
Research Article
Global Stabilization of High-Order Time-Delay Nonlinear
Systems under a Weaker Condition

Nengwei Zhang,1 Enbin Zhang,2 and Fangzheng Gao1

1 School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China
2Department of Information Engineering, Henan College of Finance and Taxation, Zhengzhou 450002, China

Correspondence should be addressed to Fangzheng Gao; gaofz@126.com

Received 25 May 2014; Accepted 28 July 2014; Published 28 August 2014

Academic Editor: Chengjian Zhang

Copyright © 2014 Nengwei Zhang et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Under the weaker condition on the system growth, this paper further investigates the problem of global stabilization by state
feedback for a class of high-order nonlinear systems with time-varying delays. By skillfully using the homogeneous domination
approach, a continuous state feedback controller is successfully designed, which preserves the equilibrium at the origin and
guarantees the global asymptotic stability of the resulting closed-loop system. A simulation example is given to demonstrate the
effectiveness of the proposed design procedure.

1. Introduction

Time-delay phenomena exist in many practical systems such
as electrical networks, microwave oscillator, and hydraulic
systems. It is well known that the existence of time delay often
deteriorates the control performance of systems and even
causes the instability of closed-loop systems [1]. Therefore,
the control design and stability analysis of time-delay systems
has been an active research area within the automation
and control community. In recent years, by employing
the Lyapunov-Krasovskii method or Lyapunov-Razumikhin
method to deal with the time delay, control theory, and
techniques for time-delay linear systems were greatly devel-
oped and many advanced methods have been made; see, for
instance, [2–9] and reference therein. However, due to no
unified method being applicable to nonlinear control design,
many important and interesting control problems for time-
delay nonlinear systems remain unsolved.

In this paper, we consider a class of high-order time-delay
nonlinear systems described by
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(1)

where 𝑥(𝑡) = (𝑥

1
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇
∈ 𝑅

𝑛 and 𝑢(𝑡) ∈ 𝑅 are
the system state and input, respectively. 𝑥

2
(𝑡), . . . , 𝑥
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𝑖
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+
→ [0, 𝑑

𝑖
], 𝑖 = 1, . . . , 𝑛, are the time-varying delays

satisfying ̇

𝑑

𝑖
(𝑡) ≤ 𝜗

𝑖
< 1 for known constants 𝑑

𝑖
and 𝜗

𝑖
;

the system initial condition is 𝑥(𝜃) = 𝜑

0
(𝜃), 𝜃 ∈ [0, 𝑑] with

𝑑 = max{𝑑
1
, . . . , 𝑑

𝑛
}. 𝑝
𝑖
∈ 𝑅

≥1

odd := {𝑝/𝑞 | 𝑝 and 𝑞 are positive
odd integers, and 𝑝 ≥ 𝑞}, 𝑖 = 1, . . . , 𝑛, are said to be the high
orders of the system.𝑓

𝑖
, 𝑖 = 1, . . . , 𝑛, are unknown continuous

functions.
System (1) represents an important class of systems which

can model many frequently met practical systems, such
as the underactuated, weakly coupled, unstable mechanical
system, and the cascade chemical system.However, the global
stabilization of (1) has been widely recognized as difficulty
because its Jacobian linearization, being neither controllable
nor feedback linearizable, leads to the traditional design
tools hardly applicable to such system. Mainly, thanks to the
method of adding a power integrator, when 𝑑

𝑖
(𝑡) = 0, the
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state feedback stabilization of (1) has been well studied and a
number of interesting results have been achieved over the last
decades; for example, one can see [10–18] and the references
therein.

However, when 𝑑

𝑖
(𝑡) ̸= 0, the global stabilization of (1)

is much more challenging because trade-off of time-delay
effect and identification of time-delay restriction. In this
regard, some results were also reported. In [19], high-order
time-delay nonlinear systems were first investigated, and, by
imposed some restriction on the system growth, a continuous
state feedback controller was given. Later, the authors in [20–
23] further relaxed conditions placed on the system growth
and addressed state or output feedback stabilization problem
for high-order nonlinear systems with multiple time delays,
respectively.

Motivated by the continuous control ideas in [11, 18],
this paper continues the investigations in [19–23] and further
addresses the stabilizing control design for high-order time-
delay nonlinear systems (1). The main contributions of this
paper are twofolds. (i) By comparisonwith the existing results
in [19–21, 23], the nonlinear growth condition is largely
relaxed and a much weaker sufficient condition is given. (ii)
By successfully overcoming some essential difficulties such
as the weaker assumption on the system growth and the
construction of a 𝐶1, proper, and positive definite Lyapunov
function, a new method to global stabilization of high-order
time-delay nonlinear systems by state feedback is given and
leads to much more general results than the previous ones.

The remainder of this paper is organized as follows.
Section 2 presents some necessary notations, definition, and
preliminary results. Section 3 formulates the control prob-
lem, presents the design scheme to the controller, and
gives the main contributions of this paper. Section 4 gives
a simulation example to demonstrate the effectiveness of
the theoretical results. Section 5 addresses some concluding
remarks. The paper ends with an appendix.

2. Mathematical Preliminaries

The following notations, definition, and lemmas will be used
throughout the paper.

Notations. 𝑅+ denotes the set of all nonnegative real numbers
and𝑅𝑛 denotes the real 𝑛-dimensional space.𝑅+odd := {𝑝/𝑞 | 𝑝

and 𝑞 are positive odd integers} and 𝑅

≥1

odd := {𝑝/𝑞 | 𝑝 and 𝑞

are positive odd integers, and 𝑝 ≥ 𝑞}. For a given vector 𝑋,
𝑋

𝑇 denotes its transpose, and |𝑋| denotes its Euclidean norm.
𝐶

𝑖 denotes the set of all functions with continuous 𝑖th partial
derivatives. K denotes the set of all functions: 𝑅+ → 𝑅

+,
which are continuous, strictly increasing, and vanishing at
zero;K

∞
denotes the set of all functions which are of classK

and unbounded. For any 𝑎 ∈ 𝑅

+ and 𝑥 ∈ 𝑅, the function [𝑥]

𝑎

is defined as [𝑥]𝑎 = sgn(𝑥)|𝑥|𝑎. Besides, let∑1
𝑙=1

𝑝

1
𝑝

0
= 1 and

the arguments of the functions (or the functionals) will be
omitted or simplified, whenever no confusion can arise from
the context. For instance, we sometimes denote a function
𝑓(𝑥(𝑡)) by simply 𝑓(𝑥), 𝑓(⋅), or 𝑓.

