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Let 𝐻(D) denote the space of all holomorphic functions on the unit disk D of C, 𝑢 ∈ 𝐻(D) and let n be a positive integer,
𝜑 a holomorphic self-map of D, and 𝜇 a weight. In this paper, we investigate the boundedness and compactness of a weighted
differentiation composition operator D𝑛

𝜑,𝑢
𝑓(𝑧) = 𝑢(𝑧)𝑓

(𝑛)

(𝜑(𝑧)), 𝑓 ∈ 𝐻(D), from the logarithmic Bloch spaces to the Zygmund-
type spaces.

1. Introduction

Let D denote the open unit disk of the complex plane C and
𝐻(D) the space of all analytic functions in D.

The logarithmic Bloch space is defined as follows:

Blog = {𝑓 ∈ 𝐻 (D) :

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 = sup
𝑧∈D

(1 − |𝑧|
2

) (log 2

1 − |𝑧|
)

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞} .

(1)

The space Blog is a Banach space under the norm ‖𝑓‖Blog
=

|𝑓(0)|+‖𝑓‖. LetBlog,0 denote the subspace ofBlog consisting
of those 𝑓 ∈ Blog such that

lim
|𝑧|→1

(1 − |𝑧|
2

) (log 2

1 − |𝑧|
)

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0. (2)

It is obvious that there are unbounded Blog functions. For
example, consider the function 𝑓(𝑧) = log log(𝑒/(1 − 𝑧)).
There are also bounded functions that do not belong to
Blog. In fact, the interpolating Blaschke products do not
belong to Blog. It is easily proved that, for 0 < 𝛼 <

1, B𝛼 ⫋ Blog ⫋ B. Blog first appeared in the study
of boundedness of the Hankel operators on the Bergman

space. Attele in [1] proved that, for 𝑓 ∈ 𝐿
2

𝑎
(D), the Hankel

operator 𝐻
𝑓

: 𝐿
1

𝑎
(D) → 𝐿

1

(D) is bounded if and only
if ‖𝑓‖Blog

< ∞, thus giving one reason, and not the only
reason, why log-Bloch-type spaces are of interest. Ye in [2]
proved thatBlog,0 is a closed subspace ofBlog. Galanopoulos
in [3] characterized the boundedness and compactness of
the composition operator 𝐶

𝜑
: Blog → 𝑄

𝑝

log and the
boundedness and compactness of the weighted composition
operator 𝑢𝐶

𝜑
: Blog → Blog. Ye in [4] characterized the

boundedness and compactness of the weighted composition
operator 𝑢𝐶

𝜑
between the logarithmic Bloch spaceBlog and

the 𝛼-Bloch spacesB𝛼 on the unit disk and the boundedness
and compactness of the weighted composition operator 𝑢𝐶

𝜑

between the little logarithmic Bloch spaceB0log and the little
𝛼-Bloch spacesB𝛼

0
on the unit disk. Li in [5] characterized the

boundedness and compactness of the weighted composition
operator 𝑢𝐶

𝜑
from Bergman spaces 𝐴

𝑝

𝛽
into the logarithmic

Bloch spaceBlog on the unit disk. Ye in [6] characterized the
boundedness and compactness of the weighted composition
operator 𝑢𝐶

𝜑
from the general function space 𝐹(𝑝, 𝑞, 𝑠) into

the logarithmic Bloch space Blog on the unit disk. Colonna
and Li in [7] studied the boundedness and compactness of
the weighted composition operators from Hardy space into
the logarithmic Bloch space and the little logarithmic Bloch
space. Petrov in [8] obtains sharp reverse estimates for the
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logarithmic Bloch spaces on the unit disk. Castillo et al. in
[9] characterized the boundedness and compactness of the
composition operator from the logarithmic Bloch spaces into
weighted Bloch spaces. Garćıa Ortiz and Ramos-Fernández
in [10] characterized the boundedness and compactness of
the composition operators from logarithmic Bloch spaces
into Bloch-type spaces.

Let 𝜇 be a weight; that is, 𝜇 is a positive continuous
function on D. The Zygmund-type space Z

𝜇
consists of all

𝑓 ∈ 𝐻(D) such that

sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞. (3)

With the norm ‖𝑓‖Z𝜇
= |𝑓(0)| + |𝑓

󸀠

(0)| + sup
𝑧∈D𝜇(𝑧)|𝑓

󸀠󸀠

(𝑧)|,
it becomes a Banach space. The little Zygmund-type space
Z
𝜇,0

is a subspace of Z
𝜇
consisting of those 𝑓 ∈ Z

𝜇
such

that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0. (4)

When 𝜇(𝑧) = 1 − |𝑧|
2, the Zygmund-type spaceZ

𝜇
becomes

the Zygmund space Z [11], while the little Zygmund-type
spaceZ

𝜇,0
becomes the little Zygmund spaceZ

0
.

Let D = D1 be the differentiation operator; that is,
D𝑓 = 𝑓

󸀠. If 𝑛 ∈ N
0
, then the operator D𝑛 is defined by

D0𝑓 = 𝑓,D𝑛𝑓 = 𝑓
(𝑛)

, 𝑓 ∈ 𝐻(D).
The weighted differentiation composition operator,

denoted byD𝑛
𝜑,𝑢

, is defined as follows [12, 13]:

D
𝑛

𝜑,𝑢
𝑓 (𝑧) = 𝑢 (𝑧) 𝑓

(𝑛)

(𝜑 (𝑧)) , 𝑓 ∈ 𝐻 (D) , (5)

where 𝑢 ∈ 𝐻(D) and 𝜑 is a nonconstant holomorphic self-
map of D.

If 𝑛 = 0, then D𝑛
𝜑,𝑢

becomes the weighted composition
operator 𝑢𝐶

𝜑
, defined by

𝑢𝐶
𝜑
𝑓 (𝑧) = 𝑢 (𝑧) 𝑓 (𝜑 (𝑧)) , 𝑧 ∈ D, (6)

which, for 𝑢(𝑧) ≡ 1, is reduced to the composition
operator𝐶

𝜑
for some recent articles onweighted composition

operators on some𝐻
∞-type spaces, for example, [14–16] and

references therein. If 𝑛 = 1, 𝑢(𝑧) = 𝜑
󸀠

(𝑧), then D𝑛
𝜑,𝑢

=

D𝐶
𝜑
, which was studied in [17–21]. When 𝑛 = 1, 𝑢(𝑧) ≡

1, then D𝑛
𝜑,𝑢

= 𝐶
𝜑
D, which was studied in [17, 19]. If

𝑛 = 1, 𝜑(𝑧) = 𝑧, then D𝑛
𝜑,𝑢

= 𝑀
𝑢
D, that is, the product

of differentiation operator and multiplication operator 𝑀
𝑢

defined by 𝑀
𝑢
𝑓 = 𝑢𝑓. Zhu in [13] completely characterized

the boundedness and compactness of linear operators which
are obtained by taking products of differentiation, com-
position, and multiplication operators from Bergman type
spaces to Bers spaces. Stević in [12] studied the boundedness
and compactness of the weighted differentiation composition
operator D𝑛

