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We study the local exponential stability of evolution difference systemswith slowly varying coefficients and nonlinear perturbations.
We establish the robustness of the exponential stability in infinite-dimensional Banach spaces, in the sense that the exponential
stability for a given pseudolinear equation persists under sufficiently small perturbations. The main methodology is based on a
combined use of new norm estimates for operator-valued functions with the “freezing” method.

1. Introduction

The problem of stability and robustness of difference systems
has been extensively studied in the last years [1–7]. However,
mainly systems with linear leading parts were investigated. In
fact, a few investigations have dealt with stability conditions
for nonlinear difference or differential systems (see, e.g., [3, 8–
14]). This itself highlights the importance of establishing new
criteria to study exponential stability of nonlinear systems.
Pseudolinear systems are an important class of nonlinear sys-
tems.The stability and robustness of pseudolinear differential
equations are considered, for example, in [15–19].

Martynyuk [19] derived new bounds for solutions of
perturbed pseudolinear differential equations, basically using
Gronwall-type inequalities. Dvirnyi and Slyn’ko [16, 17],
constructing a piecewise differential Lyapunov function,
established the stability of solutions to impulsive differential
equations with impulsive action in the pseudolinear form.
Banks et al. [15], using a Gronwall-type inequality and
assuming that a matrix 𝐵(𝑥, 𝑡) satisfies a jointly Lipchitz
inequality in 𝑥 and 𝑡, established the robust exponential
stability of evolution differential equations of pseudolinear
form. In summary, in the existing literature there are many
results concerning the stability or asymptotic behavior of
pseudolinear differential equations; however, in general, the
assumptions are difficult to check or conservative.

Our results compare favorably with the abovementioned
works in the following sense:

(a) We established a local stability theory of discrete
evolution equations.

(b) The Lipschitz assumptions are local in the state and
general in the time.

(c) Explicit estimates to the norm of the associated
evolution semigroups are established.

In this paper we consider evolution difference systems
defined in infinite-dimensional Banach spaces, with bounded
operators on the right-hand side represented in the pseu-
dolinear form. New estimates for the norms of solutions
are derived giving us explicit stability and boundedness
conditions. Our approach is based on the generalization
of the freezing method to abstract difference systems. The
equations will be represented as a perturbation about a
fixed value of the coefficient operator. Thus, applying norm
estimates for the involved operator-valued functions, new
stability results are established.

Although the freezingmethod appears to be often utilized
in practice in the control of linear time-varying systems, not
much is currently known regarding the stability or asymptotic
behavior of pseudolinear difference systems of the form
considered here. In fact, we will develop a local stability
theory to evolution pseudolinear difference systems.
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The remainder of this paper is organized as follows:
In Section 2, we introduce some notations, the statement
of the problem, and a fundamental result concerning the
exponential stability of abstract difference equations. In
Section 3, sufficient conditions for the exponential stability
of pseudolinear difference systems are given. In Section 4
pseudolinear difference systems inHilbert spaces are studied.
Finally, Section 5 is devoted to the discussion of our results:
We highlight the main conclusions.

2. Statement of the Problem

Let 𝑋 be a Banach space with an arbitrary norm ‖ ⋅ ‖, 𝜌(𝐴)
denotes the spectral radius of an operator 𝐴, and

Ω (𝑅) = {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑅} , 𝑅 ≤ ∞. (1)

Consider in a Banach space𝑋 the equation

Δ𝑥 (𝑘) = 𝐵 (𝑥 (𝑘) , 𝑘) 𝑥 (𝑘) ; 𝑥 (0) = 𝑥
0
, 𝑘 = 0, 1, . . . , (2)

where Δ is the difference operator defined by Δ𝑢(𝑘) = 𝑢(𝑘 +

1) − 𝑢(𝑘) and 𝐵(𝑧, 𝑘) are bounded linear operators in 𝑋,
continuously depending on 𝑧 ∈ Ω(𝑅); that is,

𝐵 (𝑧, 𝑘) : 𝐷 (𝐵 (𝑧, 𝑘)) ⊆ 𝑋 󳨀→ 𝑋 (3)

is a linear bounded operator in𝑋, for each 𝑧 ∈ 𝑋, 𝑘 ≥ 0.
Denote by 𝜔

∞
(𝑅) the set of sequences with values in

Ω(𝑅):

𝜔
∞
(𝑅) = {ℎ (𝑗) ∈ Ω (𝑅) : 𝑗 = 0, 1, . . .} . (4)