Definition 1 (see [24]). Weighted homogeneity: for fixed
coordinates (𝑥

1
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛 and real numbers 𝑟

𝑖
> 0,

𝑖 = 1, . . . , 𝑛, consider the following.

(i) The dilation Δ

𝜀
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𝑥

1
, . . . , 𝜀

𝑟𝑛
𝑥

𝑛
) for any 𝜀 > 0, where 𝑟

𝑖
is called the

weights of the coordinates. For simplicity, we define
dilation weight Δ = (𝑟

1
, . . . , 𝑟

𝑛
).

(ii) A function 𝑉 ∈ (𝑅

𝑛
, 𝑅) is said to be homogeneous

of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that
𝑉(Δ

𝜀
(𝑥)) = 𝜀

𝜏
𝑉(𝑥

1
, . . . , 𝑥

𝑛
) for any 𝑥 ∈ 𝑅

𝑛
\{0}, 𝜀 > 0.

(iii) A vector field 𝑓 ∈ (𝑅

𝑛
, 𝑅

𝑛
) is said to be homogeneous

of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that
𝑓

𝑖
(Δ

𝜀
(𝑥)) = 𝜀

𝜏+𝑟𝑖
𝑓

𝑖
(𝑥), for any 𝑥 ∈ 𝑅

𝑛
\ {0}, 𝜀 > 0,

𝑖 = 1, . . . , 𝑛.
(iv) A homogeneous 𝑝-norm is defined as ‖𝑥‖

Δ,𝑝
=

(∑

𝑛

𝑖=1
|𝑥

𝑖
|

𝑝/𝑟𝑖
)

1/𝑝 for all 𝑥 ∈ 𝑅

𝑛, for a constant 𝑝 ≥ 1.
For simplicity, in this paper, we choose 𝑝 = 2 and
write ‖𝑥‖

Δ
for ‖𝑥‖

Δ,2
.

Lemma 2 (see [24]). Given a dilation weight Δ = (𝑟

1
, . . . , 𝑟

𝑛
),

suppose 𝑉
1
(𝑥) and 𝑉

2
(𝑥) are homogeneous functions of degree

𝜏

1
and 𝜏

2
, respectively. Then 𝑉

1
(𝑥)𝑉

2
(𝑥) is also homogeneous

with respect to the same dilation weight Δ. Moreover, the
homogeneous degree of 𝑉

1
(𝑥)𝑉

2
(𝑥) is 𝜏

1
+ 𝜏

2
.

Lemma 3 (see [24]). Suppose 𝑉 : 𝑅

𝑛
→ 𝑅 is a homogeneous

function of degree 𝜏 with respect to the dilation weight Δ. Then
the following holds:

(i) 𝜕𝑉/𝜕𝑥
𝑖
is homogeneous of degree 𝜏 − 𝑟

𝑖
with 𝑟

𝑖
being

the homogeneous weight of 𝑥
𝑖
;

(ii) there is a constant 𝑐 such that𝑉(𝑥) ≤ 𝑐‖𝑥‖

𝜏

Δ
. Moreover,

if 𝑉(𝑥) is positive definite; then 𝑐‖𝑥‖

𝜏

Δ
≤ 𝑉(𝑥), where 𝑐

is a constant.

Lemma 4 (see [25]). For 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, and 𝑝 ≥ 1 being a
constant, the following inequalities hold:
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(3)

Lemma 5 (see [26]). Let 𝑥, 𝑦 be real variables; then for any
positive real numbers 𝑎,𝑚, and 𝑛, one has
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(4)

where 𝑏 > 0 is any real number.
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3. State Feedback Controller Design

3.1. Assumption. The following assumption is imposed on
system (1) in this paper.

Assumption 6. For 𝑖 = 1, . . . , 𝑛, there are constants 𝑎 > 0 and
𝜏 > −1/∑

𝑛

𝑙=1
𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑙−1
such that

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖
(𝑥

𝑖 (
𝑡) , 𝑥1

(𝑡 − 𝑑

1 (
𝑡)) , . . . , 𝑥𝑖

(𝑡 − 𝑑

𝑖 (
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󵄨

󵄨

󵄨

󵄨

≤ 𝑎

𝑖

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝑑

𝑗 (
𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗
) ,

(5)

where 𝑟
1
= 1 and 𝑟

𝑖+1
= (𝑟

𝑖
+ 𝜏)/𝑝

𝑖
> 0, 𝑖 = 1, . . . , 𝑛.

For simplicity, it is assumed that 𝜏 = −𝑚/𝑛 with 𝑚 being
any even integer and 𝑚 being any odd integer, under which
and the definition of 𝑟

𝑖
in Assumption 6, we know that 𝑟

𝑖
∈

𝑅

+

odd.

Remark 7. Assumption 6, which gives the nonlinear growth
condition on the system drift terms, encompasses the
assumptions in existing results [19–21, 23]. Specifically, when
𝑑

𝑖
(𝑡) = 𝑑 and 𝜏 = 0, it reduces to Assumption 2.1 in [19].

