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The present paper treats three concepts of nonuniform polynomial trichotomies for noninvertible evolution operators acting on
Banach spaces. The connections between these concepts are established through numerous examples and counterexamples for
systems defined on the Banach space of square-summable sequences.

1. Introduction

In the theory of asymptotic behavior of first-order differential
equations, one of themain problems is to decompose the state
space into a direct sum of subspaces on which the solutions
of the given system have prescribed behavior. One of these
behaviors can be modelled by the notion of exponential
dichotomy, in which the state space is decomposed into
a direct sum of two subspaces (the stable and unstable
subspace) such that on the stable subspace the norm of the
solution tends to zero (exponentially, polynomially, or with
the aid of a general function) and on the unstable subspace
the norm of the solution tends to infinity (usually with the
same type of growth rate—exponential, polynomial, etc.—as
the stable one). The notion of exponential dichotomy has its
origins from the work of Perron in 1930 [1].This field has seen
a rich development in the last decades, as it can be seen from
[2–11].

Another behavior given by the above-mentioned problem
is the decomposition of the state space into three subspaces:
a stable subspace, an unstable subspace, and a central man-
ifold. The behavior on the stable and unstable subspaces
is dichotomic, and, in addition, the solution of the system
must be bounded (or have a growth property). This behavior
is known in the literature as the trichotomy property. The
trichotomy property was first defined by Sacker and Sell
in [12], and, later on, the study was widely spread and
many results were obtained (see [13–18] and the references
therein).

This paper extends the above-mentioned study of the
property of trichotomy in the case in which the decay,
expansion, and growth on the stable, unstable, and central
manifold, respectively, are described by a polynomial behav-
ior. We study three concepts of polynomial trichotomy (both
uniform and nonuniform) defined in the general case of non-
invertible evolution operators: polynomial trichotomy, strong
polynomial trichotomy, and weak polynomial trichotomy.
We establish the connections between the three concepts
and, with the aid of the examples and counterexamples from
Section 5, on one hand we point out the existence of systems
which possess the above-defined properties, and, on the other
hand, we delimit the behaviors presented in this paper.

2. Supplementary Families of Projections

Throughout this paper, we will consider the following frame-
work:

(i) 𝑙2(N,R) will be the Banach space of all real valued
sequences 𝑥 = (𝑥

𝑛
)
𝑛≥0

satisfying

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨
2

< ∞ (1)

endowed with the norm ‖𝑥‖
2
= (∑
∞

𝑛=0
|𝑥
𝑛
|
2
)
1/2.
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(ii) 𝑋 will be be a real or complex Banach space and
B(𝑋) will be the Banach space of all bounded linear
operators on𝑋.

(iii) The norms on𝑋 andB(𝑋) will be denoted by ‖ ⋅ ‖.
(iv) The identity operator on𝑋 is denoted by 𝐼.
(v) Δ will be the set defined by Δ = {(𝑡, 𝑠) ∈ R2

+
: 𝑡 ≥ 𝑠 ≥

0}.

Definition 1. A mapping 𝑃 : R
+
→ B(𝑋) is called a family

of projections on𝑋 if

𝑃 (𝑡) 𝑃 (𝑡) = 𝑃 (𝑡) , ∀𝑡 ≥ 0. (2)

Definition 2. A family of projections 𝑃 : R
+
→ B(𝑋) is

called

(i) polynomially bounded if there exist𝑀 ≥ 1 and 𝛾 ≥ 0
such that

‖𝑃 (𝑡)‖ ≤ 𝑀 (𝑡 + 1)
𝛾
, ∀𝑡 ≥ 0; (3)

(ii) bounded if there exists𝑀 ≥ 1 such that

‖𝑃 (𝑡)‖ ≤ 𝑀, ∀𝑡 ≥ 0. (4)

Definition 3. Three families of projections 𝑃,𝑄, 𝑅 : R
+
→

B(𝑋) are called supplementary if for all 𝑡 ≥ 0 one has that

𝑃 (𝑡) + 𝑄 (𝑡) + 𝑅 (𝑡) = 𝐼. (5)

In what follows, we present two leading examples of
families of projections which will be used in Section 5.

Example 4. Let 𝑋 = 𝑙
2
(N,R) and 𝑝 : R

+
→ R

+
be a

nondecreasing function. For every 𝑡 ≥ 0 we define 𝑃
1
(𝑡) :

𝑙
2
(N,R) → 𝑙

2
(N,R) by

𝑃
1
(𝑡) 𝑥 = (𝑦

𝑛
(𝑡))
𝑛≥0
, (6)

where

𝑦
3𝑛
(𝑡) = 𝑥

3𝑛
+ 𝑝 (𝑡) ⋅ 𝑥

3𝑛+1
,

𝑦
3𝑛+1

(𝑡) = 0,

𝑦
3𝑛+2

(𝑡) = 0,

𝑛 ∈ N.