Additionally, assume that 𝐵(𝑧, 𝑘) satisfies the conditions
󵄩󵄩󵄩󵄩(𝐵 (ℎ

1
, 𝑘) − 𝐵 (ℎ, 𝑘)) 𝜔

󵄩󵄩󵄩󵄩 ≤ 𝛾 (𝑅)
󵄩󵄩󵄩󵄩ℎ1 − ℎ

󵄩󵄩󵄩󵄩 ‖𝜔‖ , (5)

‖(𝐵 (ℎ, 𝑘) − 𝐵 (ℎ, 𝑠)) 𝜔‖ ≤ 𝜇 (𝑅) |𝑘 − 𝑠| ‖𝜔‖ ,

(ℎ
1
, ℎ, 𝜔 ∈ Ω (𝑅) ; 𝑘, 𝑠 ≥ 0) ,

(6)

where 𝛾(𝑅) and 𝜇(𝑅) are nonnegative constants independent
of 𝑘, 𝑠, and 𝜔.

Remark 1. Here we will consider system (2) as a perturbation
of a fixed operator 𝐵(𝑥

0
, 𝑘
0
). Thus, our results can be applied

to robust stability; in fact, we can regard

Δ𝑥 (𝑘) = 𝐵 (𝑥
0
, 𝑘
0
) 𝑥 (𝑘) (7)

as the nominal system and

Δ𝑥 (𝑘) = 𝐵 (𝑥 (𝑘) , 𝑘) 𝑥 (𝑘) (8)

as a system with state-dependent parametric perturbations.
In order to establish the stability properties of (2), we will

formulate a fundamental theorem concerning the exponen-
tial stability of the following nonlinear system of difference
equations.

Consider in𝑋 the equation

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝑓 (𝑥 (𝑘) , 𝑘) ; 𝑘 = 0, 1, . . . , (9)

where {𝐴(𝑘)}∞
𝑘=0

is a family of linear bounded operators in𝑋

with a common domain 𝐷(𝐴(𝑘)) fl 𝐷 ⊆ 𝑋 and 𝑓(⋅, 𝑘) :

Ω(𝑅) → 𝑋 is continuous for each 𝑘 ≥ 0. In addition, there
are nonnegative constants 𝜇 = 𝜇(𝑅) and 𝑞 = 𝑞(𝑅), such that

󵄩󵄩󵄩󵄩𝑓 (𝑧, 𝑘)
󵄩󵄩󵄩󵄩 ≤ 𝜇 ‖𝑧‖ ,

(𝑧 ∈ Ω (𝑅) ; 𝑘 = 0, 1, . . .) ,

‖(𝐴 (𝑘) − 𝐴 (𝑠)) 𝜔‖ ≤ 𝑞 |𝑘 − 𝑠| ‖𝜔‖ ,

(𝑘, 𝑠 ≥ 0; 𝜔 ∈ Ω (𝑅)) ,

(10)

with 𝑞 inpendent of 𝑘, 𝑠, and 𝜔.

Definition 2. The zero solution of system (9) is exponentially
stable with respect to a ballΩ(𝜂) if there are constants𝑀 > 0

and 𝑐
0
∈ (0, 1) such that any solution 𝑥(𝑘) of (9) with initial

condition 𝑥(0) = 𝑥
0
∈ Ω(𝜂) satisfies the inequality

󵄩󵄩󵄩󵄩𝑥 (𝑘, 𝑥0)
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑐

𝑘

0

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 , ∀𝑘 = 0, 1, . . . . (11)

Denote by Ψ = {𝐴
𝑘
(𝑗)}
𝑘≥𝑗≥0

the discrete evolution family
generated by the operator 𝐴(𝑗), for 𝑗 ≥ 0.

Theorem 3 (see [20]). Under conditions (10), assume that

𝑀 = sup
𝑘≥0

(sup
𝑙≥0

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑘
(𝑙)
󵄩󵄩󵄩󵄩󵄩
) < ∞,

𝜃
0
(𝑅) =

∞

∑

𝑘=0

(𝑞𝑘 + 𝜇) sup
𝑙≥0

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑘
(𝑙)
󵄩󵄩󵄩󵄩󵄩
< 1.

(12)

Then the zero solution of (9) is exponentially stable with respect
to a ballΩ(𝑅). Moreover, any solution of (9) with initial vector
𝑥
0
∈ Ω(𝑅) satisfies the inequality

sup
𝑘≥1

‖𝑥 (𝑘)‖ ≤
𝑀

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩

1 − 𝜃
0

, (13)

provided that

𝑀
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 (1 − 𝜃
0
)
−1

< 𝑅. (14)

3. Main Results

Now, returning to system (2), we write it in the form

Δ𝑥 (𝑘) = 𝐵 (ℎ (𝑠) , 𝑠) 𝑥 (𝑘)

+ [𝐵 (𝑥 (𝑘) , 𝑘) − 𝐵 (ℎ (𝑠) , 𝑠)] 𝑥 (𝑘) ,

𝑘 = 0, 1, . . . ,

(15)

with a fixed integer 𝑠.
Put

𝑀(𝑅) = sup
ℎ∈Ω(𝑅),𝑘≥0

‖𝐵 (ℎ, 𝑘) ℎ‖ ,

𝑞
0
(𝑅) = 𝛾 (𝑅)𝑀 (𝑅) + 𝜇 (𝑅) .