When 𝜏 ∈ [0, +∞), it is equivalent to those in [20, 21, 23].
Moreover, it is worth pointing out this assumption cannot be
covered by Assumption 1 in [22], which can be represented
as
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(𝑡 − 𝑑

𝑖 (
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󵄨

󵄨

󵄨
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𝑖

∑
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(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
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𝑗 (
𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗
)

+ 𝑎 (

󵄨

󵄨

󵄨

󵄨

𝑥

𝑖 (
𝑡)

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝑑

𝑗 (
𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

)

+ 𝑎

𝑖

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

1/𝑝𝑗⋅⋅⋅𝑝𝑖−1
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝑑

𝑗 (
𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

1/𝑝𝑗 ⋅⋅⋅𝑝𝑖−1
) ,

(6)

where 𝜏 ∈ [0, +∞) is a constant. For example, the simple
system 𝑥̇

1
= 𝑥

2
+ 𝑥

3/5

1
(𝑡 − 𝑑), 𝑥̇

2
= 𝑢 cannot be globally

stabilized using the design method presented in [22] because
of the presence of low-order term 𝑥

3/5

1
(𝑡 − 𝑑), but it is easy to

verify that Assumption 6 in this paper is satisfied with 𝑎 = 1

and 𝜏 = −2/5 ∈ (−1/2, +∞).This means that, to some extent,
the system studied in this paper is less restrictive and allows
for a much broader class of systems.

The objective of this paper is to design a state feedback
controller for system (1) under Assumption 6 such that the
closed-loop system is globally asymptotically stable.

To this end, we first introduce the following coordinate
transformation:

𝑧

1
= 𝑥

1
, 𝑧

𝑖
=

𝑥

𝑖

𝐿

𝜅𝑖
, 𝑖 = 2, . . . , 𝑛,

𝜐

𝑝𝑛
=

𝑢

𝑝𝑛

𝐿

𝜅𝑛+1
,

(7)

where 𝜅
1
= 0, 𝜅

𝑖+1
= (𝜅

𝑖
+ 1)/𝑝

𝑖
, 𝑖 = 1, . . . , 𝑛 − 1, and 𝐿 > 1 is

a constant to be determined.
Then, under the new coordinates 𝑧

𝑖
’s, system (1) is

transformed into

𝑧̇

𝑖
= 𝐿𝑥

𝑝𝑖

𝑖+1
+

𝑓

𝑖

𝐿

𝜅𝑖
, 𝑖 = 1, . . . , 𝑛 − 1

𝑧̇

𝑛
= 𝐿𝜐

𝑝𝑛
+

𝑓

𝑛

𝐿

𝜅𝑛
.

(8)

Remark 8. We need to emphasize that the gain 𝐿 creates an
extra freedom in control design. As a matter of fact, in the
proof ofTheorem 10, complex uncertainties will inevitably be
produced in the amplification of nonlinearities. Hence, the
gain 𝐿 can be used to effectively dominate all the possible
uncertainties.

3.2. State Feedback Controller Design for Nominal Nonlinear
System. We first construct a state feedback controller for the
nominal nonlinear system of (8):

𝑧̇

𝑖
= 𝐿𝑧

𝑝𝑖

𝑖+1
, 𝑖 = 1, . . . , 𝑛 − 1

𝑧̇

𝑛
= 𝐿𝜐

𝑝𝑛
.

(9)

Step 1. Let 𝜉
1

= 𝑧

𝜎/𝑟1

1
, where 𝜎 ≥ max

1≤𝑖≤𝑛
{1, 𝜏 + 𝑟

𝑖
} is a

positive number, and choose the Lyapunov function

𝑉

1
= 𝑊

1
= ∫

𝑧1

𝑧
∗

1

(𝑠

𝜎/𝑟1
− 𝑧

∗𝜎/𝑟1

1
)

(2𝜎−𝜏−𝑟1)/𝜎

𝑑𝑠 (10)

with 𝑧

∗

1
= 0. From (9), it follows that

̇

𝑉

1
≤ −𝑛𝐿𝜉

2

1
+ 𝐿𝜉

(2𝜎−𝜏−𝑟1)/𝜎

1
(𝑧

𝑝1

2
− 𝑧

∗𝑝1

2
) , (11)

where the virtual controller is chosen as

𝑧

∗

2
= −𝑛

1/𝑝1
𝑧

(𝑟1+𝜏)/𝑝1

1
:= −𝛽

𝑟2/𝜎

1
𝜉

𝑟2/𝜎

1
.

(12)

Step i (𝑖 = 2, . . . , 𝑛). In this step, we can obtain the following
property, whose proof is given in the appendix.

Proposition 9. Assume that at step 𝑖 − 1, there is a 𝐶1, proper,
and positive definite Lyapunov function 𝑉

𝑖−1
, and a set of

virtual controllers 𝑧∗
1
, . . . , 𝑧

∗

𝑖
defined by

𝑧

∗

1
= 0, 𝜉

1
= 𝑧

𝜎/𝑟1

1
− 𝑧

∗𝜎/𝑟1

1

𝑧

∗

2
= −𝛽

𝑟2/𝜎

1
𝜉

𝑟2/𝜎

1
, 𝜉

2
= 𝑧

𝜎/𝑟2

2
− 𝑧

∗𝜎/𝑟2

2

...
...

𝑧

∗

𝑖
= −𝛽

𝑟𝑖/𝜎

𝑖−1
𝜉

𝑟𝑖/𝜎

𝑖−1
, 𝜉

𝑖
= 𝑧

𝜎/𝑟𝑖

𝑖
− 𝑧

∗𝜎/𝑟𝑖

𝑖

(13)

with 𝛽

1
> 0, . . . , 𝛽

𝑖−1
> 0 being constants, such that

̇

𝑉

𝑖−1
≤ − (𝑛 − 𝑖 + 2) 𝐿

𝑖−1

∑

𝑗=1

𝜉

2

𝑗

+𝜉

(2𝜎−𝜏−𝑟𝑖−1)/𝜎

𝑖−1
(𝑧

𝑝𝑖−1

𝑖
− 𝑧

∗𝑝𝑖−1

𝑖
) .