𝜑,𝑢
from mixed-norm spaces to weighted-type

spaces or the little weighted-type space (see also [22–24]).
Zhu in [25] studied the boundedness and compactness of
the generalized weighted composition operator on weighted
Bergman spaces. Yang in [21] studied the boundedness and

compactness of the operator 𝐶
𝜑
D and D𝐶

𝜑
from 𝑄

𝐾
(𝑝, 𝑞)

to B
𝜇
and B

𝜇,0
spaces. Liu and Yu in [18] studied the

boundedness and compactness of the operatorD𝐶
𝜑
between

𝐻
∞ and Zygmund spaces. Ye and Zhou in [26] studied the

boundedness and compactness of the weighted composition
operators fromHardy to Zygmund type spaces. Stević in [27]
studied the boundedness and compactness of the generalized
composition operator from mixed-norm space to the Bloch-
type space, the little Bloch-type space, the Zygmund space,
and the little Zygmund space. For other recently introduced
products of operators on spaces of holomorphic functions
see [13, 16]. Motivated by the results [12, 18, 23, 24, 27], we
consider the boundedness and compactness of the operators
D𝑛
𝜑,𝑢

from the logarithmic Bloch spaces to the Zygmund-type
spaces and the little Zygmund-type spaces. For the proof, we
need different test functions and some complex calculations
kills.

Throughout this paper, we will use the letter𝐶 to denote a
positive constant that can change its value at each occurrence.

2. Auxiliary Results

Here we prove and quote some auxiliary results which will be
used in the proofs of the main results in this paper.

Lemma 1. Let 𝑛 be a positive integer. Suppose 𝑓 ∈ Blog; there
exists a constant 𝐶 such that

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − |𝑧|
2

)
𝑛

log (2/ (1 − |𝑧|))

, 𝑧 ∈ D, (7)

Proof. We use induction on 𝑛. Using the definition of the
logarithmic Bloch spaces we have

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − |𝑧|
2

) log (2/ (1 − |𝑧|))

; (8)

the case holds for 𝑛 = 1. Assume the case 𝑛 = 𝑘 holds; since

1

2𝜋
∫

2𝜋

0

1

󵄨󵄨󵄨󵄨𝑒
𝑖𝜃 − 𝑧

󵄨󵄨󵄨󵄨

2
𝑑𝜃 =

1

1 − |𝑧|
2
, 𝑧 ∈ D, (9)

let 𝜌 = (1+ |𝑧|)/2 < 1; then we have |𝑧/𝜌| = 2|𝑧|/(1+ |𝑧|) < 1,
so

1

2𝜋
∫

2𝜋

0

1

󵄨󵄨󵄨󵄨𝜌𝑒
𝑖𝜃 − 𝑧

󵄨󵄨󵄨󵄨

2
𝑑𝜃 =

1

𝜌2 − |𝑧|
2
, 𝑧 ∈ D. (10)

By the Cauchy integral formula we obtain

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑘+1)

(𝑧)
󵄨󵄨󵄨󵄨󵄨
=

1

2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

2𝜋

0

𝑓
(𝑘)

(𝜌𝑒
𝑖𝜃

)

(𝜌𝑒𝑖𝜃 − 𝑧)
2
𝜌𝑒
𝑖𝜃

𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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≤
1

2𝜋
∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
(𝑘)

(𝜌𝑒
𝑖𝜃

)

(𝜌𝑒𝑖𝜃 − 𝑧)
2
𝜌𝑒
𝑖𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝜃

≤

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − 𝜌2)
𝑘

(log (2/ (1 − 𝜌)))

×
1

2𝜋
∫

2𝜋

0

𝜌

󵄨󵄨󵄨󵄨𝜌𝑒
𝑖𝜃 − 𝑧

󵄨󵄨󵄨󵄨

2
𝑑𝜃

=

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − 𝜌2)
𝑘

(log (2/ (1 − 𝜌)))

𝜌

𝜌2 − |𝑧|
2

=

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − 𝜌2)
𝑘

(log (2/ (1 − 𝜌)))

𝜌

(𝜌 + |𝑧|) (𝜌 − |𝑧|)

≤

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − 𝜌2)
𝑘

(log (2/ (1 − 𝜌)))

1

𝜌 − |𝑧|

=

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − 𝜌2)
𝑘

(log (2/ (1 − 𝜌)))

1

1 − 𝜌

≤

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − 𝜌2)
𝑘

(log (2/ (1 − 𝜌)))

2

(1 − 𝜌) (1 + 𝜌)

≤

2𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − 𝜌2)
𝑘+1

(log (2/ (1 − 𝜌)))

.

(11)

Note that
1

4
(1 − |𝑧|) ≤ 1 − 𝜌 =

1

2
(1 − |𝑧|) ≤ 1 − |𝑧| , (12)

1

2
(1 − |𝑧|) ≤ 1 − 𝜌

2

= (1 + 𝜌) (1 − 𝜌) ≤ 1 − |𝑧| ; (13)

we have

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑘+1)

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

(1 − |𝑧|
2

)
𝑘+1

log (2/ (1 − |𝑧|))

, (14)

for every 𝑧 ∈ D. Hence the case 𝑛 = 𝑘 + 1 holds. The desired
result follows. The proof of this lemma is complete.

Lemma 2 (see [4, 28]). Let

𝑔
𝑡
(𝑧) =

(1 − |𝑧|) log (2/ (1 − |𝑧|))

(1 − |𝑡𝑧|) log (2/ (1 − |𝑡𝑧|))
, 𝑡 ∈ [0, 1] , 𝑧 ∈ D;

(15)

then |𝑔
𝑡
(𝑧)| < 2.

The following criterion for the compactness is a useful
tool and it follows from standard arguments (e.g., [29,
Proposition 3.11] or [30, Lemma 2.10]).

Lemma 3. Let 𝑢 ∈ 𝐻(D), and let n be a nonnegative
integer, 𝜑 a holomorphic self-map of D, and 𝜇 a weight.
Then D𝑛

𝜑,𝑢
: Blog(Blog,0) → Z

𝜇
is compact if and only

if D𝑛
𝜑,𝑢

: Blog(Blog,0) → Z
𝜇
is bounded and, for any

bounded sequence {𝑓
𝑘
} inBlog(Blog,0)which converges to zero

uniformly on compact subsets of D as 𝑘 → ∞, we have
‖D𝑛
𝜑,𝑢

𝑓
𝑘
‖
Z𝜇

→ 0 as 𝑘 → ∞.

