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Grubbs test (extreme studentized deviate test, maximum normed residual test) is used in various fields to identify outliers in a data
set, which are ranked in the order of 𝑥

1
≤ 𝑥
2
≤ 𝑥
3
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑛
(𝑖 = 1, 2, 3, . . . , 𝑛). However, ranking of data eliminates the actual

sequence of a data series, which is an important factor for determining outliers in some cases (e.g., time series). Thus in such a
data set, Grubbs test will not identify outliers correctly. This paper introduces a technique for transforming data from sequence
bound linear form to sequence unbound form (𝑦 = 𝑐). Applying Grubbs test to the new transformed data set detects outliers
more accurately. In addition, the new technique improves the outlier detection capability of Grubbs test. Results show that, Grubbs
test was capable of identifing outliers at significance level 0.01 after transformation, while it was unable to identify those prior to
transforming at significance level 0.05.

1. Introduction

Grubbs test [1] is a statistical test used to detect outliers which
was introduced in 1950 and extended in 1969 [2] and 1972
[3] by the same author. Grubbs test locates outliers that exist
in a univariate data set using mean, standard deviation, and
tabulated criterion. Grubbs test is also known as maximum
normed residual test or “extreme studentized deviate” (ESD)
test, and the data set is assumed to be normally distributed.
The test is defined as

𝐺 =

max
𝑖=1,...,𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑖
− 𝑌

󵄨
󵄨
󵄨
󵄨
󵄨

𝑠

,
(1)

where 𝑠 is standard deviation and 𝑌 is the sample mean. If
the maximum 𝐺 related to the 𝑖th element is greater than the
relevant tabulated criterion, then the element is considered
an outlier. The testing procedure is continuing until no more
outliers are detected. However Grubbs test is not recom-
mended for detecting outliers for sample size of six or less.

When the sample size is six or less, most of the times Grubbs
test identified nonoutliers as outliers [4].

During the last decades Grubbs test was used to identify
outliers in different disciplines [5–9]. Also, during the last
decades pros and cons of Grubbs test were identified and
were improved as well. In 1975 Rosner showed that Grubbs
test (ESD) performs much better than studentized range
methods and performs equally as Kurtosis and R-statistic
methods [10]. In 1983Rosner introduced an improved version
of ESD as generalized extreme studentized deviate (GESD)
test [11]. However, GESD does not work well when the
sample size is less than 25 [11]. Brant in 1990 stated that
the combination ESD rules and boxplot provide comparable
performance [12]. On the other hand, it was shown that the
standard deviation and mean are affected by two or more
outliers; Grubbs test does not detect outliers [13] correctly.
Also, if the standard deviation of the data set is too large
or too small, the test will tend to detect false outliers and
vice versa.This was overcome by setting a threshold value for
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Figure 1: Two data sets, each containing one outlier which cannot
be located by Grubbs test. The outlier in data set 1 is the last element
of the series and considerably deviates from the expected value. The
outlier in data set 2 is the maximum of the series, but it is not the
first or last element.

standard deviations for the specific considered data domain
[13]. Meanwhile, some publications show that Grubbs test is
robust against the effect of intraclass correlation structure [14]
and data that have Baldessari’s structure [15, 16].

Form the definition of Grubbs test, it locates outliers in a
data set which are ranked in the order of 𝑥

1
≤ 𝑥
2
≤ 𝑥
3
≤

⋅ ⋅ ⋅ ≤ 𝑥
𝑛
. This implies that Grubbs test considers only the

value of data points but not the real order of the data. In
other words, Grubbs test treats sorted series and unsorted
series in the same manner. Thus, Grubbs test is valid only
for those data domains where the occurrence order is of no
importance. However, with respect to outliers, the order of
the data points is a very important factor for data series that
are expected to have gradual increment or decrement over
time. Thus, applying Grubbs test to data which has a relation
with the occurrence order will not give a correct output. This
is particularly important in the area of process control where
the order of the data points has a very high impact on data
interpretation.Therefore, Grubbs test is not a reliablemethod
for detecting outliers in time series, because in time series
occurrence order is a critical factor.