(14)
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Then the 𝑖th Lyapunov function defined by

𝑉

𝑖
(𝑧

𝑖
) = 𝑉

𝑖−1
(𝑧

𝑖−1
) + 𝑊

𝑖
(𝑧

𝑖
)

𝑊

𝑖
(𝑧

𝑖
) = ∫

𝑧𝑖

𝑧
∗

𝑖

(𝑠

𝜎/𝑟𝑖
− 𝑧

∗𝜎/𝑟𝑖

𝑖
)

(2𝜎−𝜏−𝑟𝑖)/𝜎

𝑑𝑠

(15)

is 𝐶

1, proper, and positive definite, and there is 𝑧

∗

𝑖+1
=

−𝛽

𝑟𝑖+1/𝜎

𝑖
𝜉

𝑟𝑖+1/𝜎

𝑖
such that

̇

𝑉

𝑖
≤ − (𝑛 − 𝑖 + 1) 𝐿

𝑖

∑

𝑗=1

𝜉

2

𝑗
+ 𝐿𝜉

(2𝜎−𝜏−𝑟𝑖)/𝜎

𝑖
(𝑧

𝑝𝑖

𝑖+1
− 𝑧

∗𝑝𝑖

𝑖+1
) . (16)

Hence at step 𝑛, choosing

𝑉

𝑛
=

𝑛

∑

𝑖=1

∫

𝑧𝑖

𝑧
∗

𝑖

(𝑠

𝜎/𝑟𝑖
− 𝑧

∗𝜎/𝑟𝑖

𝑖
)

(2𝜎−𝜏−𝑟𝑖)/𝜎

𝑑𝑠

V = −𝛽

𝑟𝑛+1/𝜎

𝑛
𝜉

𝑟𝑛+1/𝜎

𝑛
= −(

𝑛

∑

𝑖=1

𝛽

𝑖
𝑧

𝜎/𝑟𝑖

𝑖
)

𝑟𝑛+1/𝜎
(17)

from Proposition 9, we arrive at

̇

𝑉

𝑛
≤ −𝐿

𝑛

∑

𝑗=1

𝜉

2

𝑗
, (18)

where 𝜉
𝑖
= 𝑧

𝜎/𝑟𝑖

𝑖
− 𝑧

∗𝜎/𝑟𝑖

𝑖
and 𝛽

𝑖
= 𝛽

𝑛
⋅ ⋅ ⋅ 𝛽

𝑖
𝑖 − 1, . . . , 𝑛 are

positive constant. The system (8) and (17) can be written as the
following compact form:

𝑧̇ = 𝐿𝐸 (𝑧) + 𝐹 (𝑧) , (19)

where 𝑧 = (𝑧

1
, . . . , 𝑧

𝑛
)

𝑇, 𝐸(𝑧) = (𝑧

𝑝1

2
, . . . , 𝑧

𝑝𝑛−1
𝑛

, 𝜐

𝑝𝑛
)

𝑇, and
𝐹(𝑧) = (𝑓

1
, 𝑓

2
/𝐿

𝜅2
, . . . , 𝑓

𝑛
/𝐿

𝜅𝑛
)

𝑇. Introducing the dilation
weight Δ = (𝑟

1
, . . . , 𝑟

𝑛
), from Definition 1, it can be shown that

𝑉

𝑛
is homogeneous of degree 2𝜎 − 𝜏 with respect to Δ.

3.3. Stability Analysis. We state the main results in this paper.

Theorem 10. For the time-delay nonlinear system (1) under
Assumption 6, the state feedback controller 𝑢𝑝𝑛 = 𝐿

𝜅𝑛+1
𝜐

𝑝𝑛 in
(7) and (17) renders that the equilibrium at the origin of the
closed-loop system is globally asymptotically stable.

Proof. We proveTheorem 10 by four steps.

Step 1. We first prove that 𝑢𝑝𝑛 preserves the equilibrium at the
origin.

From (17) and 𝑟

𝑛+1
𝑝

𝑛
= 𝑟

𝑛
+ 𝜏, we have

V𝑝𝑛 (𝑧) = −(

𝑛

∑

𝑖=1

𝛽

𝑖
𝑧

𝜎/𝑟𝑖

𝑖
)

(𝑟𝑛+𝜏)/𝜎

.
(20)

By which and the definitions of 𝑟
𝑖
’s and 𝜎, we easily see that

𝑢

𝑝𝑛
= 𝐿

𝜅𝑛+1
𝜐

𝑝𝑛 is a continuous function of 𝑧 and 𝑢

𝑝𝑛
(𝑧) = 0

for 𝑧 = 0. This together with Assumption 6 implies that the
solutions of 𝑧-system is defined on a time interval [−𝑑, 𝑡

𝑀
),

where 𝑡

𝑀
> 0 may be a finite constant or +∞, and 𝑢

𝑝𝑛

preserves the equilibrium at the origin.

Step 2.We construct a Lyapunov-Krasovskii functional

𝑉 (𝑧 (𝑡)) = 𝑉

𝑛 (
𝑧 (𝑡)) +

𝑛

∑

𝑖=1

𝜆

1 − 𝜗

𝑖

∫

𝑡

𝑡−𝑑𝑖(𝑡)

‖𝑧(𝜀)‖

2𝜎

Δ
𝑑𝜀, (21)

where 𝜆 is a positive parameter to be determined later.
Because 𝑉

𝑛
(𝑧(𝑡)) is 𝐶1, positive definite radially unbounded

and by Lemma 4.3 in [27], there exist two classK
∞
functions

𝛽

1
and 𝛽

21
such that

𝛽

1 (|
𝑧 (𝑡)|) ≤ 𝑉

𝑛 (
𝑧 (𝑡)) ≤ 𝛽

21 (|
𝑧 (𝑡)|) . (22)

According to the homogeneous theory, there are positive
constants 𝑐 and 𝑐 such that

𝑐‖𝑧 (𝑡)‖

2𝜎

Δ
≤ 𝑊(𝑧 (𝑡)) ≤ 𝑐‖𝑧 (𝑡)‖

2𝜎

Δ
, (23)

where𝑊(𝑧(𝑡)) is a positive definite function, whose homoge-
neous degree is 2𝜎. Therefore, the following inequality holds:

𝛽

22
(|𝑧 (𝑡)|) ≤ 𝑊 (𝑧 (𝑡)) ≤ 𝛽

22
(|𝑧 (𝑡)|) (24)

with two classK
∞

functions 𝛽
22
and 𝛽

22
.