(7)

Let 𝑡 ≥ 0. One can see that 𝑃
1
(𝑡) is linear and if 𝑥 = (𝑥

𝑛
)
𝑛≥0

∈

𝑙
2
(N,R), we have that

󵄩󵄩󵄩󵄩𝑃1 (𝑡) 𝑥
󵄩󵄩󵄩󵄩
2

2
=

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑦3𝑛 (𝑡)
󵄨󵄨󵄨󵄨
2

≤ [(

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨
2

)

1/2

+ 𝑝 (𝑡) (

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨
2

)

1/2

]

2

= [(1 + 𝑝 (𝑡))]
2

⋅ ‖𝑥‖
2

2

(8)

from where it follows that 𝑃
1
(𝑡) ∈ B(𝑙2(N,R)) and ‖𝑃

1
(𝑡)‖ ≤

1 + 𝑝(𝑡).
Moreover, let 𝑡 ≥ 0 and 𝑥 = (𝑥

𝑛
)
𝑛≥0

given by

𝑥
3𝑛
= 𝑥
3𝑛+2

= 0,

𝑥
3𝑛+1

=
1

3𝑛 + 2
,

𝑛 ∈ N.

(9)

From

󵄩󵄩󵄩󵄩𝑃1 (𝑡) 𝑥
󵄩󵄩󵄩󵄩2 = (

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑦3𝑛 (𝑡)
󵄨󵄨󵄨󵄨
2

)

1/2

= 𝑝 (𝑡) ⋅ (

∞

∑

𝑛=0

1

(3𝑛 + 2)
2
)

1/2

= 𝑝 (𝑡) ⋅ ‖𝑥‖2

(10)

it follows that ‖𝑃
1
(𝑡)‖ ≥ 𝑝(𝑡). From here we get that

max {1, 𝑝 (𝑡)} ≤ 󵄩󵄩󵄩󵄩𝑃1 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 1 + 𝑝 (𝑡) ∀𝑡 ∈ R

+
. (11)

Moreover, for (𝑡, 𝑥) ∈ R
+
× 𝑙
2
(N,R) we define the family

of projections 𝑄
1
: R
+
→ B(𝑋) by 𝑄

1
(𝑡)𝑥 = (𝑧

𝑛
(𝑡))
𝑛≥0

,
where

𝑧
3𝑛
(𝑡) = −𝑝 (𝑡) 𝑥

3𝑛+1
,

𝑧
3𝑛+1

(𝑡) = 𝑥
3𝑛+1

,

𝑧
3𝑛+2

(𝑡) = 0,

𝑛 ∈ N, 𝑡 ≥ 0.

(12)

Moreover, for (𝑡, 𝑠, 𝑥) ∈ Δ × 𝑙2(N,R) one can see that

󵄩󵄩󵄩󵄩𝑄1 (𝑠) 𝑥
󵄩󵄩󵄩󵄩
2

2
=

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑧𝑛 (𝑠)
󵄨󵄨󵄨󵄨
2

=

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑧3𝑛 (𝑠)
󵄨󵄨󵄨󵄨
2

+

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑧3𝑛+1 (𝑠)
󵄨󵄨󵄨󵄨
2

= (1 + 𝑝 (𝑠)
2
)

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥3𝑛+1
󵄨󵄨󵄨󵄨
2

≤ (1 + 𝑝 (𝑡)
2
)

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥3𝑛+1
󵄨󵄨󵄨󵄨
2

=
󵄩󵄩󵄩󵄩𝑄1 (𝑡) 𝑥

󵄩󵄩󵄩󵄩
2

2
;

(13)

hence
󵄩󵄩󵄩󵄩𝑄1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 ≤
󵄩󵄩󵄩󵄩𝑄1 (𝑡) 𝑥

󵄩󵄩󵄩󵄩2 ,

󵄩󵄩󵄩󵄩𝑄1 (𝑡) 𝑥
󵄩󵄩󵄩󵄩2 =

√1 + 𝑝 (𝑡)
2
⋅ (

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥3𝑛+1
󵄨󵄨󵄨󵄨
2

)

1/2

.

(14)

Finally, define 𝑅
1
: R
+
→ B(𝑋) by 𝑅

1
(𝑡) = (𝑤

𝑛
(𝑡))
𝑛≥0

,
where

𝑤
3𝑛
(𝑡) = 0,

𝑤
3𝑛+1

(𝑡) = 0,

𝑤
3𝑛+2

(𝑡) = 𝑥
3𝑛+2

,

𝑛 ∈ N, 𝑡 ≥ 0.

(15)



International Journal of Differential Equations 3

We have that 𝑅
1
is bounded with
󵄩󵄩󵄩󵄩𝑅1 (𝑡)

󵄩󵄩󵄩󵄩 = 1, ∀𝑡 ≥ 0 (16)

and moreover the families of projections 𝑃
1
, 𝑄
1
, and 𝑅

1
are

supplementary.