Lemma 4. A closed set 𝐾 in Z
𝜇,0

is compact if and only if 𝐾
is bounded and satisfies

lim
|𝑧|→1

sup
𝑓∈𝐾

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0. (16)

The proof is similar to that of Lemma 1 in [31]; hence we
omit it.

3. Boundedness and Compactness of D𝑛
𝜑,𝑢

from
Blog(Blog,0) to Z

𝜇
(Z
𝜇,0

) Spaces

In this section, we study the boundedness and compactness
ofD𝑛
𝜑,𝑢

: Blog(Blog,0) → Z
𝜇
(Z
𝜇,0

).

Theorem 5. Let 𝑢 ∈ 𝐻(D), and let n be a nonnegative integer,
𝜑 a holomorphic self-map of D, and 𝜇 a weight. Then the
following statements are equivalent:

(1) D𝑛
𝜑,𝑢

: Blog → Z
𝜇
is bounded;

(2) D𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇
is bounded;

(3)

sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< ∞, (17)

sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< ∞, (18)

sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< ∞. (19)

Proof. (3) ⇒ (1). Suppose that (17), (18), and (19) hold.Then,
for every 𝑧 ∈ D and 𝑓 ∈ Blog, by Lemma 1, we have

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

= 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) 𝑓
(𝑛)

(𝜑 (𝑧))

+ (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) 𝑓
(𝑛+1)

(𝜑 (𝑧))

+ 𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2

𝑓
(𝑛+2)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨󵄨
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≤ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

+ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

+ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+2)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

+ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

+ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

+ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog
.

(20)

On the other hand, we have
󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓) (0)

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑢 (0) 𝑓

(𝑛)

(𝜑 (0))
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
|𝑢 (0)|

(1 −
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Blog

,

󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓)
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑢(0)
󸀠

𝑓
(𝑛)

(𝜑 (0)) + 𝑢 (0) 𝑓
(𝑛+1)

(𝜑 (0)) 𝜑
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Blog

+ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑢 (0) 𝜑

󸀠

(0)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (0)

󵄨󵄨󵄨󵄨))

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Blog

.

(21)

Applying conditions (20) and (21), we deduce that the
operatorD𝑛

𝜑,𝑢
: Blog → Z

𝜇
is bounded.

(1) ⇒ (2). This implication is clear.
(2) ⇒ (3). Assume thatD𝑛

𝜑,𝑢
: Blog,0 → Z

𝜇
is bounded;

that is, there exists a constant 𝐶, such that
󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑓
󵄩󵄩󵄩󵄩󵄩Z𝜇

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog
, (22)

for all 𝑓 ∈ Blog,0. For 𝑓(𝑧) = 𝑧
𝑛

/𝑛! ∈ Blog,0, we have that

𝐾
1
:= sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞. (23)

Taking 𝑓(𝑧) = 𝑧
𝑛+1

/(𝑛 + 1)! ∈ Blog,0; we have that

sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) 𝜑 (𝑧) + 2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞.

(24)

By (23), (24), and the boundedness of the function 𝜑(𝑧), we
get

𝐾
2
:= sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
< ∞. (25)

In the sameway, taking𝑓(𝑧) = 𝑧
𝑛+2

/(𝑛+2)! ∈ Blog,0, we have
that

sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) (𝜑 (𝑧))
2

+ 2 (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) 𝜑 (𝑧)

+ 2𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

< ∞.

(26)

By (23), (25), (26), and the boundedness of the function 𝜑(𝑧),
we have that

𝐾
3
:= sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

< ∞. (27)

For a fixed 𝜔 ∈ D, set

𝑓
𝜔
(𝑧) = (𝑛 + 2) (𝑛 + 3)

1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

(1 − 𝑧𝜑 (𝜔)) log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− 2 (𝑛 + 3)

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝑧𝜑 (𝜔))
2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ 2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(1 − 𝑧𝜑 (𝜔))
3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(28)

We get that

𝑓
(𝑛)

𝜔
(𝑧)

=
(𝑛 + 3)!

𝑛 + 1

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− 2 (𝑛 + 3) ⋅ (𝑛 + 1)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

;

𝑓
(𝑛+1)

𝜔
(𝑧)

= (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑 (𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))
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− 2 ⋅ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑 (𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑 (𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+4

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

;

𝑓
(𝑛+2)

𝜔
(𝑧)

= (𝑛 + 2) ⋅ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− 2 (𝑛 + 3) ⋅ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+4

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ (𝑛 + 4)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+5

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(29)

By Lemma 2 we have

sup
𝑧∈D

(1 − |𝑧|
2

) (log 2

1 − |𝑧|
)

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝜔
(𝑧)

󵄨󵄨󵄨󵄨󵄨

≤ sup
𝑧∈D

(1 − |𝑧|
2

) (log 2

1 − |𝑧|
)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑛 + 2) (𝑛 + 3) (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) 𝜑(𝜔)

(1 − 𝑧𝜑 (𝜔))
2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
𝑧∈D

(1 − |𝑧|
2

) (log 2

1 − |𝑧|
)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4 (𝑛 + 3) (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

𝜑(𝜔)

(1 − 𝑧𝜑 (𝜔))
3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
𝑧∈D

(1 − |𝑧|
2

) (log 2

1 − |𝑧|
)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

𝜑(𝜔)

(1 − 𝑧𝜑 (𝜔))
4

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 4 (𝑛 + 2) (𝑛 + 3) sup
𝑧∈D

(1 − |𝑧|) (log 2

1 − |𝑧|
)

×
(1 −

󵄨󵄨󵄨󵄨𝜑 (𝜔)
󵄨󵄨󵄨󵄨)

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) (1 −

󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝜔)
󵄨󵄨󵄨󵄨))

+ 32 (𝑛 + 3) sup
𝑧∈D

(1 − |𝑧|) (log 2

1 − |𝑧|
)

×
(1 −

󵄨󵄨󵄨󵄨𝜑 (𝜔)
󵄨󵄨󵄨󵄨)
2

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
)
2

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝜔)
󵄨󵄨󵄨󵄨))

+ 96sup
𝑧∈D

(1 − |𝑧|) (log 2

1 − |𝑧|
)

×
(1 −

󵄨󵄨󵄨󵄨𝜑 (𝜔)
󵄨󵄨󵄨󵄨)
3

(1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
)
3

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝜔)
󵄨󵄨󵄨󵄨))