Grubbs test is capable of checking whether a certain
suspected data point is an outlier. By default suspected points
are the minimum and the maximum of the data set. If the
most suspected data points are not outliers, Grubbs test does
not identify other data points as outliers. Figure 1 shows two
artificial data sets (data sets 1 and 2) with one outlier in
each data set. Table 1 shows results of Grubbs test for two
significance levels (𝛼) of 0.05 and 0.01. In both data sets, the
test does not detect outliers for any considered significance
level. In data set 1, the outlier is not significant enough to be
identified by Grubbs test. Although the outlier in data set 2
(190) deviated significantly in relation to its position, after
ranking it moves to the end of the series and becomes an
insignificant outlier.

The aim of this paper is to introduce a method for trans-
forming “sequence bound” data into a “sequence unbound”
form. Since the transformed series is totally independent
of the sequence, applying Grubbs test could produce more
robust results. Furthermore, the transformation increases the
outlier detection capability of Grubbs test for data which are
expected to have linear or nearly linear relation.

2. Methodology

Data transformation techniques are used to convert data
status that is closer to the requirements of the technique
or method to be applied [17]. The transformation process
converts each data point of 𝑥

𝑖
into the transformed value 𝑦

𝑖

by means of a function 𝑓, where 𝑦
𝑖
= 𝑓(𝑥

𝑖
). Since Grubbs

test is not suitable for detecting outliers in sequence bound
series such as time series, one solution is to transform the
sequence bound series into a sequence unbound series. In
the domain of linear regression, any curve with the form of
𝑦 = 𝑐, value of any data point is always constant. Therefore,
any curvewith the formof𝑦 = 𝑐 is a curve that is independent
of the sequence.

Lemma 1. If it is possible to find a proper reference curve𝑓
𝑅
for

any curve 𝑓
𝐴
which has the same domain as 𝑓

𝑅
, it is possible to

transfer 𝑓
𝐴
into a constant.

Proof. If 𝑓
𝐴
represents the curve of actual data and 𝑑 is a

constant, the function 𝑓
𝐴
󸀠 = 𝑓

𝐴
+ 𝑑 has the same domain.

However, 𝑓
𝐴
󸀠 has a different range than 𝑓

𝐴
. If the curve of

𝑓
𝐴
− 𝑓
𝐴
󸀠 = 𝑓

𝐷
then 𝑓

𝐷
= 𝑑. Since 𝑓

𝐴
󸀠 is 𝑓(𝑓

𝐴
), 𝑓
𝐷
is also

𝑓(𝑓
𝐴
). Then, 𝑓

𝐷
can be considered as a transformation form

of 𝑓
𝐴
, which is equal to a constant, and 𝑓

𝐴
󸀠 can be considered

as the 𝑓
𝑅
, which is the reference curve.

The curve 𝑓
𝐷
, which is the transformed form of 𝑓

𝐴
, has

a simpler form than 𝑓
𝐴
. Also, 𝑓

𝐷
can be used to describe the

behaviour of 𝑓
𝐴
. Because 𝑓

𝐷
= 𝑑, then 𝑓

𝐷
is independent of

the sequence of the data.Therefore, because Grubbs test gives
correct detections with the data sets that are independent of
the occurrence sequence, 𝑓

𝐷
is a suitable data set, which can

be tested with Grubbs test. Figures 2 and 3 illustrate usage of
the above-mentioned concept for outlier detection.