(16)
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Assume that

𝑝 (𝑅, 𝑘) = sup
ℎ∈Ω(𝑅),𝑠≥0

󵄩󵄩󵄩󵄩󵄩󵄩
𝐵̂
𝑘

(ℎ, 𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩
< ∞, (17)

where 𝐵̂(ℎ, 𝑘) = 𝐼 + 𝐵(ℎ, 𝑘), with 𝐼 the identity operator, and

𝜒 (𝑅) fl sup
𝑘≥0

𝑝 (𝑅, 𝑘) < ∞. (18)

Theorem4. For a positive𝑅 < ∞, let conditions (5), (6), (16)–
(18), and

𝜃̃
0 (𝑅) = 𝑞

0 (𝑅)

∞

∑

𝑘=0

𝑘𝑝 (𝑅, 𝑘) < 1 (19)

hold. Then the zero solution of (2) is exponentially stable.
Moreover, the solution 𝑥(𝑘) of (2), with initial condition 𝑥

0
∈

Ω(𝑅), is subject to the estimate

sup
𝑘≥1

‖𝑥 (𝑘)‖ ≤ 𝜒 (𝑅)
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 (1 − 𝜃̃
0
(𝑅))
−1

, (20)

provided that

𝜒 (𝑅)
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 (1 − 𝜃̃
0
(𝑅))
−1

< 𝑅. (21)

Proof. Let us introduce the equation

Δ𝑦
ℎ
(𝑘) = 𝐵 (ℎ (𝑘) , 𝑘) 𝑦

ℎ
(𝑘) , 𝑘 = 0, 1, . . . , (22)

where ℎ ∈ 𝜔
∞
(𝑅). If ℎ(𝑘) = 𝑥(𝑘) is a solution of (2), then

(22) and (2) coincide. If we put 𝐴(𝑘) = 𝐵(ℎ(𝑘), 𝑘), with the
function ℎ(𝑘), then (22) takes the form

Δ𝑥 (𝑘) = 𝐴 (𝑘) 𝑥 (𝑘) , 𝑘 = 0, 1, . . . . (23)

By (5) and (6) we have

‖𝐵 (ℎ (𝑘) , 𝑘) − 𝐵 (ℎ (𝑠) , 𝑠)‖

≤ ‖𝐵 (ℎ (𝑘) , 𝑘) − 𝐵 (ℎ (𝑠) , 𝑘)‖

+ ‖𝐵 (ℎ (𝑠) , 𝑘) − 𝐵 (ℎ (𝑠) , 𝑠)‖ .

(24)

On the other hand, by (16), we have ‖Δ𝑥(𝑘)‖ ≤ 𝑀(𝑅), so it
follows that ‖𝑥(𝑘) − 𝑥(𝑠)‖ ≤ 𝑀(𝑅)|𝑘 − 𝑠|, ∀𝑘 ≥ 𝑠 ≥ 0.

Consequently

‖𝐵 (ℎ (𝑘) , 𝑘) − 𝐵 (ℎ (𝑠) , 𝑠)‖

≤ 𝛾 (𝑅) ‖𝑥 (𝑘) − 𝑥 (𝑠)‖ + 𝜇 (𝑅) |𝑘 − 𝑠|

≤ (𝛾 (𝑅)𝑀 (𝑅) + 𝜇 (𝑅)) |𝑘 − 𝑠| = 𝑞
0
(𝑅) |𝑘 − 𝑠| ,

∀𝑘 ≥ 𝑠 ≥ 0.

(25)

Thus, applyingTheorem 3 to (23) with 𝐴(𝑘) = 𝐵̂(ℎ(𝑘), 𝑘) and
𝑓 ≡ 0, the result follows.

Remark 5. Theorem 4 remains true if the linear system

Δ𝑥 (𝑘) = 𝐵 (0, 𝑘) 𝑥 (𝑘) , 𝑘 = 0, 1, . . . (26)

satisfies conditions (17) and (18), and in this case condition
(19) takes the form

𝜃̃
0 (𝑅) = 𝜇 (𝑅)

∞

∑

𝑘=0

𝑘𝑝 (𝑅, 𝑘) < 1. (27)

4. Pseudolinear Systems in Hilbert Spaces

As the previous theorems show, the extension of the freezing
method to evolution equations is based on norm estimates for
relevant semigroups. However, obtaining these estimates is
usually not an easy task. Because of this, we restrict ourselves
by equations in a separable Hilbert space with Hilbert-
Schmidt coefficient operators.