= 4 (𝑛 + 2) (𝑛 + 3) sup
𝑧∈D

(1 − |𝑧|) (log (2/ (1 − |𝑧|)))

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) (log (2/ (1 −

󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
)))

×

log (2/ (1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
))

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ 32 (𝑛 + 3) sup
𝑧∈D

(1 − |𝑧|) (log (2/ (1 − |𝑧|)))

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) (log (2/ (1 −

󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
)))

×

log (2/ (1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
))

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ 96sup
𝑧∈D

(1 − |𝑧|) (log (2/ (1 − |𝑧|)))

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) (log (2/ (1 −

󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
)))

×

log (2/ (1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
))

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 4 (𝑛 + 2) (𝑛 + 3)

× sup
𝑧∈D

(1 − |𝑧|) (log (2/ (1 − |𝑧|)))

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) (log (2/ (1 −

󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
)))

×

log (2/ (1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
))

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ 32 (𝑛 + 3) sup
𝑧∈D

(1 − |𝑧|) (log (2/ (1 − |𝑧|)))

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) (log (2/ (1 −

󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
)))

×

log (2/ (1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
))

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ 96sup
𝑧∈D

(1 − |𝑧|) (log (2/ (1 − |𝑧|)))

(1 −
󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
) (log (2/ (1 −

󵄨󵄨󵄨󵄨󵄨
𝑧𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
)))

×

log (2/ (1 −
󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨
))

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 8 (𝑛 + 2) (𝑛 + 3) + 64 (𝑛 + 3) + 192

= 84𝑛
2

+ 104𝑛 + 432.

(30)
Hence, 𝑓

𝜔
∈ Blog and sup

𝜔∈D‖𝑓𝜔‖Blog
≤ 𝐶.
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On the other hand for each fix 𝜔 ∈ D, by (30), we obtain
that

(1 − |𝑧|
2

) (log 2

1 − |𝑧|
)

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝜔
(𝑧)

󵄨󵄨󵄨󵄨󵄨
󳨀→ 0, (as |𝑧| 󳨀→ 1) ;

(31)

it follows that 𝑓
𝜔

∈ Blog,0 for each fix 𝜔 ∈ D. From (29), we
have 𝑓

(𝑛+1)

𝜔
(𝜑(𝜔)) = 𝑓

(𝑛+2)

𝜔
(𝜑(𝜔)) = 0 and

𝑓
(𝑛)

𝜔
(𝜑 (𝜔)) = 2 ⋅ 𝑛!

(𝜑(𝜔))
𝑛

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(32)

Hence

𝐶 ≥
󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑓
𝜔

󵄩󵄩󵄩󵄩󵄩Z𝜇

≥ sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝜔
)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) 𝑓
(𝑛)

𝜔
(𝜑 (𝑧))

+ (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) 𝑓
(𝑛+1)

𝜔
(𝜑 (𝑧))

+ 𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2

𝑓
(𝑛+2)

𝜔
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔) 𝑓
(𝑛)

𝜔
(𝜑 (𝜔))

+ (2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)) 𝑓
(𝑛+1)

𝜔
(𝜑 (𝜔))

+ 𝑢 (𝜔) (𝜑
󸀠

(𝜔))
2

𝑓
(𝑛+2)

𝜔
(𝜑 (𝜔))

󵄨󵄨󵄨󵄨󵄨󵄨

= 2 ⋅ 𝑛!

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(33)

By (33), we obtain that

sup
1/2<|𝜑(𝜔)|<1

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 2
𝑛+1

⋅ 𝑛! sup
1/2<|𝜑(𝜔)|<1

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 2
𝑛+1

⋅ 𝑛!sup
𝜔∈D

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 𝐶2
𝑛

< ∞.

(34)

And from (23), we have

sup
|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ sup
|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛

log 2

≤ (
4

3
)

𝑛
1

log 2
sup

|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

≤ (
4

3
)

𝑛
𝐾
1

log 2
< ∞.

(35)

Thus combining (35) with (34) we get the condition (17).
For a fixed 𝜔 ∈ D, set

𝑔
𝜔
(𝑧) = (𝑛 + 1) (𝑛 + 3)

1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

(1 − 𝑧𝜑 (𝜔)) log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− (2𝑛 + 5)

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝑧𝜑 (𝜔))
2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ 2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(1 − 𝑧𝜑 (𝜔))
3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(36)

It is easy to see that

𝑔
(𝑛)

𝜔
(𝑧)

= (𝑛 + 3) ⋅ (𝑛 + 1)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− (2𝑛 + 5) ⋅ (𝑛 + 1)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

;

𝑔
(𝑛+1)

𝜔
(𝑧)

=
(𝑛 + 1) ⋅ (𝑛 + 3)!

(𝑛 + 2)

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑(𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− (2𝑛 + 5) ⋅ (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑(𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))
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+ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑(𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+4

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

;

𝑔
(𝑛+2)

𝜔
(𝑧)

= (𝑛 + 1) ⋅ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− (2𝑛 + 5) ⋅ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+4

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ (𝑛 + 4)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+5

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(37)

Using Lemma 2, we easily get that 𝑔
𝜔

∈ Blog,0 and
sup
𝜔∈D‖𝑔𝜔‖Blog

≤ 𝐶 with a direct calculation. From (37), we
have 𝑔

(𝑛)

𝜔
(𝜑(𝜔)) = 𝑔

(𝑛+2)

𝜔
(𝜑(𝜔)) = 0,

𝑔
(𝑛+1)

𝜔
(𝜑 (𝜔))

= − (𝑛 + 1)!

(𝜑 (𝜔))
𝑛+1

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(38)

Hence

𝐶 ≥
󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑔
𝜔

󵄩󵄩󵄩󵄩󵄩Z𝜇

≥ sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑔
𝜔
)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) 𝑔
(𝑛)

𝜔
(𝜑 (𝑧))

+ (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) 𝑔
(𝑛+1)

𝜔
(𝜑 (𝑧))

+ 𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2

𝑔
(𝑛+2)

𝜔
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔) 𝑔
(𝑛)

𝜔
(𝜑 (𝜔))

+ (2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)) 𝑔
(𝑛+1)

𝜔
(𝜑 (𝜔))

+ 𝑢 (𝜔) (𝜑
󸀠

(𝜔))
2

𝑔
(𝑛+2)

𝜔
(𝜑 (𝜔))

󵄨󵄨󵄨󵄨󵄨󵄨

= (𝑛 + 1)!

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛+1

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(39)

From (39), we obtain that

sup
1/2<|𝜑(𝜔)|<1

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 2
𝑛+1 sup
1/2<|𝜑(𝜔)|<1

(𝑛 + 1)!