Example 5. Let 𝑋 = 𝑙
2
(N,R) and define 𝑃

2
, 𝑄
2
, 𝑅
2
: R
+
→

B(𝑙2(N,R)) by 𝑃
2
(𝑡)𝑥 = (𝑦

𝑛
(𝑡))
𝑛≥0

, 𝑄
2
(𝑡)𝑥 = (𝑧

𝑛
(𝑡))
𝑡≥0

, and
𝑅
2
(𝑡)𝑥 = (𝑤

𝑛
(𝑡))
𝑛≥0

, where, for 𝑛 ∈ N,

𝑦
4𝑛
(𝑡) = 𝑥

4𝑛
,

𝑦
4𝑛+1

(𝑡) = 0,

𝑦
4𝑛+2

(𝑡) = 0,

𝑦
4𝑛+3

(𝑡) = 0,

𝑧
4𝑛
(𝑡) = 0,

𝑧
4𝑛+1

(𝑡) = 𝑥
4𝑛+1

,

𝑧
4𝑛+2

(𝑡) = 𝑥
4𝑛+2

,

𝑧
4𝑛+3

(𝑡) = 0,

𝑤
4𝑛
(𝑡) = 0,

𝑤
4𝑛+1

(𝑡) = 0,

𝑤
4𝑛+2

(𝑡) = 0,

𝑤
4𝑛+3

(𝑡) = 𝑥
4𝑛+3

.

(17)

We have that 𝑃
2
, 𝑄
2
, and 𝑅

2
are three supplementary

families of projections with
󵄩󵄩󵄩󵄩𝑃2 (𝑡)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑄2 (𝑡)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑅2 (𝑡)

󵄩󵄩󵄩󵄩 = 1 ∀𝑡 ≥ 0. (18)

3. Evolution Operators

Definition 6. A mapping Φ : Δ → B(𝑋) is called an
evolution operator on𝑋 if

(𝑒
1
) Φ(𝑡, 𝑡) = 𝐼, ∀𝑡 ≥ 0;

(𝑒
2
) Φ(𝑡, 𝑠)Φ(𝑠, 𝑡

0
) = Φ(𝑡, 𝑡

0
), ∀(𝑡, 𝑠), (𝑠, 𝑡

0
) ∈ Δ.

Definition 7. A family of projections 𝑃 : R
+
→ B(𝑋) is said

to be invariant for the evolution operatorΦ : Δ → B(𝑋) if

Φ (𝑡, 𝑠) 𝑃 (𝑠) = 𝑃 (𝑡)Φ (𝑡, 𝑠) ∀ (𝑡, 𝑠) ∈ Δ. (19)

Given three supplementary families of projections 𝑃, 𝑄,
and𝑅which are invariant for a given evolution operatorΦ, we
will name the quadruple (Φ, 𝑃, 𝑄, 𝑅) a trichotomy quadruple.

Two important examples of trichotomy quadruples are
given below, which will serve as a milestone in our examples
and counterexamples.

Example 8. On 𝑋 = 𝑙
2
(N,R) consider the families of

projections 𝑃
1
, 𝑄
1
, and 𝑅

1
from Example 4. Consider 𝜑 :

R
+
→ (0,∞) andΦ

1
: Δ → B(𝑙2(N,R)) given by

Φ
1
(𝑡, 𝑠) =

𝜑 (𝑠)

𝜑 (𝑡)
⋅ 𝑃
1
(𝑠) +

𝜑 (𝑡)

𝜑 (𝑠)
⋅ 𝑄
1
(𝑡) + 𝑅

1
(𝑠) (20)

for all (𝑡, 𝑠) ∈ Δ.

Taking into account that for all 𝑡, 𝑠 ∈ R
+
the following

relations hold,

𝑃
1
(𝑡) 𝑃
1
(𝑠) = 𝑃

1
(𝑠) ,

𝑄
1
(𝑡) 𝑄
1
(𝑠) = 𝑄

1
(𝑡) ,

(21)

it follows that Φ
1
is an evolution operator. It is easy to check

that𝑃
1
,𝑄
1
, and𝑅

1
are invariant forΦ

1
; hence (Φ

1
, 𝑃
1
, 𝑄
1
, 𝑅
1
)

is a trichotomy quadruple. Moreover we have that

Φ
1
(𝑡, 𝑠) 𝑃

1
(𝑠) =

𝜑 (𝑠)

𝜑 (𝑡)
𝑃
1
(𝑠) ,

Φ
1
(𝑡, 𝑠) 𝑄

1
(𝑠) =

𝜑 (𝑡)

𝜑 (𝑠)
𝑄
1
(𝑡) ,

Φ
1
(𝑡, 𝑠) 𝑅

1
(𝑠) = 𝑅

1
(𝑠)

(22)

for all (𝑡, 𝑠) ∈ Δ.

