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Let H(D) denote the space of all holomorphic functions on the unit disk D of C, u € H(D) and let n be a positive integer,
¢ a holomorphic self-map of D, and y a weight. In this paper, we investigate the boundedness and compactness of a weighted
differentiation composition operator EZ:M f(z) = ulz)f @ (¢(2)), f € H(D), from the logarithmic Bloch spaces to the Zygmund-

type spaces.

1. Introduction

Let D denote the open unit disk of the complex plane C and
H(D) the space of all analytic functions in D.
The logarithmic Bloch space is defined as follows:

Brog = {feH([D):

: )lf’(z)|<oo}.

1 - |z]
@)

The space %log is a Banach space under the norm || f|| B, =
og

| f(O)I+1f1. Let Byqq o denote the subspace of 9By, consisting
of those f € 9B, such that

1111 = sup (1 - ") 1og
zeD

. 2 2 '

lzllulll(1 2| )<1og1_|zl)|f (z)| =0. 2)
It is obvious that there are unbounded 9, functions. For
example, consider the function f(z) = log log(e/(1 - z)).
There are also bounded functions that do not belong to
PBlog- In fact, the interpolating Blaschke products do not
belong to %), It is easily proved that, for 0 < a <
L, B G Biog ¢ B. Byog first appeared in the study
of boundedness of the Hankel operators on the Bergman

space. Attele in [1] proved that, for f € Li(@), the Hankel
operator H : LL(@) — LY9) is bounded if and only
it || £l B, < OO thus giving one reason, and not the only
reason, why log-Bloch-type spaces are of interest. Ye in [2]
proved that %), ¢ is a closed subspace of %),,. Galanopoulos
in [3] characterized the boundedness and compactness of
the composition operator C, Blog — Qlog and the
boundedness and compactness of the weighted composition
operator uC, : B, — Bjog. Ye in [4] characterized the
boundedness and compactness of the weighted composition
operator uC,, between the logarithmic Bloch space 9%, and
the a-Bloch spaces % on the unit disk and the boundedness
and compactness of the weighted composition operator uC,,
between the little logarithmic Bloch space %fog and the little
a-Bloch spaces %, on the unit disk. Li in [5] characterized the
boundedness and compactness of the weighted composition
operator uC,, from Bergman spaces AIZ; into the logarithmic
Bloch space 9B, on the unit disk. Ye in [6] characterized the
boundedness and compactness of the weighted composition
operator uC,, from the general function space F(p, g, s) into
the logarithmic Bloch space 9B),, on the unit disk. Colonna
and Li in [7] studied the boundedness and compactness of
the weighted composition operators from Hardy space into
the logarithmic Bloch space and the little logarithmic Bloch
space. Petrov in [8] obtains sharp reverse estimates for the
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logarithmic Bloch spaces on the unit disk. Castillo et al. in
[9] characterized the boundedness and compactness of the
composition operator from the logarithmic Bloch spaces into
weighted Bloch spaces. Garcia Ortiz and Ramos-Fernandez
in [10] characterized the boundedness and compactness of
the composition operators from logarithmic Bloch spaces
into Bloch-type spaces.

Let u be a weight; that is, y is a positive continuous
function on D. The Zygmund-type space Z, consists of all
f € H(D) such that

supu (2) |1 (2)] < oo. 3)

With the norm IIfIIzM =1£(0)] + |f'(0)| + supzeD‘u(z)|f"(z)|,
it becomes a Banach space. The little Zygmund-type space
:f o is a subspace of Z', consisting of those f € Z, such
that

Jim ()| 2] =0. )

When u(z) =1 - |z|%, the Zygmund-type space Z u becomes
the Zygmund space Z [11], while the little Zygmund-type
space Z, , becomes the little Zygmund space Z,.

Let @ = D' be the differentiation operator; that is,
Df = f.Ifn € N, then the operator @" is defined by
Pf=£9"f =", f e HD).

The weighted differentiation composition operator,
denoted by SZ(’;M, is defined as follows [12, 13]:

D f@=u@f"(p@), feHD), ()

where 4 € H(D) and ¢ is a nonconstant holomorphic self-
map of D.

If n = 0, then 9;),4 becomes the weighted composition
operator uC,,, defined by

uCyf (z) =u(2) f(p(2)), zeD, (6)

which, for u(z) = 1, is reduced to the composition
operator C,, for some recentarticles on weighted composition
operators on some H®-type spaces, for example, [14-16] and
references therein. If n = 1,u(z) = (p'(z), then 9;’,,“ =
EZC@, which was studied in [17-21]. When n = 1, u(z) =
1, then @7, = C,P, which was studied in [17, 19]. If
n =1 ¢(z) = z then Z,, = M,D, that is, the product
of differentiation operator and multiplication operator M,
defined by M,, f = uf. Zhu in [13] completely characterized
the boundedness and compactness of linear operators which
are obtained by taking products of differentiation, com-
position, and multiplication operators from Bergman type
spaces to Bers spaces. Stevi¢ in [12] studied the boundedness
and compactness of the weighted differentiation composition
operator Qg,u from mixed-norm spaces to weighted-type
spaces or the little weighted-type space (see also [22-24]).
Zhu in [25] studied the boundedness and compactness of
the generalized weighted composition operator on weighted
Bergman spaces. Yang in [21] studied the boundedness and
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compactness of the operator C,2 and 2C, from Qg (p,q)
to %, and %, , spaces. Liu and Yu in [18] studied the
boundedness and compactness of the operator ZC,, between
H® and Zygmund spaces. Ye and Zhou in [26] studied the
boundedness and compactness of the weighted composition
operators from Hardy to Zygmund type spaces. Stevi¢ in [27]
studied the boundedness and compactness of the generalized
composition operator from mixed-norm space to the Bloch-
type space, the little Bloch-type space, the Zygmund space,
and the little Zygmund space. For other recently introduced
products of operators on spaces of holomorphic functions
see [13, 16]. Motivated by the results [12, 18, 23, 24, 27], we
consider the boundedness and compactness of the operators
2, from the logarithmic Bloch spaces to the Zygmund-type
spaces and the little Zygmund-type spaces. For the proof, we
need different test functions and some complex calculations
kills.