×

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑(𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛+1

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 2
𝑛+1

(𝑛 + 1)!

× sup
𝜔∈D

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑(𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛+1

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 𝐶2
𝑛+1

< ∞.

(40)

By (25), we have

sup
|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ sup
|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log 2

≤ (
4

3
)

𝑛+1
1

log 2
sup

|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔)

+ 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)
󵄨󵄨󵄨󵄨󵄨

≤ (
4

3
)

𝑛+1
𝐾
2

log 2
< ∞.

(41)

Thus combining (40) with (41) we get the condition (18).
Next, we prove (19). To see this, for a fixed 𝜔 ∈ D, put

ℎ
𝜔
(𝑧) = (𝑛 + 1) (𝑛 + 2)

1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

(1 − 𝑧𝜑(𝜔)) log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− 2 (𝑛 + 2)

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝑧𝜑 (𝜔))
2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ 2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(1 − 𝑧𝜑 (𝜔))
3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(42)
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It is easy to see that

ℎ
(𝑛)

𝜔
(𝑧) = (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− 2 ⋅ (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑(𝜔))
𝑛

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

;

ℎ
(𝑛+1)

𝜔
(𝑧) = (𝑛 + 1)

⋅ (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑(𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− 2 (𝑛 + 2)

⋅ (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑(𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑(𝜔))
𝑛+1

(1 − 𝑧𝜑 (𝜔))
𝑛+4

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

;

ℎ
(𝑛+2)

𝜔
(𝑧) = (𝑛 + 1) (𝑛 + 2)

⋅ (𝑛 + 2)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

) (𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

− 2 (𝑛 + 2)

⋅ (𝑛 + 3)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
2

(𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+4

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

+ (𝑛 + 4)!

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
3

(𝜑(𝜔))
𝑛+2

(1 − 𝑧𝜑 (𝜔))
𝑛+5

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(43)

From Lemma 2 we obtain that ℎ
𝜔

∈ Blog,0 and
sup
𝜔∈D‖ℎ𝜔‖Blog

≤ 𝐶 with a direct calculation. From
(43), we have ℎ

(𝑛)

𝜔
(𝜑(𝜔)) = ℎ

(𝑛+1)

𝜔
(𝜑(𝜔)) = 0,

ℎ
(𝑛+2)

𝜔
(𝜑 (𝜔))

= 2 ⋅ (𝑛 + 2)!

(𝜑(𝜔))
𝑛+2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(44)

Hence
𝐶 ≥

󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
ℎ
𝜔

󵄩󵄩󵄩󵄩󵄩Z𝜇

≥ sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
ℎ
𝜔
)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

= sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) ℎ
(𝑛)

𝜔
(𝜑 (𝑧))

+ (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) ℎ
(𝑛+1)

𝜔
(𝜑 (𝑧))

+ 𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2

ℎ
(𝑛+2)

𝜔
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝜔) ℎ
(𝑛)

𝜔
(𝜑 (𝜔))

+ (2𝑢
󸀠

(𝜔) 𝜑
󸀠

(𝜔) + 𝑢 (𝜔) 𝜑
󸀠󸀠

(𝜔)) ℎ
(𝑛+1)

𝜔
(𝜑 (𝜔))

+ 𝑢 (𝜔) (𝜑
󸀠

(𝜔))
2

ℎ
(𝑛+2)

𝜔
(𝜑 (𝜔))

󵄨󵄨󵄨󵄨󵄨󵄨

= 2 ⋅ (𝑛 + 2)!

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝜔) (𝜑

󸀠

(𝜔))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛+2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

.

(45)
By (45), we obtain that

sup
1/2<|𝜑(𝜔)|<1

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝜔) (𝜑

󸀠

(𝜔))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 2
𝑛+2 sup
1/2<|𝜑(𝜔)|<1

2

⋅ (𝑛 + 2)!

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝜔) (𝜑

󸀠

(𝜔))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑(𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛+2

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 2
𝑛+2sup
𝜔∈D

2 ⋅ (𝑛 + 2)!

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝜔) (𝜑

󸀠

(𝜔))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑(𝜔)

󵄨󵄨󵄨󵄨󵄨

𝑛+2

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ 𝐶2
𝑛+2

< ∞.

(46)
By (27), we have

sup
|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝜔) (𝜑

󸀠

(𝜔))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝜔)

󵄨󵄨󵄨󵄨))

≤ sup
|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝜔) (𝜑

󸀠

(𝜔))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑(𝜔)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log 2

≤ (
4

3
)

𝑛+2
1

log 2
sup

|𝜑(𝜔)|≤1/2

𝜇 (𝜔)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝜔) (𝜑

󸀠

(𝜔))
2󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
4

3
)

𝑛+2
𝐾
3

log 2
< ∞.

(47)
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Thus combining (47) with (46) we get the condition (19),
finishing the proof of the theorem.

Theorem 6. Let 𝑢 ∈ 𝐻(D), and let n be a nonnegative integer,
𝜑 a holomorphic self-map of D, and 𝜇 a weight. Then the
following statements are equivalent:

(1) D𝑛
𝜑,𝑢

: Blog → Z
𝜇
is compact;

(2) D𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇
is compact;

(3) D𝑛
𝜑,𝑢

: Blog → Z
𝜇
is bounded and

lim
|𝜑(𝑧)|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

= 0, (48)

lim
|𝜑(𝑧)|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

= 0, (49)

lim
|𝜑(𝑧)|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

= 0. (50)

Proof. (3) ⇒ (1). Assume that D𝑛
𝜑,𝑢

: Blog → Z
𝜇
is

bounded and that conditions (48), (49), and (50) hold. For
any bounded sequence {𝑓

𝑘
} inBlog which converges to zero

uniformly on compact subsets ofD. To establish the assertion,
it suffices, in view of Lemma 3, to show that

󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑓
𝑘

󵄩󵄩󵄩󵄩󵄩Z𝜇
󳨀→ 0, as 𝑘 󳨀→ ∞. (51)

We assume that ‖𝑓
𝑘
‖Blog

≤ 1. From (48), (49), and (50) we
have that, for any 𝜀 > 0, there exists 𝜌 ∈ (0, 1); when 𝜌 <

|𝜑(𝑧)| < 1, we have

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 𝜀,

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 𝜀,

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 𝜀.