With the help of 𝑑
𝑖
(𝑡) : 𝑅

+
→ [0, 𝑑

𝑖
], 𝑖 = 1, . . . , 𝑛, it

follows that
𝑛

∑

𝑖=1

𝜆

1 − 𝜗

𝑖

∫

𝑡

𝑡−𝑑𝑖(𝑡)

‖𝑧 (𝜀)‖

2𝜎

Δ
𝑑𝜀

≤ 𝑐

𝑖
∫

𝑡

𝑡−𝑑𝑖

̃

𝛽

22 |
𝑧 (𝜀)| 𝑑𝜀

≤ 𝑐

𝑖
∫

0

−𝑑𝑖

̃

𝛽

22 (|
𝑧 (𝑠 + 𝑡)|) 𝑑 (𝑠 + 𝑡)

≤ 𝑐

𝑖
sup
−𝑑𝑖≤𝑠≤0

̃

𝛽

22 (|
𝑧 (𝑠 + 𝑡)|)

≤ 𝛽

22
( sup
−𝑑𝑖≤𝑠≤0

|𝑧 (𝑠 + 𝑡)|) ,

(25)

where ̃

𝛽

22
and 𝛽

22
are class K

∞
functions and 𝑐

𝑖
and

𝑐

𝑖
, 𝑖 = 1, . . . , 𝑛, are positive constants, because |𝑧(𝑡)| ≤

sup
−𝑑≤𝑠≤0

|𝑧(𝑠+𝑡)| and sup
−𝑑𝑖≤𝑠≤0

|𝑧(𝑠+𝑡)| ≤ sup
−𝑑≤𝑠≤0

|𝑧(𝑠+𝑡)|.
Defining 𝛽

2
= 𝛽

21
+ 𝛽

22
, from (21), (22), and (25), it follows

that

𝛽

1 (|
𝑧 (𝑡)|) ≤ 𝑉 (𝑧 (𝑡)) ≤ 𝛽

2
( sup
−𝑑≤𝑠≤0

|𝑧 (𝑠 + 𝑡)|) . (26)

Step 3. Because 𝑉

𝑛
(𝑧) and 𝐸(𝑧) are homogeneous of degree

2𝜎 − 𝜏 and 𝜏 with respect to Δ, by Lemmas 2 and 3, there is a
constant 𝑐

1
such that

𝜕𝑉

𝑛 (
𝑧)

𝜕𝑧

𝐿𝐸 (𝑧) ≤ −𝑐

1
𝐿‖𝑧 (𝑡)‖

2𝜎

Δ
.

(27)
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By (7), Assumption 6 and 𝐿 > 1, we can find constants
𝛿

𝑖
> 0 and 0 < ]

𝑖
≤ 1 such that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖 (
⋅)

𝐿

𝜅𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝑎

𝐿

𝜅𝑖

𝑖

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝑑

𝑗 (
𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗
)

= 𝑎

𝑖

∑

𝑗=1

𝐿

𝜅𝑗(𝑟𝑖+𝜏)/𝑟𝑗−𝜅𝑖

× (

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

𝑗 (
𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗
+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

𝑗
(𝑡 − 𝑑

𝑗 (
𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

𝑟𝑖+𝜏/𝑟𝑗
)

≤ 𝛿

𝑖
𝐿

1−]𝑖
(‖𝑧 (𝑡)‖

𝑟𝑖+𝜏

Δ
+

𝑖

∑

𝑗=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝑧 (𝑡 − 𝑑

𝑗 (
𝑡))

󵄩

󵄩

󵄩

󵄩

󵄩

𝑟𝑖+𝜏

Δ
) ;

(28)

since it can be seen that by definition 𝑟
𝑗
= 𝜏𝜅

𝑗
+1/(𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑗−1
),

so

𝜅

𝑗
(𝑟

𝑖
+ 𝜏)

𝑟

𝑗

− 𝜅

𝑖

=

𝜅

𝑗
(𝜏𝜅

𝑖
+ 1/ (𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑖−1
) + 𝜏)

𝜏𝜅

𝑗
+ 1/ (𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑗−1
)

− 𝜅

𝑖

=

𝜏𝜅

𝑗
− (𝜅

𝑗
− 𝜅

𝑖
) / (𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑖−1
)

𝜏𝜅

𝑗
+ 1/ (𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑗−1
)

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

≤

𝜏𝜅

𝑗

𝜏𝜅

𝑗
+ 1/ (𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑗−1
)

,

𝜏 ≥ 0

=

𝜏𝜅

𝑗
− (𝜅

𝑗
−𝜅

𝑖
) / (𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑖−1
)

(𝜏∑

𝑗

𝑙=1
𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑙−2
+1) / (𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑗−1
)

,

0 > 𝜏 >

−1

(∑

𝑛

𝑙=1
𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑙−1
)

{

{

{

< 1, 𝜏 ≥ 0

≤ 0, 0 > 𝜏 >

−1

(∑

𝑛

𝑙=1
𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑙−1
)

.

