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We consider a fractional bridge defined as 𝑑𝑋
𝑡
= −𝛼(𝑋

𝑡
/(𝑇 − 𝑡))𝑑𝑡 + 𝑑𝐵

𝐻

𝑡
, 0 ≤ 𝑡 < 𝑇, where 𝐵𝐻 is a fractional Brownian motion

of Hurst parameter 𝐻 > 1/2 and parameter 𝛼 > 0 is unknown. We are interested in the problem of estimating the unknown
parameter 𝛼 > 0. Assume that the process is observed at discrete time 𝑡

𝑖
= 𝑖Δ
𝑛
, 𝑖 = 0, . . . , 𝑛, and 𝑇

𝑛
= 𝑛Δ

𝑛
denotes the length of the

“observation window.” We construct a least squares estimator 𝛼̂
𝑛
of 𝛼 which is consistent; namely, 𝛼̂

𝑛
converges to 𝛼 in probability

as 𝑛 → ∞.

1. Introduction

Self-similar stochastic processes with long range dependence
are of practical interest in various applications, including
econometrics, internet traffic, and hydrology. These are pro-
cesses 𝑋 = {𝑋

𝑡
: 𝑡 ≥ 0} whose dependence on the time

parameter 𝑡 is self-similar, in the sense that there exists a (self-
similarity) parameter 𝐻 ∈ (0, 1) such that, for any constant
𝑐 ≥ 0, {𝑋

𝑐𝑡
: 𝑡 ≥ 0} and {𝑐𝐻𝑋

𝑡
: 𝑡 ≥ 0} have the same

distribution. These processes are often endowed with other
distinctive properties.

The fractional Brownian motion (fBm) is the usual
candidate to model phenomena in which the self-similarity
property can be observed from the empirical data. The fBm
is a suitable generalization of the standard Brownian motion,
which exhibits long-range dependence and self-similarity
and has stationary increments. Some surveys and complete
literatures could be found in Biagini et al. [1], Hu [2],Mishura
[3], and Nualart [4].

Recently, Es-Sebaiy andNourdin [5] study the asymptotic
properties of a least squares estimator for the parameter 𝛼 of
a fractional bridge defined as

𝑋
0
= 0, 𝑑𝑋

𝑡
= −𝛼

𝑋
𝑡

𝑇 − 𝑡
𝑑𝑡 + 𝑑𝐵

𝐻

𝑡
, 0 ≤ 𝑡 < 𝑇, (1)

where 𝐵𝐻 is a fBm with Hurst parameter 𝐻 > 1/2 and
the process 𝑋 was observed continuously. In particular,

when 𝐻 = 1/2, Barczy and Pap [6, 7] study the various
problems related to the 𝛼-Wiener bridge. The parametric
estimation problems for fractional diffusion processes based
on continuous-time observations have been studied, for
example, in Tudor and Viens [8], Hu and Nualart [9], and
Belfadli et al. [10].

In applications usually the process cannot be observed
continuously. Only discrete-time observations are available.
There exists a rich literature on the parameter estimation
problem for diffusion processes driven by fBm based on
discrete observations (see, e.g., Hu and Song [11], Es-Sebaiy
[12]).

Motivated by all these results, in this paper, we will
consider the 𝛼 fractional bridge (1). Assume that the process
𝑋 is observed equidistantly in time with the step size 𝑡

𝑖
=

𝑖Δ
𝑛
, 𝑖 = 0, . . . , 𝑛, and 𝑇

𝑛
= 𝑛Δ

𝑛
denotes the length of the

“observation window.” We also assume that 𝑇
𝑛
+ Δ
𝑛
= 𝑇 and

Δ
𝑛
→ 0 when 𝑛 → ∞. Our goal is to study the asymptotic

behavior of the least squares estimator (LSE for short) 𝛼̂
𝑛
of

𝛼 based on the sampling data 𝑋
𝑡𝑖
, 𝑖 = 0, . . . , 𝑛. Our technics

used in this work are inspired from Es-Sebaiy [12].
The least squares estimator 𝛼̂