(52)

From the boundedness ofD𝑛
𝜑,𝑢

: Blog → Z
𝜇
byTheorem 5,

we see that (23), (25), and (27) hold. Since𝑓
𝑘

→ 0 uniformly
on compact subsets of D, Cauchy’s estimate gives that 𝑓

(𝑛)

𝑘
,

𝑓
(𝑛+1)

𝑘
, and𝑓

(𝑛+2)

𝑘
converge to 0 uniformly on compact subsets

of D; there exists a 𝐾
0
∈ N such that 𝑘 > 𝐾

0
implies that

󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
) (0)

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
)
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|≤𝜌

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ |𝑢 (0)|
󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑘
(𝜑 (0))

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑘
(𝜑 (0))

󵄨󵄨󵄨󵄨󵄨

+ |𝑢 (0)|
󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

𝑘
(𝜑 (0))

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|≤𝜌

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑘
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|≤𝜌

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

𝑘
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|≤𝜌

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+2)

𝑘
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

≤ |𝑢 (0)|
󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑘
(𝜑 (0))

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑘
(𝜑 (0))

󵄨󵄨󵄨󵄨󵄨

+ |𝑢 (0)|
󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

𝑘
(𝜑 (0))

󵄨󵄨󵄨󵄨󵄨

+ 𝐾
1
sup
|𝜑(𝑧)|≤𝜌

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

𝑘
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨
+ 𝐾
2
sup
|𝜑(𝑧)|≤𝜌

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

𝑘
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨

+ 𝐾
3
sup
|𝜑(𝑧)|≤𝜌

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+2)

𝑘
(𝜑 (𝑧))

󵄨󵄨󵄨󵄨󵄨
< 𝐶𝜀.

(53)

From (52) and (53) and Lemma 1 we have

󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑓
𝑘

󵄩󵄩󵄩󵄩󵄩Z𝜇

=
󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
) (0)

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
)
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨󵄨
+ sup
𝑧∈D

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
) (0)

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
)
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
|𝜑(𝑧)|≤𝜌

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
)

+ sup
𝜌<|𝜑(𝑧)|<1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓
𝑘
)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

< 𝐶𝜀 + sup
𝜌<|𝜑(𝑧)|<1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

+ sup
𝜌<|𝜑(𝑧)|<1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog
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+ sup
𝜌<|𝜑(𝑧)|<1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

< 4𝐶𝜀,

(54)

when𝐾 > 𝐾
0
. It follows that the operatorD𝑛

𝜑,𝑢
: Blog → Z

𝜇

is compact.
(1) ⇒ (2). It is obvious.
(2) ⇒ (3). Assume thatD𝑛

𝜑,𝑢
: Blog,0 → Z

𝜇
is compact.

Then it is clear that D𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇
is bounded. By

Theorem 5 we get that D𝑛
𝜑,𝑢

: Blog → Z
𝜇
is bounded. Let

{𝑧
𝑘
} be a sequence in D such that |𝜑(𝑧

𝑘
)| → 1 as 𝑘 → ∞.

We can use the test functions

𝑓
𝑘
(𝑧) = 𝑓

𝑧𝑘
(𝑧)

= (𝑛 + 2) (𝑛 + 3)
1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

(1 − 𝑧𝜑 (𝑧
𝑘
)) log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

− 2 (𝑛 + 3)

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝑧𝜑 (𝑧
𝑘
))

2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

+ 2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
3

(1 − 𝑧𝜑 (𝑧
𝑘
))

3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

.

(55)

Note that

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑧)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑛 + 2) (𝑛 + 3) (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)

(1 − 𝑧𝜑 (𝑧
𝑘
)) log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 (𝑛 + 3) (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝑧𝜑 (𝑧
𝑘
))

2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
3

(1 − 𝑧𝜑 (𝑧
𝑘
))

3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
(𝑛 + 2) (𝑛 + 3) (1 +

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨) (1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨)

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨) log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

+
2 (𝑛 + 3) (1 +

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨)
2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨)
2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨)
2 log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

+
2(1 +

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨)
3

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨)
3

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨)
3 log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

≤
2 (𝑛 + 2) (𝑛 + 3)

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

+
8 (𝑛 + 3)

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

+
16

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

=
2𝑛
2

+ 18𝑛 + 52

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

󳨀→ 0, (𝑘 󳨀→ ∞) ,

(56)

for |𝑧| < 1. We see that 𝑓
𝑘
converges to 0 uniformly on

D; hence, 𝑓
𝑘
converges to 0 uniformly on compact subsets

of D and from (30) and (33) we have sup
𝑘∈N‖𝑓𝑘‖Blog

≤

𝐶, 𝑓
𝑘

∈ Blog,0. Then 𝑓
𝑘
is a bounded sequence in Blog,0

which converges to 0 uniformly on compact subsets of D. By
Lemma 3, we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑓
𝑘

󵄩󵄩󵄩󵄩󵄩Z𝜇
= 0. (57)

Note that
𝑓
(𝑛+1)

𝑘
(𝜑 (𝑧
𝑘
)) = 𝑓

(𝑛+2)

𝑘
(𝜑 (𝑧
𝑘
)) = 0,

𝑓
(𝑛)

𝑘
(𝜑 (𝑧
𝑘
)) = 2 ⋅ 𝑛!

(𝜑(𝑧
𝑘
))
𝑛

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

.

(58)

From (33) and using the compactness ofD𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇

we obtain

2 ⋅ 𝑛!

𝜇 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

𝑛

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

≤
󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑓
𝑘

󵄩󵄩󵄩󵄩󵄩Z𝜇
󳨀→ 0, as 𝑘 󳨀→ ∞.

(59)

From (59) and |𝜑(𝑧
𝑘
)| → 1, it follows that

lim
𝑘→∞

𝜇 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

= 0 (60)

and consequently (48) holds.
Next, let

𝑔
𝑘
(𝑧) = 𝑔

𝑧𝑘
(𝑧)

= (𝑛 + 1) (𝑛 + 3)
1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

(1 − 𝑧𝜑 (𝑧
𝑘
)) log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

− (2𝑛 + 5)

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝑧𝜑 (𝑧
𝑘
))

2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

+ 2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
3

(1 − 𝑧𝜑 (𝑧
𝑘
))

3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

.

(61)

By a direct calculation, we obtain that 𝑔
𝑘
converges to 0

uniformly on compact subsets of D, 𝑔
𝑘

∈ Blog,0, and
sup
𝑘∈N‖𝑔𝑘‖Blog

≤ 𝐶. By Lemma 3, we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑔
𝑘

󵄩󵄩󵄩󵄩󵄩Z𝜇
= 0. (62)
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Note that
𝑔
(𝑛+1)

𝑘
(𝜑 (𝑧
𝑘
))

= − (𝑛 + 1)!

(𝜑 (𝑧
𝑘
))

𝑛+1

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

,

𝑔
(𝑛)

𝑘
(𝜑 (𝑧
𝑘
)) = 𝑔

(𝑛+2)

𝜔
(𝜑 (𝑧
𝑘
)) = 0.