Throughout this paper, we will use the letter C to denote a
positive constant that can change its value at each occurrence.

2. Auxiliary Results

Here we prove and quote some auxiliary results which will be
used in the proofs of the main results in this paper.

Lemma 1. Let n be a positive integer. Suppose f € By, there
exists a constant C such that

Cl s,
—|21?) " log 2/ (1 - |21))’

1" (2)] < zeD, (7)
(1

Proof. We use induction on n. Using the definition of the
logarithmic Bloch spaces we have

Clfla, ,
(1-12P)log (2/ (1 - lal))’

If'2)] < (8)

the case holds for n = 1. Assume the case n = k holds; since

1 (> 1 1
—J : 5d0 = 5, z €D, 9)
2 Jo | -z 1-|z]

let p = (1+|z])/2 < 1; then we have |z/p| = 2|z]/(1+]z]) < 1,
)

1 (1 1
— . 5d0 = — 5, z€D. (10)
21 Jo |pei® — | p° -zl

By the Cauchy integral formula we obtain

[ o)

i0
. pe”’do
0 (pe®-z)’

. 1
7 @) = o
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f (P E‘ ) 619
(pe® - z)°

1 2
< —
4
sl

S 0s 21 (- p))

21
« lj %de

do

21 Jo pei0 _ Z|2
i Cl A, P
(1-p2)" (log(2/ (1 - p))) P* ~ |2
Clfla, P

(1-p2) (log (2/ (1 - p))) (P +121) (p — I21)

_ Il |

T (1-p) (log (2/ (1-p))) P~ I

. |l |

S (1-p) (log 2/ (1-p)) 1P
Clfla,, )

S(l—pﬂng@/u-p»)O—pﬂl+m
2C] £

Blog
(1 - )" (log (2/ (1 - p)))’
(1)
Note that
Ja-lehsi-p=-(-lh<i-lel, (2
%(1—|z|)sl—pZ:(l+p)(1—p)§1—|z|; (13)
we have
|F4Y (@) < Wl (14)
- B 2\k+1 _ >
(1-1217)" log(2/ (1 - 2I))

for every z € D. Hence the case n = k + 1 holds. The desired
result follows. The proof of this lemma is complete. O

Lemma 2 (see [4, 28]). Let

(1-1z])log(2/(1~1zl))
(1-|tz])log (2/ (1 - |tz])’

g;(2) = €[0,1], z € B;

(15)
then |g,(z)| < 2.

The following criterion for the compactness is a useful
tool and it follows from standard arguments (e.g., [29
Proposition 3.11] or [30, Lemma 2.10]).

Lemma 3. Let u € H(D), and let n be a nonnegative
integet, ¢ a holomorphic self-map of D, and u a weight.
Then D, : Biog(Brogo) — Z, is compact if and only
gf@g’u 0 Blog(Brogo) — Z, is bounded and, for any
bounded sequence { fi.} in 9B),5(B\qq,0) which converges to zero
uniformly on compact subsets of D as k — 00, we have
IISZ;‘]’ukaIzM — 0ask — oo.

Lemma 4. A closed set K in Z ,, is compact if and only if K
is bounded and satisfies

i@l @l=o e

The proof is similar to that of Lemma 1 in [31]; hence we
omit it.

3. Boundedness and Compactness of QZZ’M from
’%log(‘%log,o) to Z ,(Z ) Spaces

In this section, we study the boundedness and compactness
of@;)u : Blog(Brogo) = Zu(Z 0)-

Theorem 5. Let u € H(D), and let n be a nonnegative integer,

¢ a holomorphic self-map of D, and u a weight. Then the
following statements are equivalent:

D) D, : Biog = Z, is bounded;
2 2,

(©)

: Biogo — Z, is bounded;

qup (@) |u" (2)| coor )

20 (1- g (2)") log (2/ (1 - |p (2)]))

u(2) |2’ (2) ¢’ (2) +u(2) 9" (2)|

sup < 00, (18)

2D (1-|p(2)]*)" log (2/ (1 - |p (2)]))

p@ |u@ (¢ )]

sup o < 00. (19)
zeID(l_lq)(z)l ) 10g(2/(1—|(P(Z)|))

Proof. (3) = (1). Suppose that (17), (18), and (19) hold. Then,
for every z € D and f € 9,,,, by Lemma 1, we have

u@|(25.0)" @
= u@u" @ " (¢ (2)

+(2u' ()¢ (2) +u(2)9" () £ (9 (2))
+u@ (9’ @) " (0 @)



<u@|u" @] (9 @)
+u() 24 (@) ¢ (2) +u ) 9" @)™ (¢ (2))]
+u@ |u@ (¢ @)1 (9 @)
u(@ [u" (2)]
(1-lp@I") log 2/ (1-]g 2)]))
u(2) |2 (2)9' (2) +u(2) 9" (2)]
(1-lp @) tog 2/ (1 - o 2)])
k@ u@ (o @)
(1-lp @) 1082/ (1 - [p )])

+ClflL,.