In the finite-dimensional case, the spectrum of a linear
operator consists of its eigenvalues. The spectral theory of
bounded linear operators on infinite-dimensional spaces is
an important but challenging area of research. For example,
an operator may have a continuous spectrum in addition to,
or instead of, a point spectrum of eigenvalues. A particularly
simple and important case is that of compact, self-adjoint
operators. Compact operatorsmay be approximated by finite-
dimensional operators, and their spectral theory is close to
that of finite-dimensional operators. We will assume that
coefficient operators of (2) are not necessarily compact or self-
adjoint. See, for example, [21, 22].

To formulate the next results, let us introduce the follow-
ing notations and definitions: Let 𝐻 be a separable Hilbert
space and 𝐴 a linear compact operator in 𝐻. If {𝑒

𝑘
}
∞

𝑘=1
is an

orthogonal basis in𝐻 and the series∑∞
𝑘=1

(𝐴𝑒
𝑘
, 𝑒
𝑘
) converges,

then the sum of the series is called the trace of the operator𝐴
and is denoted by

Trace (𝐴) = Tr (𝐴) =
∞

∑

𝑘=1

(𝐴𝑒
𝑘
, 𝑒
𝑘
) . (28)

Definition 6. An operator 𝐴 satisfying the relation

Tr (𝐴∗𝐴) < ∞ (29)

is said to be a Hilbert-Schmidt operator, where 𝐴
∗ is the

adjoint operator of 𝐴.
The norm

𝑁
2
(𝐴) = 𝑁 (𝐴) = √Tr (𝐴∗𝐴) (30)

is called the Hilbert-Schmidt norm of 𝐴.

Definition 7. A bounded linear operator𝐴 is said to be quasi-
Hermitian if its imaginary component

𝐴
𝐼
=
𝐴 − 𝐴

∗

2𝑖
(31)

is a Hilbert-Schmidt operator, where 𝐴
∗ is the adjoint

operator of 𝐴.

Theorem 8 (see [22], p. 118). Let 𝐴 be a bounded linear
operator acting on a separable Hilbert space and satisfying (31).
Then

󵄩󵄩󵄩󵄩𝐴
𝑚󵄩󵄩󵄩󵄩 ≤

𝑚

∑

𝑘=0

𝑚! (𝜌 (𝐴))
𝑚−𝑘

𝑔
𝑘

𝐼
(𝐴)

(𝑚 − 𝑘)! (𝑘!)
3/2

(32)

for any integer 𝑚 ≥ 1, where 𝑔
𝐼
(𝐴) = √2[𝑁

2

2
(𝐴
𝐼
) −

∑
∞

𝑘=1
| Im 𝜆

𝑘
(𝐴)|
2
]
1/2, and 𝜆

𝑘
(𝐴) are the eigenvalues of 𝐴,
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including their multiplicities, and 𝜌(𝐴) is the spectral radius of
𝐴. Assume that

V̂
0
= sup
𝑘≥0

𝑔
𝐼 (𝐴 (𝑘)) < ∞,

𝜌̂
0
= sup
𝑘≥0

𝜌 (𝐴 (𝑘)) < 1.

(33)

Denote

𝑀̂
0
= sup
𝑚≥1

(

𝑚

∑

𝑘=0

𝑚!𝜌̂
𝑚−𝑘

0
V̂𝑘
0

(𝑚 − 𝑘)! (𝑘!)
3/2

) . (34)

Theorem 9 (see [23]). Under conditions (10) and (33), assume
that

(i) 𝐴(𝑘) (𝑘 = 0, 1, . . .) are Hilbert-Schmidt operators
satisfying condition (31),

(ii)

𝑆 (𝐴 (⋅) , 𝑓) =

∞

∑

𝑗=0

V̂𝑗
0

√𝑗!
[

(𝑗 + 1) 𝑞

(1 − 𝜌̂
0
)
𝑗+2

+
𝜇

(1 − 𝜌̂
0
)
𝑗+1

]

< 1.