𝑛
aims to minimize

𝛼 󳨃󳨀→

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋̇
𝑡
+ 𝛼

𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡. (2)
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This is a quadratic function of 𝛼. The minimum is
achieved when

𝛼̂
𝑛
= −

∑
𝑛

𝑖=1
∫
𝑡𝑖

𝑡𝑖−1

(𝑋
𝑡𝑖−1
/ (𝑇 − 𝑡

𝑖−1
)) 𝛿
𝐻
𝑋
𝑡

Δ
𝑛
∑
𝑛

𝑖=1
(𝑋2
𝑡𝑖−1
/(𝑇 − 𝑡

𝑖−1
)
2

)

. (3)

By (1), we can get the following result

𝛼̂
𝑛
− 𝛼 = −

∑
𝑛

𝑖=1
𝑀
𝑖

Δ
𝑛
∑
𝑛

𝑖=1
(𝑋2
𝑡𝑖−1
/(𝑇 − 𝑡

𝑖−1
)
2

)

, (4)

where𝑀
𝑖
= 𝛼(𝑋

𝑡𝑖−1
/(𝑇−𝑡

𝑖−1
) ∫
𝑡𝑖

𝑡𝑖−1

((𝑋
𝑡𝑖−1
/(𝑇−𝑡

𝑖−1
))−(𝑋

𝑠
/(𝑇−

𝑠)))𝑑𝑠 + ∫
𝑡𝑖

𝑡𝑖−1

(𝑋
𝑡𝑖−1
/(𝑇 − 𝑡

𝑖−1
)𝛿
𝐻
𝐵
𝐻

𝑡
, 𝑖 = 1, . . . , 𝑛.

The paper is organized as follows. In Section 2 some
known results that we will use are recalled. The consistency
of estimator is proved in Section 3.

2. Preliminaries

Recall that fBm 𝐵𝐻 with index 𝐻 ∈ (0, 1) is a mean zero
Gaussian process 𝐵𝐻 = {𝐵𝐻

𝑡
, 𝑡 ≥ 0} with 𝐵𝐻

0
= 0 and the

covariance

𝑅
𝐻
(𝑡, 𝑠) := 𝐸 (𝐵

𝑡
𝐵
𝑠
) =
1

2
(𝑡
2𝐻
+ 𝑠
2𝐻
− |𝑡 − 𝑠|

2𝐻
) (5)

for all 𝑠, 𝑡 ≥ 0. For 𝐻 = 1/2, 𝐵𝐻 coincides with the
standard Brownianmotion 𝐵. 𝐵𝐻 is neither a semimartingale
nor a Markov process unless 𝐻 = 1/2, so many of the
powerful techniques from stochastic analysis are not available
when dealing with 𝐵𝐻. It is possible to construct a stochastic
calculus of variations with respect to the Gaussian process
𝐵
𝐻, which will be related to the Malliavin calculus. Some

surveys and complete literatures could be found in Alòs et
al. [13], Nualart [4] and the reference. We recall here the
basic definitions and results of this calculus. The crucial
ingredient is the canonical Hilbert spaceH (it is also said to
be reproducing kernel Hilbert space) associated with the fBm
which is defined as the closure of the linear spaceE generated
by the indicator functions {1

[0,𝑡]
, 𝑡 ∈ [0, 𝑇]}with respect to the

scalar product

⟨1
[0,𝑡]
, 1
[0,𝑠]
⟩
H
= 𝑅
𝐻
(𝑡, 𝑠) =

1

2
(𝑡
2𝐻
+ 𝑠
2𝐻
− |𝑡 − 𝑠|

2𝐻
) . (6)

The mapping 1
[0,𝑠]

→ 𝐵
𝐻

𝑠
can be extended to a linear

isometry betweenH and the Gaussian space associated with
𝐵
𝐻. We will denote the isometry by 𝜑 → 𝐵