< Il

+Cll 1,

+Cllf 1,

(20)
On the other hand, we have
(25..5) O

= [u @) 1 (¢ ()]
ju (0)]

<C ; I£ 15, >
(1-lp @) log 2/ (1= |p @) "

(25.0) ©
= [u@) £ (9 () +u(0) £ (9 (0) ¢’ (0)|
[« ©)
(1-1e @) log 2/ (1 - |p ()]))
[u(0)¢' (0)]

(1-lp@]*)"" Tog 2/ (1 - |p (0)]))

Applying conditions (20) and (21), we deduce that the
operator Zg , : By, — £, is bounded.

(1) = (2). This implication is clear.

(2) = (3). Assume that 9;,14 : Blogo — Z, is bounded;
that is, there exists a constant C, such that

|25..7] 7, <Clfla,, (22)

(21)

<C

171,

+C

1,

forall f € Byog. For f(z) = 2" /n! € By, 0, we have that
K, :=supu (z) |u" (z)| < 0. (23)
zeD
Taking f(z) = 2+ 1) e Blog,05 We have that

suﬂgy (2) 'u" (2)p(2) + 20 (2) (p' (2) +u(z) (p” (z)| < 00.
(24)

Abstract and Applied Analysis

By (23), (24), and the boundedness of the function ¢(z), we
get

K, = su[gy (2) |2u' (2) (p' (2) +u(z) (p" (z)| <00.  (25)

In the same way, taking f(z) = z"**

that

/(n+2)! € %log,o,we have

sugy (2) ‘u" () (¢ (z))2
+2(2 (209" @) +u@) 9" (@) pz)  (20)
+ 2u (z) ((p' (z))2| < 0.

By (23), (25), (26), and the boundedness of the function ¢(z),
we have that

K; = Sug[,t (2) ’u (2) (SD’ (z))z‘ < 0. (27)

For a fixed w € D, set

1-p )|’
(1 -2z (w))log(2/ (1~ |p(@)))

(1-lp @)’
(1-zp @) log (2/ (1 - |p @)]))

(1-lo @)’
(1-20 @) log (2/ (1 - |p @)]))

fo(2)=(m+2)(n+3)

-2(n+3)

+2
(28)

We get that

()
_(n+3)! (1-lo@[") (p()"
nt 1 (1-29(@)" log(2/ (1 - o (@)]))

(1-lp@P) (p@)"
(1-29(@)" " log (2/ (1 - o (@)]))

(1-lp@F) (¢@)"
(1-29(@)" " 1og (2/ (1 - o @)))

-2(n+3)-(n+1)!

+ (n+2)!

ftf)n+1) (Z)
(1-lp@I) (p @)™
(1-zp @) log (2/ (1 - ¢ (@)]))

=(n+3)!
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)n+1

(1-lp @) (9@
(1-29@)" " log (2/ (1 - o (@)]))

-2-(n+3)!

)11+1

+(n+3)! (1 B |§D(w)|2)3(‘/’ (w)
(1-zp @) " log (2/ (1 - o (@)]))

fcf,n+2) (Z)

n+2

=(n+2)-(n+3) (1—|(p(w)|2) (¢(w)
(1-29 @) " 1og (2/ (1 - [p @)]))

2 f———\n+2
-2(Mm+3)-(n+3)! (1 _ |(p(w)|2) (9"(“’))
(1-29 @) " log (2/ (1 - p @)]))

n+2

+(n+4)! (1 _ |<p(w)|2)3(w) .
(1-29(@)"" log (2/ (1 - o (@)]))

(29)

By Lemma 2 we have

sup (1~ [el’) <log . _2|z| ) oI

zeD
<sup (1-1z*) <log : )
zeD 1_|Z|
§ (n+2)(n+3)(1—|g0(w)|z)m

(1- 20 @) log (2/ (1 - o (@)]))

+ sup(l - |z|2) <log I —2|z| >

zeD

1(1+3) (1-|p @[) 9@ ‘
(1-29 @) log (2/ (1 - |p (@)]))

+ sup (1 - |z|2) <log I —2|z| >

zeD

6(1- |p @) 9@ |
(1-29 @) log (2/ (1 - |p (@)]))

s4(n+2)(”+3)2‘€1£(1_lzD(log1—Iz|>

y (1- g @)])
(1-Jo@)]) (1 |z @)|) log 2/ (1 - [p (@)]))

+32(n+3)sup (1l -|z|) (log I —2|z|>

zeD

. (1-lg @]’
(1-Jp@)])’ (1 - |zp @)|) log (2/ (1 - |¢ (@)]))

2
+96sup (1 — |z]) <log = |z|>

y (1-lp@])’
(1-[p@))’ (1 - |z @) log 2/ (1 - [o @)]))

(1 —1zl) (log 2/ (1 - |21)))

—4 2 3 — ¢ (@)
(n+2)(n+ )2‘£<1 ~ |29 @)]) (log (2/ (1 - |z (@)])))

1og(2/ (1= |z @)
log (2/ (1 - ¢ (@)]))
(1 - lz]) (log (2/ (1 - |2])))
+32(n+ 3) sup — ——
(1-[ep @]) (log (2/ (1 - [z9 @)])))

zeD

1082/ (17 @)
log (2/ (1 - |g (w)]))
+ 96sup (1-lz]) (log (2/ (1 - |21)))
(1~ Fr @) (os2/ (1~ [ep @)

zeD

)
log (2/ (1 - |g (@)]))

<4(n+2)(n+3)
< sup (1 - lz]) (log (2/ (1 - |21)))
2cb (1~ e (@) (log (2/ (1 - 7o @))))

g2/ (1~ p@))
log (2/ (1 - | ()]))
(1-1z]) (log (2/ (1 - 21)))
R @) (108 (2 (1~ [e @)

zeD

tog(2/ (1~ [p@])
log (2/ (1 - |g (w)]))
+ 96sup (1 - |z]) (log (2/ (1 - |2])))
(1= p@)) (oe 2/ (1 o @)

zeD
1og (21 (1~ [p@))
log (2/ (1 - ¢ (w)]))
<8(n+2)(n+3)+64(n+3)+192

= 84n* + 104n + 432.
(30)

Hence, f,, € Byoq and sup ,¢p |l f, By < C.