Example 9. On𝑋 = 𝑙
2
(N,R) consider𝑃

2
,𝑄
2
, and𝑅

2
to be the

families of projections defined in Example 5. For 𝜓 : R
+
→

(0,∞) define Φ
2
: Δ → B(𝑙2(N,R)) by

Φ
2
(𝑡, 𝑠) 𝑥 =

{

{

{

(𝑦
𝑛
(𝑡, 𝑠))
𝑛≥0

if 𝑡 > 𝑠

𝑥, if 𝑡 = 𝑠,
(23)

where

𝑦
4𝑛
(𝑡, 𝑠) =

𝜓 (𝑠)

𝜓 (𝑡)
𝑥
4𝑛
,

𝑦
4𝑛+1

(𝑡, 𝑠) =
𝜓 (𝑡)

𝜓 (𝑠)
𝑥
4𝑛+1

,

𝑦
4𝑛+2

(𝑡, 𝑠) = 0,

𝑦
4𝑛+3

(𝑡, 𝑠) = 𝑥
4𝑛+3

,

𝑛 ∈ N

(24)

for all (𝑡, 𝑠, 𝑥) ∈ Δ × 𝑙2(N,R).
It is easy to see that (Φ

2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) is a trichotomy

quadruple and for (𝑡, 𝑠, 𝑥) ∈ Δ × 𝑙2(N,R) one has that

Φ
2
(𝑡, 𝑠) 𝑃

2
(𝑠) 𝑥 = (𝑝

𝑛
(𝑡, 𝑠))
𝑛≥0
,

𝑝
4𝑛
(𝑡, 𝑠) =

𝜓 (𝑠)

𝜓 (𝑡)
𝑥
4𝑛
,

𝑝
4𝑛+1

(𝑡, 𝑠) = 𝑝
4𝑛+2

(𝑡, 𝑠) = 𝑝
4𝑛+3

(𝑡, 𝑠) = 0.

Φ
2
(𝑡, 𝑠) 𝑄

2
(𝑠) 𝑥 =

{

{

{

(𝑞
𝑛
(𝑡, 𝑠))
𝑛≥0
, 𝑡 > 𝑠

(𝜌
𝑛
(𝑡, 𝑠))
𝑛≥0
, 𝑡 = 𝑠

(25)
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which is given by

𝑞
4𝑛
(𝑡, 𝑠) = 𝑞

4𝑛+3
(𝑡, 𝑠) = 0,

𝑞
4𝑛+1

(𝑡, 𝑠) =
𝜓 (𝑡)

𝜓 (𝑠)
𝑥
4𝑛+1

,

𝑞
4𝑛+2

(𝑡, 𝑠) = 0 ,

𝜌
4𝑛
(𝑡, 𝑠) = 𝜌

4𝑛+3
(𝑡, 𝑠) = 0,

𝜌
4𝑛+1

(𝑡, 𝑠) = 𝑥
4𝑛+1

,

𝜌
4𝑛+2

(𝑡, 𝑠) = 𝑥
4𝑛+2

,

𝑛 ∈ N

(26)

and Φ
2
(𝑡, 𝑠)𝑅

2
(𝑠)𝑥 = (𝑟

𝑛
(𝑡, 𝑠))
𝑛≥0

, where

𝑟
4𝑛
(𝑡, 𝑠) = 𝑟

4𝑛+1
(𝑡, 𝑠) = 𝑟

4𝑛+2
(𝑡, 𝑠) = 0,

𝑟
4𝑛+3

(𝑡, 𝑠) = 𝑥
4𝑛+3

.

(27)

In what follows, we will present the main trichotomy
concepts that will be studied in the present paper.

4. Polynomial Trichotomies

Definition 10. A trichotomy quadruple (Φ, 𝑃, 𝑄, 𝑅) is said to
be polynomially trichotomic (p.t.) if there exist𝑁 ≥ 1, 𝛼 > 0,
and 𝛽 ≥ 0 such that

(pt
1
) (𝑡 + 1)𝛼‖Φ(𝑡, 𝑠)𝑃(𝑠)‖ ≤ 𝑁(𝑠 + 1)𝛼+𝛽;

(pt
2
) (𝑡 + 1)𝛼 ≤ 𝑁(𝑡 + 1)𝛽(𝑠 + 1)𝛼‖Φ(𝑡, 𝑠)𝑄(𝑠)‖;

(pt
3
) (𝑠 + 1)𝛼‖Φ(𝑡, 𝑠)𝑅(𝑠)‖ ≤ 𝑁(𝑡 + 1)𝛼(𝑠 + 1)𝛽;

(pt
4
) (𝑠 + 1)𝛼 ≤ 𝑁(𝑡 + 1)𝛼+𝛽‖Φ(𝑡, 𝑠)𝑅(𝑠)‖

for all (𝑡, 𝑠) ∈ Δ.

If 𝛽 from the above definition is equal to 0, then we say
that (Φ, 𝑃, 𝑄, 𝑅) is uniformly polynomially trichotomic (u.p.t.).

Remark 11. The following assertions hold:

(i) If a trichotomy quadruple (Φ, 𝑃, 𝑄, 𝑅) is (p.t.) then 𝑃
and 𝑅 are polynomially bounded, and hence𝑄 is also
polynomially bounded.

(ii) If a trichotomy quadruple (Φ, 𝑃, 𝑄, 𝑅) is (u.p.t.) then
𝑃 and 𝑅 are bounded, and hence 𝑄 is also bounded.