(29)

Noting that for 𝑖 = 1, . . . , 𝑛, 𝜕𝑉
𝑛
(𝑧)/𝜕𝑧

𝑖
is homogeneous

of degree 2𝜎 − 𝜏 − 𝑟

𝑖
; from Lemma 5, we obtain

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑉

𝑛 (
𝑧)

𝜕𝑧

𝐹 (𝑧)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝑛

∑

𝑖=1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑉

𝑛 (
𝑧)

𝜕𝑧

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖 (
⋅)

𝐿

𝜅𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝑛

∑

𝑖=1

𝜌

𝑖1
𝐿

1−]0
‖𝑧 (𝑡)‖

2𝜎

Δ

+

𝑛

∑

𝑖=1

𝜌

𝑖2
𝐿

1−]0󵄩
󵄩

󵄩

󵄩

𝑧 (𝑡 − 𝑑

𝑖 (
𝑡))

󵄩

󵄩

󵄩

󵄩

2𝜎

Δ

≤ 𝜌

1
𝐿

1−]0
‖𝑧(𝑡)‖

2𝜎

Δ

+ 𝜌

2
𝐿

1−]0
𝑛

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

𝑧 (𝑡 − 𝑑

𝑖 (
𝑡))

󵄩

󵄩

󵄩

󵄩

2𝜎

Δ
,

(30)

where 𝜌
𝑖1
, 𝜌
𝑖2
, 𝑖 = 1, . . . , 𝑛, 𝜌

1
= ∑

𝑛

𝑖=1
𝜌

𝑖1
, 𝜌
2
= max

1≤𝑖≤𝑛
{𝜌

𝑖2
},

and ]
0
= min

1≤𝑖≤𝑛
{]
𝑖
} ≤ 1 are positive constants.

According to (19), (21), (27), and (30), we get

̇

𝑉 =

𝜕𝑉

𝑛 (
𝑧)

𝜕𝑧

𝐿𝐸 (𝑧) +

𝜕𝑉

𝑛 (
𝑧)

𝜕𝑧

𝐹 (𝑧)

+

𝑛

∑

𝑖=1

𝜆

1 − 𝜗

𝑖

‖𝑧(𝑡)‖

2𝜎

Δ
−

𝑛

∑

𝑖=1

𝜆

󵄩

󵄩

󵄩

󵄩

𝑧 (𝑡 − 𝑑

𝑖 (
𝑡))

󵄩

󵄩

󵄩

󵄩

2𝜎

Δ

≤ −(𝑐

1
𝐿 − 𝜌

1
𝐿

1−]0
− 𝜌

2
𝐿

1−]0
𝑛

∑

𝑖=1

1

1 − 𝜗

𝑖

)‖𝑍(𝑡)‖

2𝜎

Δ

− (𝜆 − 𝜌

2
𝐿

1−]0
)

𝑛

∑

𝑖=1

󵄩

󵄩

󵄩

󵄩

𝑍 (𝑡 − 𝑑

𝑖 (
𝑡))

󵄩

󵄩

󵄩

󵄩

2𝜎

Δ
.

(31)

Therefore, by choosing

𝜆 = 𝜌

2
𝐿

1−]0
,

𝐿 > max{(
𝜌

1
+ 𝜌

2
∑

𝑛

𝑖=1
1/ (1 − 𝜗

𝑖
)

𝑐

1

)

1/]0
, 1} ,

(32)

there exists a constant 𝑐∗ such that
̇

𝑉 ≤ −𝑐

∗
‖𝑧 (𝑡)‖

2𝜎

Δ
; (33)

from which, (23), and (24), we have
̇

𝑉 ≤ −𝛽

3 (|
𝑧 (𝑡)|) (34)

for a classK
∞

function 𝛽

3
.

By (26) and (34), we immediately get 𝑡

𝑀
= +∞.

Therefore, all solutions of 𝑧-system are defined on a time
interval [−𝑑, +∞). Then by Lyapunov-Krasovskii stability
theorem [1], we can conclude that lim

𝑡→∞
𝑧(𝑡) = 0.

Step 4. Since (7) is an equivalent transformation, the closed-
loop system consisting of (1), 𝑢𝑝𝑛 = 𝐿

𝜅𝑛+1
𝜐

𝑝𝑛 in (7) and (17),
has the same properties as the system (8) and (17). Thus, the
proof is completed.

3.4. Extension. In this subsection, we can extend the results
developed above to high-order time-delay nonlinear system
in nontriangular form:

𝑥̇

𝑖 (
𝑡)

= 𝑥

𝑝𝑖

𝑖+1
(𝑡) + 𝑓

𝑖
(𝑥

𝑛 (
𝑡) , 𝑥1

(𝑡 − 𝑑

1 (
𝑡)) , . . . , 𝑥𝑛

(𝑡 − 𝑑

𝑛 (
𝑡)))

𝑥̇

𝑛 (
𝑡)

= 𝑢

𝑝𝑛
(𝑡) + 𝑓

𝑛
(𝑥

𝑛 (
𝑡) , 𝑥1

(𝑡 − 𝑑

1 (
𝑡)) , . . . , 𝑥𝑛

(𝑡 − 𝑑

𝑛 (
𝑡)))

(35)

under the following assumption.
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Assumption 11. For 𝑖 = 1, . . . , 𝑛, there are constants 𝑎 > 0,
𝐿 > 1, 0 < ]

𝑖
≤ 1, and 𝜏 > −1/∑

𝑛

𝑙=1
𝑝

1
⋅ ⋅ ⋅ 𝑝

𝑙−1
such that

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓

𝑖 (
⋅)

𝐿

𝜅𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑎𝐿

1−]𝑖

×

𝑛

∑

𝑗=1

(

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗 (
𝑡)

𝐿

𝜅𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗

+

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑥

𝑗
(𝑡 − 𝑑

𝑗 (
𝑡))

𝐿

𝜅𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

(𝑟𝑖+𝜏)/𝑟𝑗

) ,

(36)

where 𝜅
1
= 0, 𝑟
1
= 1, 𝜅
𝑖+1

= (𝜅

𝑖
+1)/𝑝

𝑖
, and 𝑟

𝑖+1
= (𝑟

𝑖
+𝜏)/𝑝

𝑖
>

0, 𝑖 = 1, . . . , 𝑛.