(35)

Then the zero solution of (9) is exponentially stable with respect
to a ball Ω(𝑅). Moreover, any solution 𝑥(𝑘) of (9) with initial
condition 𝑥

0
∈ Ω(𝑅) satisfies the inequality

sup
𝑘≥1

‖𝑥 (𝑘)‖ ≤ 𝑀̂
0

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 (1 − 𝑆 (𝐴 (⋅) , 𝑓))

−1
, (36)

provided that

𝑀̂
0

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 (1 − 𝑆 (𝐴 (⋅) , 𝑓))

−1
< 𝑅. (37)

Now, in order to apply Theorem 9 to solve the stability
problem of the pseudolinear system (2), let us suppose that

𝜌
0
(𝑅) = sup

ℎ∈Ω(𝑅),𝑘≥0

𝜌 (𝐵̂ (ℎ, 𝑘)) < 1,

V
0
(𝑅) = sup

ℎ∈Ω(𝑅),𝑘≥0

𝑔
𝐼
(𝐵̂ (ℎ, 𝑘)) < ∞.

(38)

Put

𝜒̃ (𝑅) = sup
𝑘≥1

(

𝑘

∑

𝑗=0

𝑘!𝜌
𝑘−𝑗

0
(𝑅) V𝑗
0
(𝑅)

(𝑘 − 𝑗)! (𝑗!)
3/2

) . (39)

Theorem 10. Under conditions (5), (6), and (38), assume that

(a) 𝐵̂(𝑧, 𝑘) (𝑘 = 0, 1, . . .) are Hilbert-Schmidt operators
satisfying condition (5), with 𝑧 ∈ Ω(𝑅),

(b)

𝑆 (𝐵̂ (⋅)) =

∞

∑

𝑘=0

V𝑘
0
(𝑅)

√𝑘!

[
(𝑘 + 1) 𝑞

0
(𝑅)

(1 − 𝜌
0
(𝑅))
𝑘+2

] < 1. (40)

Then the zero solution of (2) is exponentially stable with respect
to a ball Ω(𝑅). Moreover, any solution 𝑥(𝑘) of (2) with initial
condition 𝑥

0
∈ Ω(𝑅) satisfies the inequality

sup
𝑘≥1

‖𝑥 (𝑘)‖ ≤ 𝜒̃ (𝑅)
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 (1 − 𝑆 (𝐵̂ (⋅)))
−1

, (41)

provided that

𝜒̃ (𝑅)
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 (1 − 𝑆 (𝐵̂ (⋅)))
−1

< 𝑅. (42)

Proof. ByTheorem 8, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝐵̂ (ℎ, 𝑠))

𝑘󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

𝑘

∑

𝑗=0

𝑘! (𝜌 (𝐵̂ (ℎ, 𝑠)))
𝑘−𝑗

𝑔
𝑗

𝐼
(𝐵̂ (ℎ, 𝑠))

(𝑘 − 𝑗)! (𝑗!)
3/2

,

ℎ ∈ Ω (𝑅) ; 𝑘, 𝑠 ≥ 0.

(43)

This yields

sup
ℎ∈Ω(𝑅),𝑠≥0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝐵̂ (ℎ, 𝑠))

𝑘󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ sup
ℎ∈Ω(𝑅),𝑠≥0

(

𝑘

∑

𝑗=0

𝑘! (𝜌 (𝐵̂ (ℎ, 𝑠)))
𝑘−𝑗

𝑔
𝑗

𝐼
(𝐵̂ (ℎ, 𝑠))

(𝑘 − 𝑗)! (𝑗!)
3/2

) .

(44)

Hence, by (38), we obtain

𝑝 (𝑅, 𝑘) ≤

𝑘

∑

𝑗=0

𝑘! (𝜌
0 (𝑅))

𝑘−𝑗
(V
0 (𝑅))

𝑗

(𝑘 − 𝑗)! (𝑗!)
3/2

, ∀𝑘 ≥ 1. (45)

It follows that
𝜒 (𝑅) = sup

𝑘≥0

𝑝 (𝑅, 𝑘)

≤ sup
𝑘≥1

(

𝑘

∑

𝑗=0

𝑘! (𝜌
0 (𝑅))

𝑘−𝑗
(V
0 (𝑅))

𝑗

(𝑘 − 𝑗)! (𝑗!)
3/2

) .

(46)

Proceeding in a similsr way, we obtain that

𝑞
0
(𝑅)

∞

∑

𝑘=0

𝑘𝑝 (𝑅, 𝑘)

≤

∞

∑

𝑘=0

(V
0
(𝑅))
𝑘

√𝑘!

(
(𝑘 + 1) 𝑞0 (𝑅)

(1 − 𝜌
0 (𝑅))

𝑘+2
) .

(47)

Hence, fromTheorem 9, the result follows.

Consider a perturbed system of autonomous pseudolin-
ear equations

Δ𝑥 (𝑘) = 𝐵 (𝑥 (𝑘)) 𝑥 (𝑘) , 𝑥 (0) = 𝑥
0
; 𝑘 = 0, 1, . . . , (48)

where 𝐵(𝑧) is a linear and continuous operator in 𝜔
∞
(𝑅).