In other words, if (Φ, 𝑃, 𝑄, 𝑅) is (p.t.) with constants𝑁, 𝛼, and
𝛽 then

max {‖𝑃 (𝑡)‖ , ‖𝑄 (𝑡)‖ , ‖𝑅 (𝑡)‖} ≤ 3𝑁 (𝑡 + 1)𝛽 ,

∀𝑡 ≥ 0.

(28)

Remark 12. If (Φ, 𝑃, 𝑄, 𝑅) is (u.p.t.) then it is (p.t.). The con-
verse is not generally true. Take, for example, the trichotomy
quadruple (Φ

1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) fromExample 8with𝑝(𝑡) = 𝜑(𝑡) =

𝑡 + 1. It is easy to check that (Φ
1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) is (p.t.), but it

cannot be (u.p.t.), because 𝑃 is not bounded.

Definition 13. A trichotomy quadruple (Φ, 𝑃, 𝑄, 𝑅) is said to
be strongly polynomially trichotomic (s.p.t.) if there exist𝑁 ≥

1, 𝛼 > 0, and 𝛽 ≥ 0 such that

(spt
1
) (𝑡 + 1)𝛼‖Φ(𝑡, 𝑠)𝑃(𝑠)𝑥‖ ≤ 𝑁(𝑠 + 1)𝛼+𝛽‖𝑃(𝑠)𝑥‖;

(spt
2
) (𝑡 + 1)𝛼‖𝑄(𝑠)𝑥‖ ≤ 𝑁(𝑡 + 1)𝛽(𝑠 + 1)𝛼‖Φ(𝑡, 𝑠)𝑄(𝑠)𝑥‖;

(spt
3
) (𝑠 + 1)𝛼‖Φ(𝑡, 𝑠)𝑅(𝑠)𝑥‖ ≤ 𝑁(𝑡 + 1)𝛼(𝑠 + 1)𝛽‖𝑅(𝑠)𝑥‖;

(spt
4
) (𝑠 + 1)𝛼‖𝑅(𝑠)𝑥‖ ≤ 𝑁(𝑡 + 1)𝛼+𝛽‖Φ(𝑡, 𝑠)𝑅(𝑠)𝑥‖

for all (𝑡, 𝑠, 𝑥) ∈ Δ × 𝑋.

If 𝛽 from the above definition is equal to 0, then we say
that (Φ, 𝑃, 𝑄, 𝑅) is uniformly strongly polynomially trichotomic
(u.s.p.t.).

Remark 14. If (Φ, 𝑃, 𝑄, 𝑅) is (u.s.p.t.) then it is (s.p.t.). The
converse is not generally true, as shown in Example 1.

Remark 15. If (Φ, 𝑃, 𝑄, 𝑅) is (s.p.t.) then the following condi-
tion holds:

Range𝑄 (𝑠) ∩ KerΦ (𝑡, 𝑠) = {0} ∀ (𝑡, 𝑠) ∈ Δ. (29)

In other words, for all (𝑡, 𝑠) ∈ Δ,

𝑥 ∈ Range𝑄 (𝑠) ,

Φ (𝑡, 𝑠) 𝑥 = 0 󳨐⇒ 𝑥 = 0.

(30)

Remark 16. Under the same assumption as in Remark 15, we
also have that

Range𝑅 (𝑠) ∩ KerΦ (𝑡, 𝑠) = {0} ∀ (𝑡, 𝑠) ∈ Δ. (31)

Definition 17. A trichotomy quadruple (Φ, 𝑃, 𝑄, 𝑅) is said to
be weakly polynomially trichotomic (w.p.t.) if there exist𝑁 ≥

1, 𝛼 > 0, and 𝛽 ≥ 0 such that

(wpt
1
) (𝑡 + 1)𝛼‖Φ(𝑡, 𝑠)𝑃(𝑠)‖ ≤ 𝑁(𝑠 + 1)𝛼+𝛽‖𝑃(𝑠)‖;

(wpt
2
) (𝑡 + 1)𝛼‖𝑄(𝑠)‖ ≤ 𝑁(𝑡 + 1)𝛽(𝑠 + 1)𝛼‖Φ(𝑡, 𝑠)𝑄(𝑠)‖;

(wpt
3
) (𝑠 + 1)𝛼‖Φ(𝑡, 𝑠)𝑅(𝑠)‖ ≤ 𝑁(𝑡 + 1)𝛼(𝑠 + 1)𝛽‖𝑅(𝑠)‖;

(wpt
4
) (𝑠 + 1)𝛼‖𝑅(𝑠)‖ ≤ 𝑁(𝑡 + 1)𝛼+𝛽‖Φ(𝑡, 𝑠)𝑅(𝑠)‖

for all (𝑡, 𝑠) ∈ Δ.

If 𝛽 = 0 then we say that (Φ, 𝑃, 𝑄, 𝑅) is uniformly weakly
polynomially trichotomic (u.w.p.t.).

Remark 18. If (Φ, 𝑃, 𝑄, 𝑅) is (u.w.p.t.) then it is (w.p.t.). The
converse is not generally true, as shown in Example 2.