On the other hand for each fix w € D, by (30), we obtain
that

(1 - |z|2) <log

)]f (@) — 0, (as |z| — 1);
(1)

it follows that f,, € %)og for each fix w € D. From (29), we

have £ (p(w)) = fI*?(@(w)) = 0 and
)
£ (9 @) =z-nv(1 S )(‘;’Og z/ TE——
(32)

Hence
C= |20t

2 supit (2)[(Z],,1.)" (=)

= supu ()| ) £ (9 )

+(2 @9 @ +u@)¢" @) £ (0 (2)
+u@ (¢ @) £ (p2)|
> (@) |u" @) £ (9 @)
+ (2 (@) ¢’ @) +u @) @) £ (¢ @)
+u @) (¢ @) 1 (9 @)

(@) [u" (@) |p (@)]"
(1= e @) 1og (2/ (1 - |p @)]))

:2.n|

(33)

By (33), we obtain that

- p (@) |u" ()
1/2<|p(w |<1(1 o (@) ) log (2/ (1 - ¢ (w)]))

w(@) [u” ()] |p @)
1/2<|p(@)|<1 (1 -l (w)lz)n log (2/ (1 - ¢ (w)]))

< 2™

# (@) [u" @) Jp @)
<2 -nlsu o
wed (1 - | (@)]*) log (2/ (1 - |p @)]))

<C2" < 0.

(34)
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And from (23), we have

pw) [ (@)]
sup G
lo@l<1/2(1 = [o @)]°) log (2/ (1 = o (@)]))

p(@) " (@)

< sup A
|(p(w)|£1/2(1 — ¢ (w)| ) log2 (35)

4\" 1
< <—> —— sup p(w)lu (w)
3 10g2| |<1/2 | '

(3) g2
< <00
log2

Thus combining (35) with (34) we get the condition (17).
For a fixed w € D, set

G0 (@) = (n+ 1) (n43) ——— ~ly @)’
w (1-2¢ (@))log (2/ (1 - |p (@)]))
(1-lp@f)’

-(2n+5) —
(1-29 (@) log (2/ (1 - |p (@)])

(1-lp @)’

+2 3 :
(1-z¢(w)) log(2/ (1 - |p (@)

(36)

It is easy to see that

93 (2)
(1-lo @) (p())"

(1-zp @) " log (2/ (1 - o @)]))

(1-lp @) (p@)’

(1-29 @) " log (2/ (1 - o (@)]))

=mn+3)-(n+1)!

-(2n+5)-(n+1)!

(-lp@P) (@)
(1-z0@) " log (2/ (1 - o @)]))

+ (n+2)!

(n+1 (Z)

(1- o <w>|2) (p(@)"™
(1-20 @) " 1og (2/ (1 - o (@)]))

_(n+1)-(n+3)!
B (n+2)

(1 B |(p (w)|2)2(qm)n+l
(1-29 @) log (2/ (1 - o (@)]))

—@n+5) (n+2)
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(1-lp@[) (p@)"™
(1-29 (@) " log (2/ (1 - [p @)])

+ (n+ 3)!

(n+2 (Z)

(1-lp @) (9@)"™
(1-zp @) log (2/ (1 - o @)]))
(1 B |¢ (w)|2)2((p(w))n+2

(1-29 @) " log 2/ (1 - o (@)]))

(1 _ |(P (w)|2)3(m)n+2
(1-29 @) " log (2/ (1 - [p @)])

=(m+1)-(n+3)!

- (2n+5)-(n+3)!

+ (n+4)!

(37)

Using Lemma 2, we easily get that g, € %o and
Squg[D" ol By < C with a direct calculation. From (37), we

have g (<p(w)) = g™ (p(w)) = 0,

(n+1 ((P (w))

(W)rﬁl (38)

=—(n+1)! o .
(1-lp @) log(2/ (1 |p@)]))

Hence

(pugw"

n
> supy (Z)’ 9$,u9w) (z)l

= supy () ’” () g2 (9 (2)

zeD

+(2d @9 @ +u@9" () g7 (0 (2)
+u(2) (¢ @) 90 (9 @)
)9 (9 (@)

+(2u' (@) ¢ (@) +u () ¢" (@) g& (9 (@)

> p(w) ‘u" (w

+u(@ (¢ @) g0 (o @) |

@ |2’ () ¢’ (w) ru@) " )o@

(1-lo @) log (2/ (1 - [p @)]))
(39)

=n+

From (39), we obtain that

p (@) |21’ (@) ¢’ (@) +u () ¢" ()|
log (2/ (1 - |g (w)])

(n+1)!

sup
1/2<|gp(w)|<1 (l - |(P (w)|2)"+1

<2™' sup
1/2<|p(w)|<1

M@ l2u’ () ¢’ (w)+u(w) ¢" ()| [p@)|"
(1-lp @)™ 1og (2/ (1 - |p @)]))

<2"™ (n+ 1)

1@ |26 (@) ¢ (@) + (@) " @) |p@)]"
log (2/ (1 - |¢ (@)]))

X sup

wcd (1 |p@)?)"

