c (Q̄) so v1 ∈ B

2,λ
c (Q̄).

We deduce that v ∈ B
2,λ
c (Q̄). �

Proof of Lemma 4.10. We put

u(x,y) = h(x)y. (5.5)

The functions (x,y) 
→ h(x) and (x,y) 
→ y are in �2,λ(Q̄). Then (x,y) 
→
h(x)y is in �2,λ(Q̄).

We also have

sup
(x,y)∈Q

sup
k+l≤2

ec|x|∣∣Dk
xD

l
yu(x,y)

∣∣ < ∞. (5.6)

Then

u(x,y) = h(x)y ∈ B2,λ
c

(
Q̄

)
. (5.7)
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Now we show that∥∥h(x)y
∥∥

B
2,λ
c (Q̄)

≤ k‖h‖
B

2,λ
c (R)

,

∥∥h(x)y
∥∥

B
2,λ
c (Q̄)

=
∑

k+l≤2

sup
(x,y)∈Q̄

ec|x|∣∣Dk
xD

l
y

(
h(x)y

)∣∣

+ sup
k+l=2

sup
(x,y)�=(x′,y′)

∣∣Dk
xD

l
y

(
h(x)y

)
(x,y)−Dk

xD
l
y

(
h(x)y

)(
x′,y′)∣∣

[(
x −x′)2 +(

y −y′)2]λ/2

= sup
(x,y)∈Q̄

ec|x|∣∣h(x)y
∣∣+ sup

(x,y)∈Q̄

ec|x|∣∣h′(x)y
∣∣+ sup

(x,y)∈Q̄

ec|x|∣∣h′′(x)y
∣∣

+ sup
(x,y)∈Q̄

ec|x|∣∣h(x)
∣∣+max

{
sup

(x,y)�=(x′,y′)

∣∣h′′(x)y −h′′(x′)y′∣∣[(
x −x′)2 +(

y −y′)2]λ/2
,

× sup
(x,y)�=(x′,y′)

∣∣h′(x)−h′(x′)∣∣[(
x −x′)2 +(

y −y′)2]λ/2

}
,

∥∥h(x)y
∥∥

B
2,λ
c (Q̄)

≤ 2‖h‖
B

2,λ
c (R)

+‖h‖
B

1,λ
c (R)

+ sup
(x,y)�=(x′,y′)

∣∣h′′(x)y −h′′(x′)y′∣∣[(
x −x′)2 +(

y −y′)2]λ/2
.

(5.8)

We have

sup
(x,y) �=(x′,y′)

∣∣h′′(x)y −h′′(x′)y′∣∣[(
x −x′)2 +(

y −y′)2]λ/2

≤ sup
(x,y)�=(x′,y′)

∣∣h′′(x)y −h′′(x′)y +h′′(x′)y −h′′(x′)y′∣∣[(
x −x′)2 +(

y −y′)2]λ/2

≤ sup
x �=x′

∣∣h′′(x)−h′′(x′)∣∣∣∣x −x′∣∣λ + sup
(x,y)�=(x′,y′)

∣∣h′′(x′)∣∣∣∣y −y′∣∣∣∣y −y′∣∣λ
≤ ‖h‖

B
2,λ
c (R)

+ ∣∣y −y′∣∣1−λ‖h‖
B

2,λ
c (R)

≤ 2‖h‖
B

2,λ
c (R)

.

(5.9)

Then we obtain ∥∥h(x)y
∥∥

B
2,λ
c (Q̄)

≤ (4+c)‖h‖
B

2,λ
c (R)

(5.10)
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and we have ∥∥h(x)y
∥∥

B
2,λ
c (Q̄)

≤ k‖h‖
B

2,λ
c (R)

, (5.11)

where k > 1. �
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