In what follows we will study the connections between
these three trichotomy concepts.

Remark 19. If a trichotomy quadruple (Φ, 𝑃, 𝑄, 𝑅) is (s.p.t.)
then it is also (w.p.t.). Moreover, if (Φ, 𝑃, 𝑄, 𝑅) is (u.s.p.t.),
then it is (u.w.p.t.).

Proposition 20. Let (Φ, 𝑃, 𝑄, 𝑅) be a trichotomy quadruple. If
(Φ, 𝑃, 𝑄, 𝑅) is (p.t.) then it is also (w.p.t.).
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Proof. Let𝑁 ≥ 1, 𝛼 > 0, and 𝛽 ≥ 0 be given by Definition 10.
By Remark 11, we have that

1 ≤ max {‖𝑃 (𝑡)‖ , ‖𝑄 (𝑡)‖ , ‖𝑅 (𝑡)‖} ≤ 3𝑁 (𝑡 + 1)𝛽

∀𝑡 ≥ 0.

(32)

Let now (𝑡, 𝑠) ∈ Δ. From the estimations

(𝑡 + 1)
𝛼
‖Φ (𝑡, 𝑠) 𝑃 (𝑠)‖ ≤ 𝑁 (𝑠 + 1)

𝛼+𝛽

≤ 3𝑁
2
(𝑠 + 1)

𝛼+2𝛽
‖𝑃 (𝑠)‖ ,

(𝑡 + 1)
𝛼
‖𝑄 (𝑠)‖

≤ 𝑁 (𝑡 + 1)
𝛽
(𝑠 + 1)

𝛼
‖Φ (𝑡, 𝑠) 𝑄 (𝑠)‖ ⋅ ‖𝑄 (𝑠)‖

≤ 3𝑁
2
(𝑠 + 1)

𝛼
(𝑡 + 1)

2𝛽
‖Φ (𝑡, 𝑠) 𝑄 (𝑠)‖

(𝑠 + 1)
𝛼
‖Φ (𝑡, 𝑠) 𝑅 (𝑠)‖ ≤ 𝑁 (𝑡 + 1)

𝛼
(𝑠 + 1)

𝛽

≤ 𝑁 (𝑡 + 1)
𝛼
(𝑠 + 1)

𝛽
‖𝑅 (𝑠)‖

≤ 3𝑁
2
(𝑡 + 1)

𝛼
(𝑠 + 1)

2𝛽
‖𝑅 (𝑠)‖ ,

(𝑠 + 1)
𝛼
‖𝑅 (𝑠)‖ ≤ 𝑁 (𝑡 + 1)

𝛼+𝛽
‖Φ (𝑡, 𝑠) 𝑅 (𝑠)‖ ⋅ ‖𝑅 (𝑠)‖

≤ 3𝑁
2
(𝑡 + 1)

𝛼+𝛽
(𝑠 + 1)

𝛽
‖Φ (𝑡, 𝑠) 𝑅 (𝑠)‖

≤ 3𝑁
2
(𝑡 + 1)

𝛼+2𝛽
‖Φ (𝑡, 𝑠) 𝑅 (𝑠)‖ ,

(33)

it follows that (Φ, 𝑃, 𝑄, 𝑅) is (w.p.t.) with constants 3𝑁2 ≥ 1,
𝛼 > 0, and 2𝛽 ≥ 0.

Remark 21. From the proof of the above proposition, we can
easily see that, by setting 𝛽 = 0, we obtain the implication
(u.p.t.) ⇒ (u.w.p.t.).

Other connections are given by the following.

Remark 22. (i) (s.p.t.) does not imply (p.t.) and (u.s.p.t.) does
not imply (u.p.t.) as shown by Example 3.

(ii) The concepts of (p.t.) and (w.p.t.) do not coincide, as
we can see from Example 4.

(iii) (p.t.) does not imply (s.p.t.) and (u.p.t.) does not
imply (u.s.p.t.), as shown by Example 5.

(iv) (w.p.t.) does not imply (s.p.t.) and (u.w.p.t.) does not
imply (u.s.p.t.) as shown in Example 6.

Remark 23. The connection between the presented concepts
is given by the following diagram:

u.p.t.
󴀉󴁙󴁉

󴁁󴁙󴀡 u.s.p.t.
󴀉󴁙󴁉

⇒ u.w.p.t.
⇐

󴁁󴁙󴀡 u.p.t.

��⇑ ⇓ ��⇑ ⇓ ��⇑ ⇓ ��⇑ ⇓

p.t.
󴀉󴁙󴁉

󴁁󴁙󴀡 s.p.t.
󴀉󴁙󴁉

⇒ w.p.t.
⇐

󴁁󴁙󴀡 p.t.