In the real world, it is not always possible to find the
exact 𝑓

𝑅
for a certain data set in advance. Thus, if 𝑓

𝑅
has an

approximate relation to the behaviour of the real data, then
𝑓
𝐷
≈ 𝑐 for all data elements (Figure 2). If the actual curve has

abnormal data (outlier), 𝑓
𝐷
shows higher deviation from 𝑐

(Figure 3). Applying Grubbs test to 𝑓
𝐷
the suspected element

can be checked for an outlier.
When 𝑓

𝑅
is known in advance it is possible to apply this

method for any data set of any form. 𝑓
𝑅
can be known in

advance theoretically or by means of preknowledge of data. If
these two options are not available, one possibility is to derive
𝑓
𝑅
from existing data of original data (𝑓

𝐴
). This paper shows

a method of deriving 𝑓
𝑅
for a data set that is expected to have

linear (𝑦 = 𝑚𝑥 + 𝑐) form, using the original data (𝑓
𝐴
).
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Table 1: Results of Grubbs’ test (two-sided) for data set 1 and data set 2 for significance levels (𝛼) of 0.05 (critical value of 𝐺 = 2.29) and
𝛼 = 0.01 (𝐺 = 2.48).

Data set 1 𝐺

Outlier? Data set 2 𝐺

Outlier?
𝛼 = 0.05 𝛼 = 0.01 𝛼 = 0.05 𝛼 = 0.01

1 30 1.22 No No 30 1.34 No No
2 35 0.98 No No 190 2.24 No No
3 40 0.73 No No 50 0.89 No No
4 45 0.49 No No 60 0.67 No No
5 50 0.24 No No 70 0.45 No No
6 55 0 No No 80 0.22 No No
7 60 0.24 No No 90 0 No No
8 65 0.49 No No 100 0.22 No No
9 70 0.73 No No 110 0.45 No No
10 100 2.20 No No 120 0.67 No No

y

x

Actual curve
Reference curve
Difference curve (actual curve − reference curve)

fD = fA

fA

− fR

fR

Figure 2: If𝑓
𝐴
represents the curve of actual data and if it is possible

to find a curve 𝑓
𝐷
= 𝑓
𝐴
− 𝑓
𝑅
≈ 𝑐 where 𝑓

𝑅
is a reference curve that

represents actual behaviour of the real data, 𝑓
𝐷
reflects the existing

outliers of 𝑓
𝐴
. When there are no outliers, difference curve (𝑓

𝐷
) is

always nearly a constant.

For any𝑓
𝐴
= 𝑚𝑥+𝑐, the curve𝑓

𝐴
󸀠 = 𝑚𝑥 is a curve which

has the same gradient as 𝑓
𝐴
, where 𝑚 is the gradient of 𝑓

𝐴
.

Then,

𝑓
𝐴
− 𝑓
𝐴
󸀠 = 𝑚𝑥 + 𝑐 − 𝑚𝑥 = 𝑐. (2)

According to (2) the curve 𝑓
𝐴
− 𝑓
𝐴
󸀠 is a constant. Therefore,

for any linear function 𝑓
𝐴
= 𝑚𝑥 + 𝑐 the function 𝑦 = 𝑚𝑥 can

be considered as the reference function 𝑓
𝑅
. In other words

𝑓
𝑅
is the curve, which goes through the origin with the same

gradient as 𝑓
𝐴
. As shown in Figure 4, 𝑦 = 𝑚𝑥 form (𝑓

𝑅
)

can be considered as the transformation of 𝑦 = 𝑚𝑥 + 𝑐
form (𝑓

𝐴
). Because 𝑓

𝐴
− 𝑓
𝑅
= 𝑐 (or 𝑦 ≈ 𝑐), then 𝑓

𝐷
=

𝑓
𝐴
− 𝑓
𝑅
. Since the gradient of 𝑓

𝑅
: 𝑚 = tan 𝜃, it can be

calculated either by using known theoretical and/or practical
information or by deriving it from existing data. We focus on
deriving the gradient of 𝑓

𝑅
using a part of original data (𝑓

𝐴
).

Outlier 

fD = fA

fA

− fR

fRy

x

Actual curve
Reference curve
Difference curve (actual curve − reference curve)

Outlier in fA is

reflected by fD

Figure 3: For an outlier, difference curve (𝑓
𝐷
) shows significant

deviation in relation to the outlier.

When deriving any information from existing original data
(𝑓
𝐴
), the influence of outliers introduces distortions to the

derived value. Outlier detectionsmethods are used to remove
such data points. However, when detecting outliers this is
not a feasible solution. Therefore, when detecting outliers,
the best solution is to exclude all suspected data points to
minimize the influence of outliers to identify outliers.