(63)

From (39) and using the compactness ofD𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇

we obtain

(𝑛 + 1)!

𝜇 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧
𝑘
) 𝜑
󸀠

(𝑧
𝑘
) + 𝑢 (𝑧

𝑘
) 𝜑
󸀠󸀠

(𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨󵄨

𝑛+1

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

≤
󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑔
𝑘

󵄩󵄩󵄩󵄩󵄩Z𝜇
󳨀→ 0, as 𝑘 󳨀→ ∞.

(64)
From (64) and |𝜑(𝑧

𝑘
)| → 1, we have

lim
𝑘→∞

𝜇 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧
𝑘
) 𝜑
󸀠

(𝑧
𝑘
) + 𝑢 (𝑧

𝑘
) 𝜑
󸀠󸀠

(𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

= 0; (65)

it implies that (49) holds.
In order to prove (50), choose

ℎ
𝑘
(𝑧) = ℎ

𝑧𝑘
(𝑧)

= (𝑛 + 1) (𝑛 + 2)
1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

(1 − 𝑧𝜑 (𝑧
𝑘
)) log (2/ (1 −

󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

− 2 (𝑛 + 2)

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
2

(1 − 𝑧𝜑 (𝑧
𝑘
))

2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

+ 2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
3

(1 − 𝑧𝜑 (𝑧
𝑘
))

3

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

.

(66)
By a direct calculation, we may easily prove that ℎ

𝑘
converges

to 0 uniformly on compact subsets of D, ℎ
𝑘

∈ Blog,0, and
sup
𝑘∈N‖ℎ𝑘‖Blog

≤ 𝐶. By Lemma 3, we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
ℎ
𝑘

󵄩󵄩󵄩󵄩󵄩Z𝜇
= 0. (67)

Note that
ℎ
(𝑛+2)

𝑘
(𝜑 (𝑧
𝑘
))

= 2 ⋅ (𝑛 + 2)!

(𝜑 (𝑧
𝑘
))

𝑛+2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

,

ℎ
(𝑛)

𝑘
(𝜑 (𝑧
𝑘
)) = ℎ

(𝑛+1)

𝑘
(𝜑 (𝑧
𝑘
)) = 0.

(68)

From (45) and using the compactness ofD𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇

we obtain

2 ⋅ (𝑛 + 2)!

𝜇 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧
𝑘
) (𝜑
󸀠

(𝑧
𝑘
))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑(𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨

𝑛+2

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

≤
󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
ℎ
𝑘

󵄩󵄩󵄩󵄩󵄩Z𝜇
󳨀→ 0, as 𝑘 󳨀→ ∞.

(69)

From (69) and |𝜑(𝑧
𝑘
)| → 1, it follows that

lim
𝑘→∞

𝜇 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧
𝑘
) (𝜑
󸀠

(𝑧
𝑘
))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧
𝑘
)
󵄨󵄨󵄨󵄨))

= 0, (70)

and consequently (50) holds, finishing the proof of the
theorem.

Theorem 7. Let 𝑢 ∈ 𝐻(D), and let n be a nonnegative
integer, 𝜑 a holomorphic self-map of D, and 𝜇 a weight. Then
D𝑛
𝜑,𝑢

: Blog → Z
𝜇,0

is a bounded operator provided that the
following conditions are satisfied:

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

= 0, (71)

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

= 0, (72)

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

= 0. (73)

Proof. Suppose that (71), (72), and (73) hold. It is clear that
(17), (18), and (19) hold. By Theorem 5 we have that D𝑛

𝜑,𝑢
:

Blog → Z
𝜇
is bounded. In order to prove D𝑛

𝜑,𝑢
: Blog →

Z
𝜇,0

is bounded, it is enough to show that, for any 𝑓 ∈ Blog,
D𝑛
𝜑,𝑢

𝑓 ∈ Z
𝜇,0
. Using (71), (72), and (73) we have that, for any

𝜀 > 0, there is a constant 0 < 𝜂 < 1, such that 𝜂 < |𝑧| < 1

implies

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 𝜀,

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 𝜀,

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 𝜀.

(74)
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Then, for any 𝑓 ∈ Blog, from Lemma 1 we obtain that

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

= 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) 𝑓
(𝑛)

(𝜑 (𝑧))

+ (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) 𝑓
(𝑛+1)

(𝜑 (𝑧))

+ 𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2

𝑓
(𝑛+2)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

+ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+1)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

+ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑛+2)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

+ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+1

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

+ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛+2

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 3𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Blog
𝜀,

(75)

when 𝜂 < |𝑧| < 1. Hence D𝑛
𝜑,𝑢

𝑓 ∈ Z
𝜇,0

for all 𝑓 ∈ Blog,
completing the proof of the theorem.

Theorem 8. Let 𝑢 ∈ 𝐻(D), and let n be a nonnegative integer,
𝜑 a holomorphic self-map of D, and 𝜇 a weight. If D𝑛

𝜑,𝑢
:

Blog → Z
𝜇,0

is a bounded operator, then (17), (18), and (19)
hold and the following conditions are satisfied:

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0, (76)

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0, (77)

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (78)

Proof. Assume that D𝑛
𝜑,𝑢

: Blog → Z
𝜇,0

is bounded; it is
clear that D𝑛

𝜑,𝑢
: Blog → Z

𝜇
is bounded. By Theorem 5 we

have that (17), (18), and (19) hold. On the other hand, for all
𝑓 ∈ Blog,D

𝑛

𝜑,𝑢
𝑓 ∈ Z

𝜇,0
. Take 𝑓(𝑧) = 𝑧

𝑛

/𝑛! ∈ Blog; we have
that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0; (79)

then (76) holds. Let 𝑓(𝑧) = 𝑧
𝑛+1

/(𝑛+1)! ∈ Blog; we have that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) 𝜑 (𝑧) + 2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0.

(80)

By (80), (76), and the boundedness of the function 𝜑(𝑧), we
get

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0. (81)

Hence, (77) holds. In the same way, let 𝑓(𝑧) = 𝑧
𝑛+2

/(𝑛 + 2)! ∈

Blog; we have that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) (𝜑 (𝑧))
2

+ 2 (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) 𝜑 (𝑧)

+2𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(82)

By (76), (77), (82), and the boundedness of the function 𝜑(𝑧),
we have that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (83)

That is, (78) holds. The proof is completed.

Theorem 9. Let 𝑢 ∈ 𝐻(D), and let n be a nonnegative integer,
𝜑 a holomorphic self-map of D, and 𝜇 a weight. Then D𝑛

𝜑,𝑢
:

Blog,0 → Z
𝜇,0

is a bounded operator if and only if D𝑛
𝜑,𝑢

:

Blog,0 → Z
𝜇
is a bounded operator and (76), (77), and (78)

hold.