(34)

5. Examples and Counterexamples

Example 1 (trichotomy quadruple that is (s.p.t.) but not
(u.s.p.t.)). Let (Φ

1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) be the trichotomy quadruple

from Example 8 with 𝜑(𝑡) = (𝑡 + 1)3−cos ln(𝑡+1) and 𝑝(𝑡) = 0,
𝑡 ≥ 0. Then we have that

(𝑡 + 1)
2 󵄩󵄩󵄩󵄩Φ1 (𝑡, 𝑠) 𝑃1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 ≤ (𝑠 + 1)
4 󵄩󵄩󵄩󵄩𝑃1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 ,

(𝑡 + 1)
2 󵄩󵄩󵄩󵄩𝑄1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 ≤ (𝑠 + 1)
4 󵄩󵄩󵄩󵄩Φ1 (𝑡, 𝑠) 𝑄1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 ,

‖Φ (𝑡, 𝑠) 𝑅 (𝑠) 𝑥‖
2
= ‖𝑅 (𝑠) 𝑥‖2

(35)

for all (𝑡, 𝑠, 𝑥) ∈ Δ × 𝑋; hence (Φ
1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) is (s.p.t.).

Assume, by a contradiction, that (Φ, 𝑃, 𝑄, 𝑅) is (u.s.p.t.).
Then there exist𝑁 ≥ 1 and 𝛼 > 0 such that for all 𝑛 ∈ N and
for 𝑡
𝑛
= 𝑒
2𝑛𝜋

− 1 and 𝑠
𝑛
= 𝑒
2𝑛𝜋−𝜋/2

− 1 we have, from (spt
1
),

that

(𝑒
2𝑛𝜋−𝜋/2

)
4

𝑒4𝑛𝜋
≤ 𝑁(

𝑒
2𝑛𝜋−𝜋/2

22𝑛𝜋
)

𝛼

(36)

which leads us to the contradiction

𝑒
2𝑛𝜋

≤ 𝑁𝑒
−𝜋/2

, ∀𝑛 ∈ N. (37)

Example 2 (trichotomy quadruple that is (w.p.t.) but
not (u.w.p.t.)). Let (Φ

1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) be as in Example 1. By

Remark 19 we have that (Φ
1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) is (w.p.t.). The same

contradiction is obtained as in Example 1, by assuming that
(Φ
1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) is (u.w.p.t.).

Example 3 (trichotomy quadruple which is (s.p.t.) but fails
to be (p.t.)). Let (Φ

1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) be the trichotomy quadruple

from Example 8 with 𝑝(𝑡) = (𝑡 + 1)𝑡+1 and 𝜑(𝑡) = 𝑡 + 1.
From

(𝑡 + 1)
󵄩󵄩󵄩󵄩Φ1 (𝑡, 𝑠) 𝑃1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 = (𝑠 + 1)
󵄩󵄩󵄩󵄩𝑃1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 ,

(𝑡 + 1)
󵄩󵄩󵄩󵄩𝑄1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 ≤ 𝜑 (𝑡)
󵄩󵄩󵄩󵄩𝑄1 (𝑡) 𝑥

󵄩󵄩󵄩󵄩2

= (𝑠 + 1)
󵄩󵄩󵄩󵄩Φ1 (𝑡, 𝑠) 𝑄1 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 ,

(𝑠 + 1) ‖Φ (𝑡, 𝑠) 𝑅 (𝑠) 𝑥‖
2
≤ (𝑠 + 1) (𝑡 + 1) ‖𝑅 (𝑠) 𝑥‖

2
,

(𝑠 + 1) ‖𝑅 (𝑠) 𝑥‖
2
≤ 𝑁 (𝑡 + 1)

2
‖Φ (𝑡, 𝑠) 𝑅 (𝑠) 𝑥‖2

(38)

for all (𝑡, 𝑠, 𝑥) ∈ Δ × 𝑋, we can see that (Φ
1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) is

(u.s.p.t.) and hence (s.p.t.).
Assume, by a contradiction, that (Φ

1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) is (p.t.).

Then, by Remark 11, we have that there exist𝑀 ≥ 1, 𝛾 ≥ 0,
such that

󵄩󵄩󵄩󵄩𝑃1 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀 (𝑡 + 1)

𝛾
∀𝑡 ≥ 0. (39)

This leads us to the contradiction

(𝑡 + 1)
𝑡+1
= 𝑝 (𝑡) ≤

󵄩󵄩󵄩󵄩𝑃1 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀 (𝑡 + 1)

𝛾
∀𝑡 ≥ 0. (40)

It follows that (Φ
1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) is not (p.t.) and hence not

(u.p.t.).
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Example 4 (trichotomy quadruple which is (w.p.t.) but not
(p.t.)). Let (Φ

1
, 𝑃
1
, 𝑄
1
, 𝑅
1
) the trichotomy quadruple from

Example 3. By Remark 19, we have that (Φ
1
,P
1
, 𝑄
1
, 𝑅
1
) is

(u.w.p.t.) and hence (w.p.t.). But, by Example 3, it is not (p.t.)
and hence not (u.p.t.).