Let suppose that

𝜌̃
0
(𝑅) = sup

ℎ∈Ω(𝑅)

𝜌 (𝐵̂ (ℎ)) < 1,

Ṽ
0 (𝑅) = sup

ℎ∈Ω(𝑅)

𝑔
𝐼
(𝐵̂ (ℎ)) < ∞.

(49)
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Put

𝜒̃ (𝑅) = sup
𝑘≥1

(

𝑘

∑

𝑗=0

𝑘!𝜌̃
𝑘−𝑗

0
(𝑅) Ṽ𝑗
0
(𝑅)

(𝑘 − 𝑗)! (𝑗!)
3/2

) . (50)

In this particular case 𝜇(𝑅) = 0 because system (48) is
autonomous.

Corollary 11. Under conditions (5) and (49) assume that

(a) 𝐵̂(𝑧) is a Hilbert-Schmidt operator, with 𝑧 ∈ Ω(𝑅),
(b)

𝑆̃ (𝐵̂ (⋅)) = 𝛾 (𝑅)𝑀 (𝑅)

∞

∑

𝑘=0

Ṽ𝑘
0
(𝑅)

√𝑘! (1 − 𝜌̃
0
(𝑅))
𝑘+2

< 1. (51)

Then the zero solution of (48) is exponentilly stable. Moreover,
any solution 𝑥(𝑘) of (48), with initial condition 𝑥

0
∈ Ω(𝑅),

satisfies

sup
𝑘≥1

‖𝑥 (𝑘)‖ ≤ 𝜒̃ (𝑅)
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 (1 − 𝑆̃ (𝐵̂ (⋅)))
−1

, (52)

provided that

𝜒̃ (𝑅)
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 (1 − 𝑆̃ (𝐵̂ (⋅)))
−1

< 𝑅. (53)

Proof. The leading part of (48), 𝐵(𝑥), is invariant with respect
to the second argument; then 𝜇(𝑅) = 0. Besides, formulae
(49) are independent of time. Consequently, this corollary is
a consequence of Theorem 10.

Example 12. We present an example that illustrates The-
orem 10. In a finite-dimensional Hilbert space (𝐸

2
, ‖ ⋅

‖
∞
) (𝐸2 the 2-dimensional Euclidean space) and ‖𝑥‖

∞
=

max{|𝑥
1
|, |𝑥
2
|}, with an appropriate inner product, we con-

sider a system of difference equations

Δ(

𝑢 (𝑘)

V (𝑘)
)

= (

0 1

−𝜉 (𝑢 (𝑘) , V (𝑘) , 𝑘) −𝑓 (𝑢 (𝑘) , V (𝑘) , 𝑘)
)(

𝑢 (𝑘)

V (𝑘)
) ,

(54)

assuming that the functions 𝑓 = 𝑓(𝑢, V, 𝑘) and 𝜉 = 𝜉(𝑢, V, 𝑘)
are positive, bounded, and continuous with respect to the
arguments (𝑢, V), under the conditions

𝑘 ≥ 0,

𝑢
2
+ V2 ≤ 𝑅

2

(55)

with a fixed positive number 𝑅 < ∞. Thus,

𝐵 ((𝑢 (𝑘) , V (𝑘)) , 𝑘) = (𝑏
𝑖𝑗
(𝑢, V, 𝑘))

𝑖,𝑗=1,2
, (56)

where 𝑏
11
(𝑢, V, 𝑘) = 0, 𝑏

12
(𝑢, V, 𝑘) = 1, 𝑏

21
(𝑢, V, 𝑘) = −𝜉, and

𝑏
22
(𝑢, V, 𝑘) = −𝑓.

Hence, using the inequality

𝑔
2
(𝐴) ≤ 𝑁

2
(𝐴) −

󵄨󵄨󵄨󵄨󵄨
Trace𝐴2󵄨󵄨󵄨󵄨󵄨 , (57)

the Hilbert-Schmidt norm of a matrix 𝐴, we obtain

V̂
0
(𝑅) = 2 + sup

𝑘≥0,𝑢
2
+V2≤𝑅2

𝜉 (𝑢, V, 𝑘) , (58)

provided that the supremum is finite. Consider

𝑞
0
(𝑅) = sup

𝑘≥0,𝑢
2
+V2≤𝑅2

{
󵄨󵄨󵄨󵄨𝑓 (𝑢, V, 𝑘 + 1) − 𝑓 (𝑢, V, 𝑘)󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝜉 (𝑢, V, 𝑘 + 1) − 𝜉 (𝑢, V, 𝑘)󵄨󵄨󵄨󵄨} ,

𝜌
0
(𝑅) = inf

𝑘≥0,𝑢
2
+V2≤𝑅2

{
𝑓 (𝑢, V, 𝑘)

2

− (
𝑓 (𝑢, V, 𝑘)

4
− 𝜉 (𝑢, V, 𝑘))

1/2

} .