<C2"! < 0.
(40)

By (25), we have

G 21’ (0) ¢ (@) + u () 9" ()|
i<1r2(1 - o))" log (2/ (1 - [ @)

w (@) 21’ (@) ¢’ (@) +u (@) ¢” ()|
(1 _ |(P(w)|2)n+l

<

lp(w)I<1/2

4 n+l 1
<(5) Tz
3 log2

log2

sup ¢ (w) |2u (@) ¢’ (w)
|<p(w)|<1/2

u(w) " ()|

<4>n+1 K2
S i < 00
3 log2

(41)

Thus combining (40) with (41) we get the condition (18).
Next, we prove (19). To see this, for a fixed w € D, put

1- o (@)’
(1 - zp(w))log (2/ (1~ ¢ (w)])

(1-lp@P)
(1- 29 @) log(2/ (1 - ¢ @)]))

(-le@f)
(1- 20 @) log (2/ (1 - o (@)]))

h,(z)=n+1)(n+2)

-2(n+2)

+2

(42)



It is easy to see that

(1-lp @) (p(@)"
1- 20 @) log 2/ (1 - o (@)]))

(1-lp@[") ()"

WY (2) = (n+2)!

-2-(n+2)!

(1-zp@)" " log (2/ (1 - o @)]))

(1-lp@F) (¢@)"
(1-20 @) " log 2/ (1 - [p @)]))

+ (n+2)!

K (2) = (n+ 1)

(1-lp @) (9(@)""
(1-29 @) " log 2/ (1 - |9 (@)]))
-2(n+2)

-(n+2)!

(1 B I(p (w)lz)z(m)nﬂ
(1- 29 @) " log (2/ (1 - [p @)]))
(1-lp @) (p) |
(1- 29 @) " log (2/ (1 - |p @))))

K (2) = (n+ 1) (n+2)

-(n+2)!

n+l

+ (n+ 3)!

(1-lp@F) (pl@)"”
(1-29 @) " log (2/ (1 - [p @)]))

-2(n+2)

- (n+2)!

(1- lp @) (p@)"™”
(1-29 @) " og (2/ (1 - [p @)]))

(1-lp @) (o)

- (n+3)!

+ (n+4)! E .
(1-29(@)" log(2/ (1 - |g (@)]))

(43)

From Lemma2 we obtain that h, € %, and

supweﬂj,llhwllglog < C with a direct calculation. From
(43), we have b (p(w)) = h"™ (p(w)) = 0,

he™? (9 (w)

(q)(w))n+2

(1-lp@[*)"“1og 2/ (1 - [p @)))
(44)

=2-(n+2)!

Abstract and Applied Analysis

Hence
C= |25.h,,

> supp (2) ‘(@g’”hw)” (Z)l

zeD

u" (2) B (¢ (2))

= supy (z)
zeD
+(2u' @9 (2 +u@¢" () (9(2))
+u(2) (¢ (@) 1™ (9 (2)|

u" () Y (¢ ()

> p(w)
+ (20 @) ¢ (@) +u@) ¢ @) (¢ ()
+u(@) (¢ @) B (9 @)

i@ ]u (@ (¢ @) ] fp @]

=2-(n+2)! o .
(1-lp@f)" "log(2/ (1~ |p @)]))

(45)
By (45), we obtain that

i@ ]u (@ (¢ @)]
Su
vaseict (1~ Jo @) log (2/ (1 - g @)])

<2™ sup 2
1/2<|<p(w)|<1

#(@) [u@ (¢ (w))zl o)™
(1-lp@])" log (2/ (1 - [p @)
] 2| |———<nt2
<2"™%sup2 - (n+2)! #) ‘u(a)) ((P (w)) l|(P(w)'

e (1- o))" 1og (2/ (1 - |¢ (@)]))

< C2"?* < 0.

-(n+2)!

(46)
By (27), we have

H@]u@ (¢ @)]
sup 2\N+2
Iq)(w)I51/2(1 - |op(w)| ) log (2/ (1 - | (w)]))

1@ u (@) (¢ @)
< sup 2\ N2
lp(w)l<1/2 (1 — |p(w)| ) log2 (47)
4 n+2 1 ' 2
“() oz m o b )]

4 n+2 K
() e
3 log2
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Thus combining (47) with (46) we get the condition (19),
finishing the proof of the theorem. O

Theorem 6. Let u € H(D), and let n be a nonnegative integer,

@ a holomorphic self-map of D, and y a weight. Then the
following statements are equivalent:

D) D, : Biog = Z, is compact;

(2) D4, : Biogo — Z,, is compact;

(3) 2, : Biog = Z, is bounded and

u(@) 4" (2)|

im 7 - (48)
@l =1(1 - |(p(z)|2) log (2/ (1~ |p(2)]))
k@ ' @9’ @ +u@g" @)

zlnll 1+l =0 (49)
P11 o 2)]")" log (2/ (1 - |9 (2)]))

Y

lim p :2(Z) o (Z)) | =0. (50)
|<.0(Z)|—’1(1_|(p(z)|) log (2/ (1 - ¢ (2)]))

Proof. (3) = (1). Assume that D, : B, — Z, is

bounded and that conditions (48), (49), and (50) hold. For
any bounded sequence {f;} in 9%,,, which converges to zero
uniformly on compact subsets of D. To establish the assertion,
it suffices, in view of Lemma 3, to show that

"92;’14]‘,(“2} — 0, ask— oo. (51)

We assume that "fk"«@l < 1. From (48), (49), and (50) we
og
have that, for any ¢ > 0, there exists p € (0,1); when p <

lp(2)| < 1, we have
u@ " (2)]
(- e @) 08/ (1~ [p@])
u(2) | (2)9' (2) +u(2) 9" (2)]
(1-lp@[)" " 10g(2/ (1~ [p(2)]))
H@u@ (9 @)
(1-le@F) " 10g(2/ (1 - o 2)]))

<g, (52)

<E&.