Unlike most of outlier detection methods, Grubbs test
always considers the maximum and the minimum as most
suspected data points. Thus, we excluded the maximum and
the minimum from the calculations. After removing the
maximum and the minimum, the original series splits into a
maximumof three small series (Figure 4: Segment 1, Segment
2, and Segment 3 of 𝑓

𝐴
). If there are equal maximum values

and minimum values, the value with low index is considered
as the maximum and the value with high index is considered
as the minimum for a data series with increment. For a data
series with decrement the value with high index is considered
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Segment 3 ≡ fAL
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fD = fA − fR

RAL ≡ (XAL, YAL)

fR = mf𝐴𝐿
∗ xi

fA

Figure 4: Transformation technique: if it is possible to find 𝑓
𝑅
which has the form of 𝑦 = 𝑚𝑥 in relation to 𝑓

𝐴
, then it is possible to find 𝑓

𝐷

as 𝑓
𝐴
− 𝑓
𝑅
.

as the maximum and the value with low index is considered
as the minimum.

Then the series with the highest number of consecutive
items (longest series) was considered for calculating the
gradient of 𝑓

𝑅
. If the longest series of 𝑓

𝐴
is 𝑓
𝐴𝐿

and 𝐺
𝐴𝐿
≡

(𝑋
𝐴𝐿
, 𝑌
𝐴𝐿
) then

𝑌
𝐴𝐿
=

(∑
𝑛
2

𝑖 =𝑛1
𝑦
𝑖
)

(𝑛
2
− 𝑛
1
+ 1)

,

𝑋
𝐴𝐿
=

(𝑛
1
+ 𝑛
2
)

2

,

(3)

where 𝑛
1
is the starting index of the 𝑓

𝐴𝐿
and 𝑛

2
is the end

index of the 𝑓
𝐴𝐿
.

If 𝑃
𝑖
≡ (𝑥
𝐴𝑖
, 𝑦
𝐴𝑖
) is any point of 𝑓

𝐴𝐿
, then

𝑚
𝑖
=

(𝑦
𝐴𝑖
− 𝑌
𝐴𝐿
)

(𝑥
𝐴𝑖
− 𝑋
𝐴𝐿
)

, (4)

where𝑚
𝑖
is the gradient of 𝑓

𝐴𝐿
at point 𝑖.

All 𝑃
𝑖
’s on 𝑓

𝐴𝐿
are not suspected data points and candi-

dates for calculating the gradient of 𝑓
𝐴𝐿
. However, among all

the data points of 𝑓
𝐴𝐿
, still it is not possible to determine

the most suitable point for calculating 𝑚
𝑖
. If the selected

𝑃
𝑖
is a bias data point (e.g., point 𝐵

1
in Figure 4), it may

introduce distortions to the calculated 𝑚
𝑖
even though it

is not suspected. Therefore, it is necessary to have a more
reliable method for calculating the gradient of 𝑓

𝐴𝐿
. If the

average of all gradients at all 𝑃
𝑖
’s is considered, it will provide

much better approximation for gradient instead of a gradient
derived by referring to a certain single point.Therefore, if the
resultant gradient of 𝑓

𝐴𝐿
is 𝑚
𝑓
𝐴𝐿

, then 𝑚
𝑓
𝐴𝐿

can be defined as
the mean of all𝑚

𝑖
’s. Then,

𝑚
𝑓
𝐴𝐿

=

∑
𝑛
2

𝑖=𝑛
1

𝑚
𝑖

(𝑛
2
− 𝑛
1
+ 1)

. (5)

From (4),

𝑚
𝑓
𝐴𝐿

=

∑
𝑛
2

𝑖=𝑛
1

((𝑦
𝐴𝑖
− 𝑌
𝐴𝐿
)/(𝑥
𝐴𝑖
− 𝑋
𝐴𝐿
))

(𝑛
2
− 𝑛
1
+ 1)

. (6)