𝐻
(𝜑). For 1/2 <

𝐻 < 1 we denote by S the set of smooth functionals of the
form

𝐹 = 𝑓 (𝐵
𝐻
(𝜑
1
) , . . . , 𝐵

𝐻
(𝜑
𝑛
)) , (7)

where 𝑓 ∈ 𝐶∞
𝑏
(R𝑛) and 𝜑

𝑖
∈ H. The Malliavin derivative of

a functional 𝐹 as above is given by

𝐷
𝐻
𝐹 =

𝑛

∑

𝑖=1

𝜕𝑓

𝜕𝑥
𝑖

(𝐵
𝐻
(𝜑
1
) , . . . , 𝐵

𝐻
(𝜑
𝑛
)) 𝜑
𝑖
, (8)

and this operator can be extended to the closureD𝑚,2 (𝑚 ≥ 1)
of S with respect to the norm

‖𝐹‖
2

𝑚,2
≡ 𝐸|𝐹|

2
+ 𝐸
󵄩󵄩󵄩󵄩󵄩
𝐷
𝐻
𝐹
󵄩󵄩󵄩󵄩󵄩

2

H
+ ⋅ ⋅ ⋅ + 𝐸

󵄩󵄩󵄩󵄩󵄩
𝐷
𝐻,𝑚
𝐹
󵄩󵄩󵄩󵄩󵄩

2

H⊗̂𝑚
, (9)

whereH⊗̂𝑚 denotes the𝑚 fold symmetric tensor product and
the 𝑚th derivative 𝐷𝐻,𝑚 is defined by iteration. The diver-
gence integral 𝛿𝐻 is the adjoint operator of𝐷𝐻. Concretely, a
random variable 𝑢 ∈ 𝐿2(Ω,H) belongs to the domain of the
divergence operator 𝛿𝐻 (in symbol Dom(𝛿𝐻)) if

𝐸
󵄨󵄨󵄨󵄨󵄨
⟨𝐷
𝐻
𝐹, 𝑢⟩

H

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐‖𝐹‖

𝐿
2 (10)

for every 𝐹 ∈ S. In this case 𝛿𝐻(𝑢) is given by the duality
relationship

𝐸 (𝐹𝛿
𝐻
(𝑢)) = 𝐸⟨𝐷

𝐻
𝐹, 𝑢⟩

H
(11)

for any 𝐹 ∈ D1,2, and we have the following integration by
parts:

𝐹𝛿
𝐻
(𝑢) = 𝛿

𝐻
(𝐹𝑢) + ⟨𝐷

𝐻
𝐹, 𝑢⟩

H
(12)

for any 𝑢 ∈ Dom(𝛿𝐻), 𝐹 ∈ D1,2 such that 𝐹𝑢 ∈ 𝐿2(Ω,H). It
follows that

𝐸 [𝛿
𝐻
(𝑢)
2
] = 𝐸‖𝑢‖

2

H + 𝐸⟨𝐷
𝐻
𝑢, (𝐷
𝐻
𝑢)
∗

⟩
H⊗H
, (13)

where (𝐷𝐻𝑢)∗ is the adjoint of𝐷𝐻𝑢 in the Hilbert spaceH⊗
H, and

‖𝑢‖
2

H = ∬

𝑇

0

𝑢
𝑠
𝑢
𝑟
𝜙
𝐻
(𝑠, 𝑟) 𝑑𝑠 𝑑𝑟, (14)

where

𝜙
𝐻
(𝑠, 𝑟) =

𝜕
2
𝑅
𝐻

𝜕𝑠𝜕𝑟
(𝑠, 𝑟) = 𝐻 (2𝐻 − 1) |𝑠 − 𝑟|

2𝐻−2
≥ 0, (15)

and, for 𝜑 : [0, 𝑇]2 → R, we have

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

H⊗H

= ∫
[0,𝑇]
4

𝜑 (𝑡, 𝑠) 𝜑 (𝑡
󸀠
, 𝑠
󸀠
) 𝜙
𝐻
(𝑡, 𝑡
󸀠
) 𝜙
𝐻
(𝑠, 𝑠
󸀠
) 𝑑𝑡 𝑑𝑠 𝑑𝑡

󸀠
𝑑𝑠
󸀠
.