From the boundedness of 9;# : Biog — Z, by Theorem 5,
we see that (23), (25), and (27) hold. Since f; — 0 uniformly
on compact subsets of D, Cauchy’s estimate gives that ",

f,g"“), and f,ﬁ"“) converge to 0 uniformly on compact subsets
of D; there exists a K, € N such that k > K implies that

(3. f) O] +|(2y..5) ©)

+ sup y(z)‘ w (z)’
lo()|<p

1] £ (9 )] +]u’ O] | £ (¢ 0)]
ﬂuw|wl¢mMWmﬂ

+ sup p(z2) |”” (Z)kan) (P(z))'
lp@2)|<p

+| suF ‘u(z)|2u (2) ¢ (2) +u(2)¢' (z)'| (1) go(z))|
9(2)|<p

+ sup u(z) |u(z) ¢’ (z) |' n2) ( (p(z))|
lo@)]<p

O£ (@ @)+ [« Of |£” (9 )

+mwM¢@H““¢wm

+ K, sup |fk” (p(z))|+K2 sup ' ) ( go(z))|
lp(2)l<p lp(z)l<p

+ K5 sup | 2 (g (z))| < Ce.
lp(2)I<p
(53)

From (52) and (53) and Lemma 1 we have

"‘%,Mfk“@

= (25.5) O] +|(2%. fi) ()] + supp (2) (2}, £) (2)|

. ( (@05 O]+ (@) ©)

+ sup u(z)‘ Qwak (z)’)

lp(2)I<p

+ sup y(z)'@wufk (z)|
p<lp(2)I<1

"
<Ce+ sup uz) 'u (Z)'

sl
p<lo2) |<1(1 - l?’(Z)| ) log (2/ (1-¢ (2)])) e

u(@) |20’ (2) ¢’ (2) +u(2) 9" (2)
by MO ey
pelo@l<1 (1 - o (2)|") " log(2/ (1 - ¢ (2)]))

l@log
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#@|u@ (¢ )]
+ sup o
ple@l<t(1-p(2)")  log(2/ (1 - e (2)]))

< 4Ces,

Clsl

‘%log

(54)

WhenK > K. It follows that the operator 9:# t Biog = Zy
is compact.

(1) = (2). It is obvious.

(2) = (3). Assume that 9;)14 : Blogo — Z,is compact.
Then it is clear that Z},, + B9 — Z, is bounded. By
Theorem 5 we get that 9;‘)# : Blog — Z, is bounded. Let
{z,} be a sequence in D such that [p(z;)] — lask — oo.
We can use the test functions

fi (@) = [, (2)

=~ (n+2)(n+3) S lo Gl
(1 -z (zk))log 2/(1-]e(z0)])
-2(n+3) (l_lq)(Zk)' )

(1-29(z0)) 1o (2/ (1 - g (2)])

(1 - |‘P (Zk)|2)3

+2 —— :
(1 ) (zk)> log (2/ (1 - ¢ (2)]))

(55)

Note that

(n+2)(n+3)(1-|p (=)
1~ 29 (=) log (2/ (1 - g (2,)])

lfk (Z)l < (

20+3) (1-lp @)’
(1- 29 (=) log 2/ (1~ o (2)))

2(1-Jp ()f)’
(1-29 (=) log 2/ (1~ [0 (2)))

_ 42 (n+3) (1+ o (z)]) (1 - e (2)])
(1= lg (z))Tog (2/ (1 - | (z)1)

. 2(n+3)(1+]¢ (Zk)|)2(1 o (Zk)|)2
(1o (z)])* log (2/ (1 - o (z)]))
2(1 + o (2)])’(1 - | (z)])’°
(1-p(z0))’ log (2/ (1 - |p (z)]))

- 2(n+2)(n+3) N 8(n+3)
“log(2/(1=le(z)])  log(2/ (1~ e (z)]))

Abstract and Applied Analysis

) 16
log (2/ (1 - [¢ (21)]))

_ 21° + 181 + 52 .
log (2/ (1 - ¢ (2)]))

0, (k— o00),

(56)

for |z] < 1. We see that f, converges to 0 uniformly on

D; hence, f; converges to 0 uniformly on compact subsets

of D and from (30) and (33) we have SqueN"fk”@, <
og

C, fi € Biogo- Then fi is a bounded sequence in %),
which converges to 0 uniformly on compact subsets of D. By
Lemma 3, we have

Jim |20, £, =0 (57)
Note that

flgn+1) ((P (zk)) — flin+2) ((P (zk)) =0,

(9z0)"

(1-|¢ (2)f) log (2/ (1 - [0 (z)]))
(58)

£ (p(z)) =2-n!

From (33) and using the compactness of 9;@ : Blogo = Zu
we obtain

- u(zi) '”” (Zk)| |@'n
(1-lo @) og 2/ (1= lp () (59
<|Zufil,, — 0 ask— o
From (59) and |¢(z;)| — lfit follows that
u(zi) |”” (Zk)|

kl”"o(l ~lo () log (2/ (1 - o (z)]))

and consequently (48) holds.
Next, let

9 (2) = g, (2)

=0 (60)

_1 - lo ()
(129 (=) log 2/ (1~ o (=)

(1-lp (=)’
(1-29 (=) Tog(2/ (1-[p (20)))
(1-lp @)’ |
(1-29 (=) log 2/ (1~ o z)))

=(n+1)(n+3)

-(2n+5)

+2

(61)

By a direct calculation, we obtain that g, converges to 0
uniformly on compact subsets of D, g, € 9By, and
supienllgillg, < C. By Lemma 3, we have

og

Jim |20,a], =0 (62)



Abstract and Applied Analysis

Note that
a (¢ (z))

(m>n+l
(1= o (z)P) " log (2/ (1 - o (z)])

9" (9(2)) = 9" (9 (=) = 0.