Because 𝑓
𝐴𝐿

is the longest segment of 𝑓
𝐴
, 𝑚
𝑓
𝐴𝐿

(gradient of
𝑓
𝐴𝐿
) is considered as the gradient of𝑓

𝐴
. For the linear relation

𝑦 = 𝑚𝑥 form is the reference function (𝑓
𝑅
). Therefore,

gradient of 𝑓
𝑅
is the same as the gradient of 𝑓

𝐴𝐿
. Then 𝑓

𝑅
=

𝑚
𝑓
𝐴𝐿

∗𝑥
𝑖
for all 𝑖 and𝑓

𝐷
= 𝑓
𝐴
−𝑓
𝑅
. According to Lemma 1 𝑓

𝐷

is a constant and has the form of 𝑦 = 𝑑, where 𝑑 is a constant.
Then the function 𝑓

𝐷
is the final transformation form, which

is suitable for applying Grubbs test.
Finally, we applied Grubbs test on 𝑓

𝐷
and checked for

outliers in the 𝑓
𝐷
. The existence of outliers in 𝑓

𝐷
confirms

the existence of outliers in 𝑓
𝐴
. If the 𝑘th item of 𝑓

𝐷
is

identified as an outlier, the 𝑘th item of 𝑓
𝐴
is considered as

an outlier. Since 𝑓
𝑅
depends on 𝑥 which is the index of

the data point, 𝑓
𝐷
is also a function of 𝑥. This modification

establishes a relation between data points and their index
and eliminates the major problem identified for Grubbs test.
After transformation Grubbs test can be applied repeatedly
on 𝑓
𝐷
until no outliers were detected.

2.1. Evaluation Using Artificial Data. Four artificial data sets
with one outlier in each data set (which cannot be identified
by Grubbs test) were tested with the new method. Each data
set consists of 10 elements with an outlier of different type, as
mentioned in Table 2. Data sets 1 and 2 are the same data sets
as in Table 1.

2.2. EvaluationUsing Real Data. Real data sets collected from
a biogas plant over a period of 60 days with a frequency of one
data point per day were tested using both our transformation
technique and standard Grubbs test. Among the different
parameters, the counter reading of the electricity generator
and the volumetric percentage of methane (CH4) in the
biogas were selected for testing. During the stable situation,
the counter reading of the electricity generator (operating
hours) is continuously increasing, while the percentage of
CH4 is fluctuating around a certain value. Both data sets were
tested with the new technique and standard Grubbs test for
the significance level of 0.05 andwindow sizes of 4, 5, 6, and 10
without overlapping.Also,Grubbs test was repeatedly applied
until there were no outliers detected.
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Table 2: Type of outlier contained in the data sets.

Data set name Number of elements/outliers Type of outlier
Data set 1 10/1 Last element of data set, considerably deviated
Data set 2 10/1 Maximum element of data set, not the last element
Data set 3 10/1 Neither the maximum nor the minimum; deviation is very small
Data set 4 10/1 Neither the first nor the last; data set is not continuously incrementing or decrementing
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Figure 5: Outlier detection of the counter reading of electricity generator (operating hours) of the biogas plant with new transformation
technique for significance level of 0.05 for different window sizes without overlap. Plots (a), (b), (c), and (d) correspond to window sizes 4, 5,
6, and 10, respectively.

3. Results and Discussion

The results from the test with artificial data show that
applying Grubbs test on the transformed data set using
our proposed method is capable of locating outliers at a
significance level of 0.01 (Tables 3, 4, 5, and 6). When applied

on the original data set, Grubbs test was unable to locate the
outliers even with significance level of 0.05. The outlier in
Table 5 deviates very little and is also neither the maximum
nor the minimum, which is the worst case situation for
single outlier domain.However, after transformation, Grubbs
test identifies the outlier with a high level of confidence.
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Figure 6: Outlier detection of volumetric percentage of CH4 in biogas with new transformation technique for significance level of 0.05 for
different window sizes without overlap. Plots (a), (b), (c), and (d) correspond to window sizes 4, 5, 6, and 10, respectively.