Proof. Assume that D𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇,0

is a bounded
operator; it is clear that D𝑛

𝜑,𝑢
: Blog,0 → Z

𝜇
is a bounded

operator. On the other hand, for all𝑓 ∈ Blog,0,D
𝑛

𝜑,𝑢
𝑓 ∈ Z

𝜇,0
.

Taking 𝑓(𝑧) = 𝑧
𝑛

/𝑛! ∈ Blog,0, we have that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0; (84)

then (76) holds. Let 𝑓(𝑧) = 𝑧
𝑛+1

/(𝑛 + 1)! ∈ Blog,0; we have
that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) 𝜑 (𝑧) + 2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0.

(85)

By (85), (76), and the boundedness of the function 𝜑(𝑧), we
get

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
= 0. (86)

Hence, (77) holds. In the sameway, take𝑓(𝑧) = 𝑧
𝑛+2

/(𝑛+2)! ∈

Blog,0; we have that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) (𝜑 (𝑧))
2

+ 2 (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) 𝜑 (𝑧)

+ 2𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(87)
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By (76), (77), (87), and the boundedness of the function 𝜑(𝑧),
we have that

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (88)

That is, (78) holds.
Conversely, suppose that D𝑛

𝜑,𝑢
: Blog,0 → Z

𝜇
is a

bounded operator and (76), (77), and (78) hold. For each
polynomial 𝑝(𝑧) we get that

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑝)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨

= 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧) 𝑝
(𝑛)

(𝜑 (𝑧))

+ (2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)) 𝑝
(𝑛+1)

(𝜑 (𝑧))

+ 𝑢 (𝑧) (𝜑
󸀠

(𝑧))
2

𝑝
(𝑛+2)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑝
(𝑛)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

+ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑝
(𝑛+1)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

+ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑝
(𝑛+2)

(𝜑 (𝑧))
󵄨󵄨󵄨󵄨󵄨

≤ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑝
(𝑛)

󵄩󵄩󵄩󵄩󵄩∞

+ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
2𝑢
󸀠

(𝑧) 𝜑
󸀠

(𝑧) + 𝑢 (𝑧) 𝜑
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑝
(𝑛+1)

󵄩󵄩󵄩󵄩󵄩∞

+ 𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑧) (𝜑

󸀠

(𝑧))
2󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑝
(𝑛+2)

󵄩󵄩󵄩󵄩󵄩∞
󳨀→ 0

(as |𝑧| 󳨀→ 1) .

(89)

Hence,D𝑛
𝜑,𝑢

𝑝 ∈ Z
𝜇,0
. On the other hand, since polynomials

are dense in Blog,0, thus, for each 𝑓 ∈ Blog,0, there is a
sequence of polynomials {𝑝

𝑘
}
𝑘∈N such that

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑝𝑘 − 𝑓
󵄩󵄩󵄩󵄩Blog

= 0. (90)

Since D𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇
is a bounded operator, by

Theorem 5 we have D𝑛
𝜑,𝑢

: Blog → Z
𝜇
is a bounded

operator. Since
󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢
𝑝
𝑘
− D
𝑛

𝜑,𝑢
𝑓
󵄩󵄩󵄩󵄩󵄩Z𝜇

≤
󵄩󵄩󵄩󵄩󵄩
D
𝑛

𝜑,𝑢

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑝𝑘 − 𝑓
󵄩󵄩󵄩󵄩Blog (91)

andZ
𝜇,0

is the closed subset ofZ
𝜇
, we see thatD𝑛

𝜑,𝑢
𝑓 ∈ Z

𝜇,0
;

thusD𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇,0

is a bounded operator. The proof
is completed.

Theorem 10. Let 𝑢 ∈ 𝐻(D), and let n be a nonnegative integer,
𝜑 a holomorphic self-map of D, and 𝜇 a weight. Then the
following statements are equivalent:

(1) D𝑛
𝜑,𝑢

: Blog → Z
𝜇,0

is compact;

(2) D𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇,0

is compact;
(3) (71), (72), and (73) hold.

Proof. (3) ⇒ (1). Suppose that (71) (72), and (73) hold. By
Theorem 7 we know that D𝑛

𝜑,𝑢
: Blog → Z

𝜇,0
is bounded.

Taking the supremum in inequality (20) over all 𝑓 ∈ Blog
such that ‖𝑓‖Blog

≤ 1 and letting |𝑧| → 1 yields

lim
|𝑧|→1

sup
‖𝑓‖Blog

≤1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
(D
𝑛

𝜑,𝑢
𝑓)
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (92)

Hence, by Lemma 4, we see that the operatorD𝑛
𝜑,𝑢

: Blog →

Z
𝜇,0

is compact.
(1) ⇒ (2). This implication is clear.
(2) ⇒ (3). Assume that D𝑛

𝜑,𝑢
: Blog,0 → Z

𝜇,0
is

compact. Firstly, it is obvious D𝑛
𝜑,𝑢

: Blog,0 → Z
𝜇,0

is
bounded. ByTheorem 9wehave that (76), (77), and (78) hold.
On the other hand, we have that D𝑛

𝜑,𝑢
: Blog,0 → Z

𝜇
is

compact. ByTheorem 6we have that (48), (49), and (50) hold.
We prove that (76) and (48) imply (71). The proof of (72) and
(73) is similar; hence, it will be omitted. From (48), it follows
that, for every 𝜀 > 0, there exists 𝛿 ∈ (0, 1) such that

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 𝜀, (93)

when 𝛿 < |𝜑(𝑧)| < 1. Using (76) we see that there exists 𝜏 ∈

(0, 1) such that

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀 inf
𝑡∈[0,𝛿]

(1 − 𝑡
2

)
𝑛

log 2, (94)

when 𝜏 < |𝑧| < 1. Therefore when 𝜏 < |𝑧| < 1 and 𝛿 <

|𝜑(𝑧)| < 1, by (93), we have

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

< 𝜀. (95)

On the other hand, when 𝜏 < |𝑧| < 1 and |𝜑(𝑧)| ≤ 𝛿, by (94),
we obtain

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

≤

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

inf
𝑡∈[0,𝛿]

(1 − 𝑡2)
𝑛 log 2

< 𝜀.

(96)

From (95) and (96) we have

lim
|𝑧|→1

𝜇 (𝑧)
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

(1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨

2

)
𝑛

log (2/ (1 −
󵄨󵄨󵄨󵄨𝜑 (𝑧)

󵄨󵄨󵄨󵄨))

= 0; (97)

we obtain that (71) holds, as desired. The proof is completed.
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