=—(n+1)!

(63)
From (39) and using the compactness of QZ;’W t Blogo = Zu
we obtain
—n+l
s iy 2 9 () (@) 9" (@) o ()
n+1)! o]
(1 - |‘P (Zk)|2) log (2/ (1 - |§D(Zk)|))
< Hgg)ugk"% — 0, ask — co.
(64)
From (64) and |¢(z;)| — 1, we have
u(zi) |2”’ (2) 9" (2¢) +u(zi) 9" (Zk)|
m =0; (65)

0 (1= o P) g (21 (1~ o (20D

it implies that (49) holds.
In order to prove (50), choose

hk (Z) = hzk (Z)
_1 ~le (=)
(1-2p (=) 108 2/ (1~ lp (0)))

=(n+1)(n+2)

(1 - |‘P (Zk)|2)2

-2(n+2) 3
(1 ) (zk)) log (2/ (1 = e (z)]))

(-l )’ |
(1-29(z0)) log 2/ (1~ |p (z)])

+2

(66)

By a direct calculation, we may easily prove that /. converges
to 0 uniformly on compact subsets of D, b € HBog0, and
supke,\lllhkllg31 < C. By Lemma 3, we have

og

Jim |20, ], =o. (67)
Note that
n? (9 (21)
——\n+2
(¢ (20)
=2-(n+2)!

(1= o (z)P) " tog (2/ (1 - o (z)]))

Y (9 (2) = 15" (9 (z)) = 0.
(68)

1

From (45) and using the compactness of 2y, : Bz = Z,
we obtain

n+2

1 (20 |u (2 (¢ (2)) ][]
(1-lp @) tog(2/ (1=l (20 (69)

n
< "‘gwhk”:z“H — 0, ask — oo.

2-(n+2)!

From (69) and |¢(z;)| — 1, it follows that

@@ @)
2o (12 1o ()P)" log (2/ (1 - o (z,)])

=0, (70)

and consequently (50) holds, finishing the proof of the
theorem. O

Theorem 7. Let u € H(D), and let n be a nonnegative
integet, ¢ a holomorphic self-map of D, and u a weight. Then
9;,,4 : Blog = Z 0 is a bounded operator provided that the
following conditions are satisfied:

w@ " (2)

lim " =0, (71)

A1 (1-lp @) og (2/ (1 - o (2)])
w2 2u' (2) ¢’ (2) +u(2) ¢" (2)|

lim — =0, (7

(1l @F) log(2/ (1~ e (2))
2
(2) [u(2) (¢’ (2)
yz’uz(tp z)l N o3

llm 2 n+2
=11 o))" log (2/ (1 - 9 (2)]))

Proof. Suppose that (71), (72), and (73) hold. It is clear that
(17), (18), and (19) hold. By Theorem 5 we have that @;)u :
Biog — Z, is bounded. In order to prove 9;),4 : Blog —
Z,, is bounded, it is enough to show that, for any f € %,
Qg’uf € Z - Using (71), (72), and (73) we have that, for any
€ > 0, there is a constant 0 < # < 1, such thaty < |z] < 1
implies

u(@)|u" @) ..
(1-lp@I") log 2/ (1=l @)
u(@) | (2)9' (2) +u(2) 9" (2)] .
(1-lp @) tog 2/ (1 - [p (2)])
k@@ (¢ )]
(1-lp @) 1082/ (1 - p )])

& (74

<E&.
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Then, for any f € %, from Lemma 1 we obtain that
w@|(Z.1)" @)
=u@ " 2) £ (9 (2)
+(2d @9 @) +u@ 9" (@) [ (9 (2)
+u@ (9 @) 1" (p2)|
<u@ " @||f" ()
@) 2 @9 (@) +u@ " @||f" (9 2)
@@ (¢ @) ][ (92)
u(@)|u" ()|
(1-lo@[) 10g(2/ (1 - |p 2)]))
u(@) | (2)9' (2) +u(2) 9" (2)]
(1-lp@P) " 10g(2/ (1-|p )))
u(@ (¢ @)]
(1-lp@F) " 1og (2/ (1 - 9 2)]))

<3C| &

< Ul

+ Ol 1,

p(2)

+ Ul

(75)

when 7 < |z] < 1. Hence & ,f € Z,, forall f € By,
completing the proof of the theorem. O

Theorem 8. Let u € H(D), and let n be a nonnegative integer,
@ a holomorphic self-map of D, and y a weight. If 9;)14 :
Brog = Z .0 is a bounded operator, then (17), (18), and (19)
hold and the following conditions are satisfied:

Jim (@) " @) =0 76)
Jim ¢ (2) 21’ (2)¢' (2) +u(2) 9" (2)| =0,  (77)

Imp@a (@ @)]=0 oy

Proof. Assume that 9;)14 : Biog — Z, is bounded; it is
clear that QZ;M : Blog — Z, is bounded. By Theorem 5 we
have that (17), (18), and (19) hold. On the other hand, for all
[ € Biog D4y f € Z 0. Take f(2) = 2"/nl € Byog; we have
that

Jim @) |u" @] = 0 79)
then (76) holds. Let f(z) = 2 (n+1)! € e%’log; we have that

lz}IiTlH (2) |u” (2)p(2) +2u' (2) 9 (2) +u(z) 9" (z)' =0.
(80)

Abstract and Applied Analysis

By (80), (76), and the boundedness of the function ¢(z), we
get

lzllilllly (2) |2u' (2) go' (2) +u(z) (p” (z)| =0. (81)

Hence, (77) holds. In the same way, let f(z) = 2" (n+2) e
PB1ogs e have that

lim (@) " 2) (9 (2))’
+2 (Zu' (2)¢ () +u(z)¢" (z)) p(z) (82)

2u(2) (¢’ (z))2| - 0.