Table 3: Data set 1 (𝑛 = 10): last element is the outlier and deviates considerably. With new transformation technique, Grubbs’ test on 𝑓
𝐷
is

capable of identifying the outlier with significance level of 0.01. However, Grubbs’ test on 𝑓
𝐴
is capable of identifying the outlier with even

significance level of 0.05.

𝑥
𝑖

𝑓
𝐴
= 𝑦
𝑖

𝑓
𝐴𝐿

𝑚
𝑖
=

𝑦
𝑖
− 𝑌
𝐴𝐿

𝑥
𝑖
− 𝑋
𝐴𝐿

𝑓
𝑅
=

𝑚
𝑓𝐴𝐿
∗ 𝑥
𝑖

𝑓
𝐷
=

𝑓
𝐴
− 𝑓
𝑅

Grubbs’ test on
𝑓
𝐷
(𝛼 = 0.01)

Grubbs’ test on
𝑓
𝐴
(𝛼 = 0.05)

1 30 — — 5 25 No No
2 (𝑛
1
) 35 35 5 10 25 No No

3 40 40 5 15 25 No No
4 45 45 5 20 25 No No
5 50 50 5 25 25 No No
6 55 55 5 30 25 No No
7 60 60 5 35 25 No No
8 65 65 5 40 25 No No
9 (𝑛
2
) 70 70 5 45 25 No No

10 100 — — 50 50 Yes No

𝑋
𝐴𝐿
=

𝑛
1
+ 𝑛
2

2

= 5.5 𝑌
𝐴𝐿
=

∑
𝑛2

𝑖 =𝑛1
𝑦
𝑖

𝑛
2
− 𝑛
1
+ 1

= 52.5 𝑚
𝑓𝐴𝐿
=

∑
𝑛2

𝑖=𝑛1
𝑚
𝑖

𝑛
2
− 𝑛
1
+ 1

= 5
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Table 4: Data set 2 (𝑛 = 10): maximum element of the data set is the outlier, but it is not the first or the last element.With new transformation
technique, Grubbs’ test on 𝑓

𝐷
is capable of identifying the outlier with significance level of 0.01. However, Grubbs’ test on 𝑓

𝐴
is capable of

identifying the outlier with even significance level of 0.05.

𝑥
𝑖

𝑓
𝐴
= 𝑦
𝑖

𝑓
𝐴𝐿

𝑚
𝑖
=

𝑦
𝑖
− 𝑌
𝐴𝐿

𝑥
𝑖
− 𝑋
𝐴𝐿

𝑓
𝑅
=

𝑚
𝑓𝐴𝐿
∗𝑥
𝑖

𝑓
𝐷
=

𝑓
𝐴
− 𝑓
𝑅

Grubbs’ test on
𝑓
𝐷
(𝛼 = 0.01)

Grubbs’ test on
𝑓
𝐴
(𝛼 = 0.05)

1 30 — — 10 20 No No
2 20 — — 20 0 No No
3 50 — — 30 20 No No
4 190 — — 40 150 Yes No
5 (𝑛
1
) 70 70 10 50 20 No No

6 80 80 10 60 20 No No
7 90 90 10 70 20 No No
8 100 100 10 80 20 No No
9 110 110 10 90 20 No No
10 (𝑛
2
) 120 120 10 100 20 No No

𝑋
𝐴𝐿
=

𝑛
1
+ 𝑛
2

2

= 7.5 𝑌
𝐴𝐿
=

∑
𝑛2

𝑖 =𝑛1
𝑦
𝑖

𝑛
2
− 𝑛
1
+ 1

= 95 𝑚
𝑓𝐴𝐿
=

∑
𝑛2

𝑖=𝑛1
𝑚
𝑖

𝑛
2
− 𝑛
1
+ 1

= 10

Table 5: Data set 3 (𝑛 = 10): neither the maximum nor the minimum is the outlier; deviation is very small. With new transformation
technique, Grubbs’ test on 𝑓

𝐷
is capable of identifying the outlier with significance level of 0.01. However, Grubbs’ test on 𝑓

𝐴
is capable of

identifying the outlier with even significance level of 0.05.