(59)

If the inequality

𝑆 (𝑅) = 𝑞̃
0
(𝑅){

1

(1 − 𝜌
0
(𝑅))
2
+

2V̂
0
(𝑅)

(1 − 𝜌
0
(𝑅))
3
} < 1 (60)

holds, then, by Theorem 10, the zero solution of (54) is
exponentially stable with respect to the ball 𝑢2 + V2 ≤ 𝑅

2.
Moreover, any solution𝑥(𝑘) = (𝑢(𝑘), V(𝑘)) of (54), with initial
value 𝑥(0) = (𝑢(0), V(0)) ∈ 𝐸

2, satisfies the inequality

sup
𝑘≥1

‖𝑥 (𝑘)‖ ≤ 𝜒̃ (𝑅) ‖𝑥 (0)‖ (1 − 𝑆 (𝑅))
−1
, (61)

provided that

𝜒̃ (𝑅) ‖𝑥 (0)‖ (1 − 𝑆 (𝑅))
−1

< 𝑅, (62)

where

𝜒̃ (𝑅) = sup
𝑘≥1

{𝜌
𝑘

0
(𝑅) + 𝑘V̂

0
(𝑅) 𝜌
𝑘−1

0
(𝑅)} . (63)

Example 13. Let 𝐻 = 𝑙
2
(C), where 𝑙

2
fl 𝑙
2
(C) is the Hilbert

space of complex sequences, equipped with the norm

‖𝑢‖𝑙
2

= (

∞

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

1/2

, 𝑢 = (𝑢
𝑗
) ∈ 𝑙
2
. (64)

Consider the infinite-dimensional triangular system, defined
on 𝑙
2
:

Δ𝑥 (𝑘) = 𝐵 (𝑥 (𝑘)) 𝑥 (𝑘) , 𝑥 (0) = 𝑥
0
∈ Ω (𝑅) , (65)

where 𝐵(𝑧) is a linear and continuous operator, represented
by the infinite-dimensional matrix

𝐵 (𝑧) = (𝑏
𝑖𝑗
(𝑧)) , 1 ≤ 𝑖 ≤ 𝑗; 𝑧 ∈ 𝑙

2
. (66)
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Additionally, assume that 𝐵(𝑧) satisfies the following condi-
tions:

(a) There exists a nonnegative 𝛾(𝑅) such that
󵄩󵄩󵄩󵄩(𝐵 (ℎ

1
) − 𝐵 (ℎ)) 𝜔

󵄩󵄩󵄩󵄩 ≤ 𝛾 (𝑅)
󵄩󵄩󵄩󵄩ℎ1 − ℎ

󵄩󵄩󵄩󵄩 ‖𝜔‖ , (67)

where 𝛾(𝑅) is independent of 𝜔 ∈ Ω(𝑅).
(b) 𝜌̃
0
(𝑅) = sup

ℎ∈Ω(𝑅)
{𝑒
𝑏
𝑖𝑖
(ℎ)
} < 1, 𝑖 = 1, 2, . . ..

(c) Ṽ
0
(𝑅) ≤ 𝐽(𝐵̂(⋅)) < ∞, where

𝐽 (𝐵̂ (⋅))

=
1

√2

sup
ℎ∈Ω(𝑅)

(

∞

∑

𝑗=1

[

[

∞

∑

𝑘=1,𝑘 ̸=𝑗

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑘
(ℎ) − 𝑏

𝑗𝑘
(ℎ)

󵄨󵄨󵄨󵄨󵄨

2
]

]

)

1/2 (68)

(d) 𝜒̃(𝑅) ≤ 𝜒̃
1
(𝑅), where

𝜒̃
1
(𝑅) = sup

𝑘≥1

(

𝑘

∑

𝑗=0

(𝜌̃
0
(𝑅))
𝑘−𝑗

𝐽
𝑗
(𝐵̂ (⋅))

(𝑘 − 𝑗)! (𝑗!)
3/2

) . (69)

(e)

𝑆̃
1
(𝐵̂ (⋅)) = 𝛾 (𝑅)𝑀 (𝑅)

∞

∑

𝑘=0

𝐽
𝑘
(𝐵̂ (⋅))

√𝑘! (1 − 𝜌̃
0
(𝑅))
𝑘+2

< 1. (70)

Then the zero solution of (65) is exponentially stable. More-
over, any solution 𝑥(𝑘) of (65), with the initial condition 𝑥