It is obvious that Assumption 6 is a special case of
Assumption 11, and, under this, somemore general results are
given.

Theorem 12. For the time-delay nonlinear system (35) under
Assumption 11, the state feedback controller 𝑢𝑝𝑛 = 𝐿

𝜅𝑛+1
𝜐

𝑝𝑛 in
(7) and (17) renders that the equilibrium at the origin of the
closed-loop system is globally asymptotically stable.

Proof. Similar to (28), Assumption 11 will directly lead to
(30).The rest of the proof is similar to that ofTheorem 10 and
hence is omitted here.

4. Simulation Example

To illustrate the effectiveness of the proposed controller, we
consider the following low-dimensional system:

𝑥̇

1
= 𝑥

9/7

2
+

1

4

𝑥

9/11

2
(𝑡 − 𝑑

1 (
𝑡))

𝑥̇

2
= 𝑢

3
+

1

8

ln (1 + 𝑥

2

2
) +

1

12

𝑥

1/4

2
(𝑡 − 𝑑

2 (
𝑡)) sin𝑥2,

(37)

where 𝑑
1
(𝑡) = 1/5(1 + sin(𝑡)), 𝑝

1
= 9/7, and 𝑝

2
= 3.

It is worth pointing out that system (37) cannot be
globally stabilized even by state feedback, using the design
methods presented in [19–23] because of the presence of
low-order term (1/4)𝑥

9/11

1
(𝑡 − 𝑑

1
(𝑡)). Choose 𝜏 = −2/11 ∈

(−3/8, +∞), then 𝑟

1
= 1, 𝑟

2
= (𝑟

1
+ 𝜏)/𝑝

1
= 7/11

and 𝑟

3
= (𝑟

2
+ 𝜏)/𝑝

2
= 5/33. By Lemma 5, it can be

verified that |𝑓

1
| ≤ (1/4)|𝑥

1
(𝑡 − 𝑑

1
(𝑡))|

9/11 and |𝑓

2
| ≤

(1/4)(|𝑥

2
|

5/7
+ |𝑥

2
(𝑡 − 𝑑

2
(𝑡))|

5/7
) satisfy Assumption 6 with

𝑎 = 1/4. Moreover, noting that 0 ≤ 𝑑

1
(𝑡) ≤ 1/5 and ̇

𝑑

1
(𝑡) =

1/5 cos 𝑡 ≤ 1/5 < 1, the controller proposed in this paper
is applicable. Thus, in terms of the design steps developed in
Section 3, a continuous controller of system (37) can be given
to ensure that the closed-loop system meets the conclusions
of Theorem 10.

Let 𝜎 = 1 and the initial states be 𝑥
1
(𝜃) = 0.5, 𝑥

2
(𝜃) =

−0.3, and 𝜃 ∈ [−0.5, 0]. Using MATLAB, Figures 1 and 2
are obtained to exhibit the the trajectories of the closed-loop
system states and the control input. From these figures, it can
be seen that 𝑥

1
and 𝑥

2
are asymptotically regulated to zero,

which demonstrates the effectiveness of the control method
proposed in this paper.
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Figure 1: The trajectories of system states.
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−60

−40
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u
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0 2 4 6 8 10

Time (s)

Figure 2: The trajectory of control input.

5. Conclusion

In this paper, a state feedback stabilization controller inde-
pendent of time-delays is presented for a class of high-order
nonlinear systems with time-varying delays under a weaker
condition.The controller designed preserves the equilibrium
at the origin and guarantees the globally asymptotic stability
of the system. It should be noted that the proposed controller
can only workwell when the whole state vector ismeasurable.
Therefore, a natural and more interesting problem is how
to design output feedback stabilization controller for the
systems studied in the paper if only partial state vector is
measurable. In addition, in recent years, many results on
stochastic nonlinear systems have been achieved [28–36], and
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so forth; an important problem is whether the results in this
paper can be extended to stochastic high-order nonlinear
systems.

Appendix

Proof of Proposition 9

We first prove that 𝑉
𝑖
defined in (15) is 𝐶1. According to the

definition of 𝜎, it is deduced that (2𝜎 − 𝜏 − 𝑟

𝑖
)/𝜎 ≥ 1. From

this, we know that𝑊
𝑖
is 𝐶1, and then 𝑉

𝑖
is also 𝐶

1.
Next, we prove that 𝑉

𝑖
is positive definite and proper.

When 𝑧

∗

𝑖
≤ 𝑧

𝑖
, using |𝑥 − 𝑦|

𝑝
≤ 2

𝑝−1
|𝑥

𝑝
− 𝑦

𝑝
|, this leads to

𝑊

𝑖
= ∫

𝑧𝑖

𝑧
∗

𝑖

(𝑠

𝜎/𝑟𝑖
− 𝑧

∗𝜎/𝑟𝑖

𝑖
)

(2𝜎−𝜏−𝑟𝑖)/𝜎

𝑑𝑠

≥

2

(2𝜎−𝜏−𝑟𝑖)/𝜎

2

(2𝜎−𝜏−𝑟𝑖)/𝑟𝑖
∫

𝑧𝑖

𝑧
∗

𝑖

(𝑠 − 𝑧

∗

𝑖
)

(2𝜎−𝜏−𝑟𝑖)/𝑟𝑖
𝑑𝑠

≥

𝑟

𝑖
2

(2𝜎−𝜏−𝑟𝑖)/𝜎

(2𝜎 − 𝜏) 2

(2𝜎−𝜏−𝑟𝑖)/𝑟𝑖
(𝑧

𝑖
− 𝑧

∗

𝑖
)

(2𝜎−𝜏)/𝑟𝑖
.