By (76), (77), (82), and the boundedness of the function ¢(z),
we have that

Imp@u@ (e @)]=0 e

That is, (78) holds. The proof is completed. O

Theorem 9. Let u € H(D), and let n be a nonnegative integer,
@ a holomorphic self-map of D, and u a weight. Then 9;# :
Brogo — Z 0 is a bounded operator if and only 1)‘9;’,’“ :
Blogo — Zy is a bounded operator and (76), (77), and (78)
hold.

Proof. Assume that QZ;M : Blogo — Zy0 is a bounded
operator; it is clear that Qg’u t Blogo — Z, is a bounded
operator. On the other hand, forall f € %, EJZ;’W fe€Z,,
Taking f(z) = 2"/n! € B)qq, we have that

Jim @ @) =0 (59

then (76) holds. Let f(z) = 2%+ 1) € 9310&0; we have
that

lim u (@) | @) 9 2) + 2 (2) ¢ (2) + u(2) 9" (2)] = 0.
(85)

By (85), (76), and the boundedness of the function ¢(z), we
get

|zl|ir31y (2) |2u' (2) cp' (2) +u(z) (p” (z)| =0. (86)

Hence, (77) holds. In the same way, take f(z) = 2" [(n+2)! €
Blog,0; we have that

Jim 4 @] ) (9 )’

+2 (2u' (2)¢' (2) +u(2)¢" (z)) p(z) (87)

+2u(z) (¢’ (z))2| - 0.
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By (76), (77), (87), and the boundedness of the function ¢(z),
we have that

2
Jim 4 (2) ’u(Z) (¢' (2)) | =0. (88)

That is, (78) holds.
Conversely, suppose that @g)u D Blogo — Z,isa

bounded operator and (76), (77), and (78) hold. For each
polynomial p(z) we get that

4@ |(25.0)" @)
=@ " ) p" (¢ (2)
+(2u' ()¢ (@) +u(2) 9" () p"™ (9 (2)
+u(@) (¢ @) P (92)|
<u@ " @) |p" (¢2)]
T2 2 @9 (@) +u @) 9" @)|[p"" (¢ (2)|

+u(2) ‘u @) (¢’ (Z))2| [P (9 (2))]

<u@u" @|]p"

+p(2) |2u' ()¢ () +u(z)e" (z)| ||p(n+1>”OO

+u(2) |u (2) (<P' (Z))Z' ”P(MZ)"(X, —0
(as |z] — 1).
(89)

Hence, QZ(’;M p € Z - On the other hand, since polynomials
are dense in HB)oz, thus, for each f € 9B, there is a
sequence of polynomials {p; };cy such that

Aim [pc = flg,, =0 (90)

. n
Since 9%”
Theorem 5 we have 9;14
operator. Since

: Blogo — Z, is a bounded operator, by
: By — Z, is a bounded

=] I = | PR O

and Z,  is the closed subset of Z ,, we see that 7, f € Z
thus D3, : Biogo = Z 0
is completed. O

o>
is a bounded operator. The proof

Theorem 10. Letu € H(D), and let n be a nonnegative integer,
@ a holomorphic self-map of D, and y a weight. Then the
following statements are equivalent:

M) 25
(2) 25,
(3) (71), (72), and (73) hold.

: Blog = £y is compact;

t Blogo = £ is compact;

13

Proof. (3) = (1). Suppose that (71) (72), and (73) hold. By
Theorem 7 we know that Qg)u : Blog — Z 0 is bounded.
Taking the supremum in inequality (20) over all f € 9By,
such that | f]| By < 1 and letting |z| — 1 yields

| leﬂj}l IIfISIzp u(2) ‘ 2, .f) (Z)‘ (92)

log
Hence, by Lemma 4, we see that the operator 9;),4
Z,0 is compact.

(1) = (2). This implication is clear.

(2) = (3). Assume that D, : Biogy — Z,0 i
compact. Firstly, it is obvious 97, : Brogo — Zyup s
bounded. By Theorem 9 we have that (76), (77), and (78) hold.
On the other hand, we have that 92# P Blogo ™ Zy s
compact. By Theorem 6 we have that (48), (49), and (50) hold.
We prove that (76) and (48) imply (71). The proof of (72) and
(73) is similar; hence, it will be omitted. From (48), it follows
that, for every € > 0, there exists § € (0, 1) such that

: ‘%log -

ae]
(1-lo@[) 10g(2/ (1 - o 2)]))

when § < |p(z)| < 1. Using (76) we see that there exists 7 €
(0, 1) such that

<eg, (93)

u(@)|u" (2)) < e ei[rég](l ~*)"log2, (94)

when 7 < |z| < 1. Therefore when 7 < |z|] < 1 and § <
lp(z)| < 1, by (93), we have

u@ " @)
(1-]p@[) log 2/ (1 - o 2)]))

On the other hand, when 7 < |z] < 1 and |p(2)| < 6, by (94),
we obtain

(95)

u@ " )
(1-le @) log 2/ (1 - [¢ (2)])

(96)
u(@) v 2)|
< - <e
infte[o’s] (1 - tz) 10g2
From (95) and (96) we have
u(@) |u" ()| o)

lim -
|z|—>1(1 - |(P (z)l ) log (2/ (1 - |‘P (Z)l))

we obtain that (71) holds, as desired. The proof is completed.
O
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