Example 5 (trichotomy quadruple which is (p.t.) but fails to
be (s.p.t.)). Let (Φ

2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) be the trichotomy quadruple

from Example 9 with 𝜓(𝑡) = 𝑡 + 1. First of all we will show
that (Φ

2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) is (u.p.t.). Let (𝑡, 𝑠, 𝑥) ∈ Δ × 𝑙2(N,R). We

have that

(𝑡 + 1)
2 󵄩󵄩󵄩󵄩Φ2 (𝑡, 𝑠) 𝑃2 (𝑠) 𝑥

󵄩󵄩󵄩󵄩
2

2
=

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑝𝑛 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨
2

= (𝑠 + 1)
2

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑥4𝑛
󵄨󵄨󵄨󵄨
2

= (𝑠 + 1)
2 󵄩󵄩󵄩󵄩𝑃2 (𝑠) 𝑥

󵄩󵄩󵄩󵄩
2

2
;

(41)

hence

(𝑡 + 1)
󵄩󵄩󵄩󵄩Φ2 (𝑡, 𝑠) 𝑃2 (𝑠)

󵄩󵄩󵄩󵄩 ≤ 𝑠 + 1. (42)

If 𝑡 > 𝑠, consider 𝑥 = (𝑥
𝑛
)
𝑛≥0

given by

𝑥
𝑛
=
{

{

{

1

𝑛
, 𝑛 = 4𝑘 + 1

0, otherwise.
(43)

We have that ‖𝑥‖
2
= (∑
∞

𝑛=0
(1/(4𝑛 + 1)

2
))
1/2 and

(𝑠 + 1)
󵄩󵄩󵄩󵄩Φ2 (𝑡, 𝑠) 𝑄2 (𝑠) 𝑥

󵄩󵄩󵄩󵄩2 = (

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑞𝑛 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨
2

)

1/2

= (𝑡 + 1) ‖𝑥‖2 ;

(44)

hence

𝑡 + 1 ≤ (𝑠 + 1)
󵄩󵄩󵄩󵄩Φ2 (𝑡, 𝑠) 𝑄2 (𝑠)

󵄩󵄩󵄩󵄩 . (45)

Having in mind that ‖Φ
2
(𝑡, 𝑠)𝑅(𝑠)𝑥‖

2
= ‖𝑅(𝑠)𝑥‖

2
, it follows

that (spt
3
) and (spt

4
) hold for (𝑡, 𝑠, 𝑥) ∈ Δ ×𝑋 with 𝑡 > 𝑠. The

case in which 𝑡 = 𝑠 obviously leads us to the above estimation,
and so the conclusion follows.

In what follows, we will show that (Φ
2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) is

not (s.p.t.), and hence it is not (u.s.p.t.). Assume by a
contradiction that (Φ

2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) is (s.p.t.). We will disprove

the result from Remark 15. Let 𝑥 = (𝑥
𝑛
)
𝑛≥0

given by

𝑥
4𝑛+2

=
1

4𝑛 + 2
,

𝑥
4𝑛+3

= 𝑥
4𝑛+1

= 𝑥
4𝑛
= 0

𝑛 ∈ N.

(46)

Obviously 𝑥 ∈ 𝑙2(N,R) and denote, for every 𝑠 ≥ 0, 𝑄
2
(𝑠)𝑥 =

(𝑧
𝑛
(𝑠))
𝑛≥0

, where
𝑧
4𝑛
(𝑠) = 0,

𝑧
4𝑛+1

(𝑠) = 𝑥
4𝑛+1

= 0,

𝑧
4𝑛+2

(𝑠) = 𝑥
4𝑛+2

=
1

4𝑛 + 2
,

𝑧
4𝑛+3

(𝑠) = 0;

(47)

hence (𝑧
𝑛
(𝑠))
𝑛≥0

is a nonzero sequence.

Consider now (𝑡, 𝑠) ∈ Δ with 𝑡 > 𝑠. By denoting
Φ
2
(𝑡, 𝑠)𝑄

2
(𝑠)𝑥 = (𝑞

𝑛
(𝑡, 𝑠))
𝑛≥0

, with

𝑞
4𝑛
(𝑡, 𝑠) = 0,

𝑞
4𝑛+1

(𝑡, 𝑠) =
𝑡 + 1

𝑠 + 1
𝑥
4𝑛+1

= 0,

𝑞
4𝑛+2

(𝑡, 𝑠) = 0,

𝑞
4𝑛+3

(𝑡, 𝑠) = 0,

(48)

it follows that Φ
2
(𝑡, 𝑠)𝑄

2
(𝑠)𝑥 = 0, which contradicts

Remark 15; hence (Φ
2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) is not (s.p.t.).

Example 6 (trichotomy quadruple that is (w.p.t.) but fails to
be (s.p.t.)). Let (Φ

2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) be the trichotomy quadruple

from Example 5. Taking into account that, for all 𝑠 ≥ 0,
‖𝑃
2
(𝑠)‖ = ‖𝑄

2
(𝑠)‖ = ‖𝑅

2
(𝑠)‖ = 1, it follows that

(Φ
2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) is (u.w.p.t.) and hence (w.p.t.).

Again, from Example 5, we get that (Φ
2
, 𝑃
2
, 𝑄
2
, 𝑅
2
) is not

(s.p.t.) and hence not (u.s.p.t.).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References
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