(A.1)

Similarly, it can be shown that (A.1) also holds when 𝑧

∗

𝑖
≥

𝑧

𝑖
. Therefore

𝑉

𝑖
= 𝑉

𝑖−1
+𝑊

𝑖
≥ 𝑉

𝑖−1
+ 𝑚

𝑖

󵄨

󵄨

󵄨

󵄨

𝑧

𝑖
− 𝑧

∗

𝑖

󵄨

󵄨

󵄨

󵄨

(2𝜎−𝜏)/𝑟𝑖 (A.2)

which implies that 𝑉
𝑖
is positive definite and proper, where

𝑚

𝑖
> 0 is a constant.
At last, we prove inequality (16) by induction.We observe

from (9), (14), and (15) that

̇

𝑉

𝑖
≤ − (𝑛 − 𝑖 + 2) 𝐿

𝑖−1

∑

𝑗=1

𝜉

2

𝑗
+ 𝐿[𝜉

𝑖
]

(2𝜎−𝜏−𝑟𝑖)/𝜎
(𝑧

𝑝𝑖

𝑖+1
− 𝑧

∗𝑝𝑖

𝑖+1
)

− 𝐿[𝜉

𝑖−1
]

(2𝜎−𝜏−𝑟𝑖)/𝜎
𝑧

∗𝑝𝑖

𝑖+1

+ 𝐿[𝜉

𝑖−1
]

(2𝜎−𝜏−𝑟𝑖−1)/𝜎
(𝑧

𝑝𝑖−1

𝑖
− 𝑧

∗𝑝𝑖−1

𝑖
) + 𝐿

𝑖−1

∑

𝑗=1

𝜕𝑊

𝑖

𝜕𝑧

𝑗

𝑧

𝑝𝑗

𝑗+1
.

(A.3)

We now estimate the last two terms on the right-hand side of
inequality (A.3).

Noting that 𝑟
𝑖
𝑝

𝑖−1
≤ 1, using (13) and Lemma 4, one

obtains
󵄨

󵄨

󵄨

󵄨

󵄨

𝑧

𝑝𝑖−1

𝑖
− 𝑧

∗𝑝𝑖−1

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 2

(𝜎−𝑟𝑖𝑝𝑖−1)/𝜎󵄨
󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑖𝑝𝑖−1/𝜎
.

(A.4)

Using the fact 𝑝
𝑖−1

𝑟

𝑖
= 𝑟

𝑖−1
+ 𝜏 and (A.4), it follows from

Lemma 5 that

[𝜉

𝑖−1
]

(2𝜎−𝜏−𝑟𝑖−1)
(𝑧

𝑝𝑖−1

𝑖
− 𝑧

∗𝑝𝑖−1

𝑖
)

≤ 2

(𝜎−𝑟𝑖𝑝𝑖−1)/𝜎󵄨
󵄨

󵄨

󵄨

𝜉

𝑖−1

󵄨

󵄨

󵄨

󵄨

(2𝜎−𝜏−𝑟𝑖−1)/𝜎󵄨
󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

𝑟𝑖𝑝𝑖−1/𝜎

≤

1

2

𝜉

2

𝑖−1
+ 𝑐

𝑖1
𝜉

2

𝑖
,

(A.5)

where 𝑐
𝑖1
is a positive constant.

With the help of (9), (13), and Lemmas 4 and 5, one has

𝑖−1

∑

𝑗=1

𝜕𝑊

𝑖

𝜕𝑧

𝑗

𝑧

𝑝𝑗

𝑗+1

=

𝑖−1

∑

𝑗=1

(−

2𝜎 − 𝜏 − 𝑟

𝑖

𝜎

𝜕 (𝑧

∗𝜎/𝑟𝑖

𝑖
)

𝜕𝑧

𝑗

× ∫

𝑧𝑖

𝑧
∗

𝑖

(𝑠

𝜎/𝑟𝑖
− 𝑧

∗𝜎/𝑟𝑖

𝑖
)

(𝜎−𝜏−𝑟𝑖)/𝜎

𝑑𝑠)𝑧

𝑝𝑗

𝑗+1

≤ 𝑏

𝑖

𝑖−1

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

(𝜎−𝜏)/𝜎󵄨
󵄨

󵄨

󵄨

󵄨

𝑧

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

(𝜎−𝑟𝑗)/𝑟𝑗 󵄨
󵄨

󵄨

󵄨

󵄨

𝑧

𝑗+1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝𝑗

≤ 𝑏

𝑖

𝑖−1

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

(𝜎−𝜏)/𝜎
(

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉

𝑗
− 𝛽

𝑗−1
𝜉

𝑗−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑟𝑗/𝜎

)

(𝜎−𝑟𝑗)/𝑟𝑗

× (

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉

𝑗+1
− 𝛽

𝑗
𝜉

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑟𝑗+1/𝜎

)

𝑝𝑗

≤

̃

𝑏

𝑖

𝑖−1

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

𝜉

𝑖

󵄨

󵄨

󵄨

󵄨

(𝜎−𝜏)/𝜎
(

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝛽

𝑗−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉

𝑗−1

󵄨

󵄨

󵄨

󵄨

󵄨

)

(𝜎−𝑟𝑗)/𝜎

× (

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉

𝑗+1

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝛽

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

)

(𝑟𝑗+𝜏)/𝜎

≤

1

2

𝑖−1

∑

𝑗=1

𝜉

2

𝑗
+ 𝑐

𝑖2
𝜉

2

𝑖
,

(A.6)

where 𝑏
𝑖
, ̃𝑏
𝑖
, and 𝑐

𝑖2
are positive constants.

Choosing 𝑧

∗

𝑖+1
= −𝛽

𝑟𝑖+1/𝜎

𝑖
[𝜉

𝑖
]

𝑟𝑖+1/𝜎 and 𝛽

𝑖
= (𝑛 − 𝑖 + 1+

𝑐

𝑖1
+ 𝑐

𝑖2
)

𝜎/𝑟𝑖+1𝑝𝑖 and substituting (A.5), (A.6) into (A.3), one
completes the proof.
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