𝑥
𝑖

𝑓
𝐴
= 𝑦
𝑖

𝑓
𝐴𝐿

𝑚
𝑖
=

𝑦
𝑖
− 𝑌
𝐴𝐿

𝑥
𝑖
− 𝑋
𝐴𝐿

𝑓
𝑅
=

𝑚
𝑓𝐴𝐿
∗ 𝑥
𝑖

𝑓
𝐷
=

𝑓
𝐴
− 𝑓
𝑅

Grubbs’ test on
𝑓
𝐷
(𝛼 = 0.01)

Grubbs’ test on
𝑓
𝐴
(𝛼 = 0.05)

1 30.0 — — 9.999996 20.00000 No No
2 (𝑛
1
) 40.0001 40.0001 9.999975 19.999993 20.00011 Yes No

3 50.0 50.0 10.000005 29.999989 20.00001 No No
4 60.0 60.0 10.000008 39.999986 20.00001 No No
5 70.0 70.0 10.000025 49.999982 20.00002 No No
6 80.0 80.0 9.999975 59.999979 20.00002 No No
7 90.0 90.0 9.9999917 69.999975 20.00003 No No
8 100.0 100.0 9.999995 79.999971 20.00003 No No
9 (𝑛
2
) 110.0 110.0 9.9999964 89.999968 20.00003 No No

10 120.0 — — 99.999964 20.00004 No No

𝑋
𝐴𝐿
=

𝑛
1
+ 𝑛
2

2

= 5.5 𝑌
𝐴𝐿
=

∑
𝑛2

𝑖 =𝑛1
𝑦
𝑖

𝑛
2
− 𝑛
1
+ 1

= 75

𝑚
𝑓𝐴𝐿
=

∑
𝑛2

𝑖=𝑛1
𝑚
𝑖

𝑛
2
− 𝑛
1
+ 1

= 9.999996

Even though the data set in Table 6 has no continuous
increment or decrement, Grubbs test located the outlier after
transformation.

For the real data sets, the results show that our trans-
formation technique is capable of identifying the outliers
depending on the selected window size (Figures 5 and 6).
The data points in most of the selected windows of Figure 5
consist of values that slightly deviated from the actual value.
After transformation, Grubbs test was able to locate those
data points. However, standard Grubbs test was unable to
locate any of those points as outliers from both data sets for
the same window sizes.

The data series shown in Figure 6 is not a linear series.
However, application of windowing technique allowed locat-
ing outliers in each window using new transformation
method. However, standard Grubbs test was unable to locate
the outliers in the same windows. Furthermore, the data
points shown in different window sizes in Figure 6 have
different forms (increment, decrement, or constant). After
transformation Grubbs test located the outliers despite the
behaviour of data in the selected window. Another important
fact is that the located outliers were outliers in relation
to the selected window size and linear relation. Finally,
the results show the capability of applying Grubbs test after
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Table 6: Data set 4 (𝑛 = 10): data set is not continuously incrementing or decrementing. Outlier is neither the first nor the last element. With
new transformation technique, Grubbs’ test on 𝑓

𝐷
is capable of identifying the outlier with significance level of 0.01.

𝑥
𝑖

𝑓
𝐴
= 𝑦
𝑖

𝑓
𝐴𝐿

𝑚
𝑖
=

𝑦
𝑖
− 𝑌
𝐴𝐿

𝑥
𝑖
− 𝑋
𝐴𝐿

𝑓
𝑅
=

𝑚
𝑓𝐴𝐿
∗ 𝑥
𝑖

𝑓
𝐷
=

𝑓
𝐴
− 𝑓
𝑅

Grubbs’ test on
𝑓
𝐷
(𝛼 = 0.01)

Grubbs’ test on
𝑓
𝐴
(𝛼 = 0.05)

1 30 — — 4.667 25.333 No No
2 28 — — 9.333 18.667 No No
3 40 — — 14 26 No No
4 76 — — 18.667 57.333 Yes No
5 (𝑛
1
) 51 51 4.8 23.333 27.667 No No