0
∈

Ω(𝑅), satisfies the inequality

sup
𝑘≥1

‖𝑥 (𝑘)‖ ≤ 𝜒̃
1
(𝑅)

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 (1 − 𝑆̃

1
(𝐵̂ (⋅)))

−1

, (71)

provided that

𝜒̃
1
(𝑅)

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 (1 − 𝑆̃

1
(𝐵̂ (⋅)))

−1

< 𝑅. (72)

In fact,

𝜌̃
0
(𝑅) = sup

ℎ∈Ω(𝑅)

𝜌 (𝐵̂ (⋅))

= sup
ℎ∈Ω(𝑅)

{1 + 𝑏
𝑖𝑖
(ℎ)} , 𝑖 = 1, 2, . . .

≤ sup
ℎ∈Ω(𝑅)

{𝑒
𝑏
𝑖𝑖
(ℎ)
} , 𝑖 = 1, 2, . . . .

(73)

In many cases, 𝑔
𝐼
(𝐴) is difficult to calculate. But using the

inequality

𝑔
2

𝐼
(𝐴) ≤

1

2
𝑁
2
(𝐴
𝐼
) , (74)

we obtain a new estimation for 𝑔
𝐼
(𝐴); namely,

𝑔
𝐼 (𝐴) ≤

1

√2

∞

∑

𝑗=1

(

∞

∑

𝑘=1,𝑘 ̸=𝑗

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗𝑘
− 𝑎
𝑗𝑘

󵄨󵄨󵄨󵄨󵄨

2

)

1/2

. (75)

It follows that

Ṽ
0 (𝑅) = sup

ℎ∈Ω(𝑅)

𝑔
𝐼
(𝐵̂ (ℎ))

≤
1

√2

sup
ℎ∈Ω(𝑅)

∞

∑

𝑗=1

(

∞

∑

𝑘=1,𝑘 ̸=𝑗

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗𝑘
(ℎ) − 𝑏

𝑗𝑘
(ℎ)

󵄨󵄨󵄨󵄨󵄨

2

)

1/2

fl 𝐽 (𝐵̂ (⋅)) < ∞.

(76)

Consequently, 𝐵̂(ℎ) is a Hilbert-Schmidt operator for ℎ ∈

Ω(𝑅). On the other hand,

𝜒̃ (𝑅) = sup
𝑘≥1

(

∞

∑

𝑗=0

(𝜌̃
0
(𝑅))
𝑘−𝑗

(Ṽ
0
(𝑅))
𝑗

(𝑘 − 𝑗)! (𝑗!)
3/2

)

≤ sup
𝑘≥1

(

∞

∑

𝑗=0

(𝜌̃
0
(𝑅))
𝑘−𝑗

𝐽
𝑗
(𝐵̂ (⋅))

(𝑘 − 𝑗)! (𝑗!)
3/2

) fl 𝜒̃
1
(𝑅) .

(77)

Finally,

𝑆̃ (𝐵̂ (⋅)) = 𝛾 (𝑅)𝑀 (𝑅)

∞

∑

𝑘=0

(Ṽ
0
(𝑅))
𝑘

√𝑘! (1 − 𝜌̃
0
(𝑅))
𝑘+2

≤ 𝛾 (𝑅)𝑀 (𝑅)

∞

∑

𝑘=0

𝐽
𝑘
(𝐵̂ (⋅))

√𝑘! (1 − 𝜌̃
0
(𝑅))
𝑘+2

.

(78)

Then, by Corollary 11, the zero solution of (65) is exponen-
tially stable. Moreover, any solution 𝑥(𝑘) of (65), with initial
condition 𝑥

0
∈ Ω(𝑅), satisfies the inequality

sup
𝑘≥1

‖𝑥 (𝑘)‖ ≤ 𝜒̃
1
(𝑅)

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 (1 − 𝑆̃

1
(𝐵̂ (⋅)))

−1

, (79)

provided that

𝜒̃
1
(𝑅)

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 (1 − 𝑆̃

1
(𝐵̂ (⋅)))

−1

< 𝑅. (80)

5. Conclusions

New conditions for the exponential stability of a class
of infinite-dimensional nonlinear difference systems are
derived. We establish the robustness of the exponential
stability, in the sense that the exponential stability for a
given pseudolinear equation persists under sufficiently small
perturbations. Unlike the classic method of stability analysis,
we do not use the technique of Lyapunov function in the
process of construction of the stability results. The proofs
are carried out using the semigroup theory combined with
the freezing method. That is, the equation is represented as
a perturbation about a fixed value of the operator and then
applying norm estimates for operator-valued functions the
results follow. We have presented two examples which show
how this approach brings out different aspects of the stability
problem of pseudolinear equations.
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