6 54 54 6 28 26 No No
7 62 62 2 32.667 29.333 No No
8 66 66 6 37.333 28.667 No No
9 69 69 4 42 27 No No
10 (𝑛
2
) 76 76 5.2 46.667 29.333 No No

𝑋
𝐴𝐿
=

𝑛
1
+ 𝑛
2

2

= 7.5 𝑌
𝐴𝐿
=

∑
𝑛2

𝑖 =𝑛1
𝑦
𝑖

𝑛
2
− 𝑛
1
+ 1

= 63 𝑚
𝑓𝐴𝐿
=

∑
𝑛2

𝑖=𝑛1
𝑚
𝑖

𝑛
2
− 𝑛
1
+ 1

= 4.667

transforming the series with new transformation and suitable
windowing technique. Thus, the method can be used for
locating outliers in time series regardless of the fact that the
series is linear or nonlinear. However, still each window is
considered as a window containing a linear segment of the
curve.

According to the generally accepted idea, Grubbs test
is not suitable for locating outliers in a data set with six
or fewer terms [4]. However, the results show that after
transforming with new method, Grubbs test was capable of
locating outliers in the data sets with four and six terms
(window sizes four and six). This is in disagreement with the
generally accepted idea. In particular, when applying Grubbs
test on nonlinear data series it is necessary to apply suitable
windowing technique for having data windows which has
better approximation for linearity (Figure 6). Therefore, we
can state that the new transformation technique eliminates
one of themajor drawbacks that prevent applying Grubbs test
on small windows.

The accuracy and the reliability of the transformation
totally depend on the gradient (𝑚) of 𝑓

𝑅
. Therefore, applying

better method could give much better approximation for 𝑚.
We considered other statistical properties such as mode and
the median of the series as well as the longest segment for
deriving 𝑚. We excluded the median because it is a single
data point. The problem of any single data point is that it
is not a reliable data point as a reference data point. Even
though the considered single point is neither the maximum
nor the minimum, it can be a deviated data point such as 𝐵

1

in Figure 4. Not like median the mode of a series represents
multiple data points. Therefore, the mode can be considered
as a good alternative for a data set expected to follow the form
of 𝑦 = 𝑐. Unfortunately, the mode cannot be used for a data
series expected to follow the form of 𝑦 = 𝑚𝑥 + 𝑐 (increasing
or decreasing), because in such a data series it is not possible
to expect multiple equal or nearly equal values. Finally, in
general we decided to use mean for deriving 𝑚. However, if

the considered domain ensures the reliability, it is possible to
use any other method for deriving𝑚, rather than the method
we used. For example, if there is a guarantee of accuracy of a
certain data point, even any single data point (such as the first
data point of the series) can be used for deriving𝑚.

In this paper we used the longest segment of the data set
for deriving 𝑚. However, if there are considerable numbers
of data points in other segments it is possible to calculate the
gradient of other segments and get the average gradient of
considered segments as the gradient. On the other hand, if
the outliers were clustered and located in the longest segment,
the method we mentioned in this paper will not give a
better approximation for 𝑚 due to the influence of outliers.
However, if the considered domain is having or expected
to have clustered outlier, then excluding the whole cluster
before calculating 𝑚 will give a better approximation for 𝑚.
One possibility is to remove 𝑘 nearest neighbours of the
maximum and the minimum including the maximum and
the minimum. This will provide much better data set for
deriving𝑚.

4. Conclusion

The results for artificial and real data show that our new
transformation technique improves the outlier detection
power of Grubbs test. The transformation is independent
of already existing reference data sets and derived reference
set from the part of the original data set. This is the main
advantage of the new method. After transformation, Grubbs
test was capable of detecting outliers at the significance
level 0.01 which were not identified without transformation,
even at the significance level 0.05. Also, after transformation,
Grubbs test was capable of locating outliers in a data set that
is not in ranked order, since the new technique transforms
data from the form 𝑦 = 𝑚𝑥 + 𝑐 to the form 𝑦 = 𝑐 which is
independent of the sequence.
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