(16)

We denote by |H| the subspace ofH, which is defined as the
set of measurable functions 𝑓 on [0, 𝑇] with

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

|H|
:= ∬

𝑇

0

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑓 (𝑟)

󵄨󵄨󵄨󵄨 𝜙𝐻 (𝑠, 𝑟) 𝑑𝑠 𝑑𝑟 < ∞.
(17)

Note that, if 𝜑, 𝜓 ∈ |H|, then

𝐸𝐵
𝐻
(𝜑) 𝐵
𝐻
(𝜓) = ∬

𝑇

0

𝜑 (𝑠) 𝜓 (𝑟) 𝜙
𝐻
(𝑠, 𝑟) 𝑑𝑠 𝑑𝑟. (18)
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It follows actually from Pipiras and Taqqu [14] that the
space |H| ⊂ H is a Banach space for the norm ‖ ⋅ ‖

|H|.
Moreover,

𝐿
2
([0, 𝑇]) ⊂ 𝐿

1/𝐻
([0, 𝑇]) ⊂ |H| ⊂H. (19)

If 𝑢 ∈ D1,2(|H|), 𝑢 ∈ Dom(𝛿𝐻), then we have (Nualart [4])

𝐸(𝛿
𝐻
(𝑢))
2

≤ 𝐶
𝐻
(𝐸‖𝑢‖

2

|H| + 𝐸
󵄩󵄩󵄩󵄩󵄩
𝐷
𝐻
(𝑢)
󵄩󵄩󵄩󵄩󵄩

2

|H|⊗|H|
) (20)

and if 𝜑 : [0, 𝑇]2 → R, then

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

|H|⊗|H|

= ∫
[0,𝑇]
4

󵄨󵄨󵄨󵄨𝜑 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑡
󸀠
, 𝑠
󸀠
)
󵄨󵄨󵄨󵄨󵄨
𝜙
𝐻
(𝑡, 𝑡
󸀠
) 𝜙
𝐻
(𝑠, 𝑠
󸀠
) 𝑑𝑡𝑑𝑠𝑑𝑡

󸀠
𝑑𝑠
󸀠
.

(21)

As a consequence, we have

𝐸(𝛿
𝐻
(𝑢))
2

≤ 𝐶
𝐻
(𝐸‖𝑢‖

2

𝐿
1/𝐻
([0,𝑇])

+ 𝐸
󵄩󵄩󵄩󵄩󵄩
𝐷
𝐻
(𝑢)
󵄩󵄩󵄩󵄩󵄩

2

𝐿
1/𝐻([0,𝑇]

2
)
) .

(22)

For every 𝑛 ≥ 1, let H
𝑛
be the 𝑛th Wiener chaos of

𝐵
𝐻, that is, the closed linear subspace of 𝐿2(Ω) generated

by the random variables {𝐻
𝑛
(𝐵
𝐻
(ℎ)), ℎ ∈ H, ‖ℎ‖H = 1},

where 𝐻
𝑛
is the 𝑛th Hermite polynomial. The mapping

𝐼
𝑛
(ℎ
⊗𝑛
) = 𝑛!𝐻

𝑛
(𝐵
𝐻
(ℎ)) provides a linear isometry between

the symmetric tensor product H⊙𝑛 (equipped with the
modified norm ‖ ⋅ ‖H⊙𝑛 = (1/√𝑛!)‖ ⋅ ‖H⊗𝑛) andH𝑛. For every
𝑓, 𝑔 ∈H⊙𝑛 the following multiplication formula holds

𝐸 (𝐼
𝑛
(𝑓) 𝐼
𝑛
(𝑔)) = 𝑛!⟨𝑓, 𝑔⟩

H⊗𝑛
. (23)

Let 𝑓, 𝑔 : [0, 𝑇] → R be Hölder continuous functions
of orders 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1) with 𝛼 + 𝛽 > 1. Young
proved that the Riemann-Stieltjes integral (so-called Young
integral) ∫𝑇

0
𝑓
𝑠
𝑑𝑔
𝑠
exists. Moreover, if 𝛼 = 𝛽 ∈ (1/2, 1)

and 𝐹 : R2 → R is a function of class C1, the integrals
∫
⋅

0
(𝜕𝐹/𝜕𝑓)(𝑓

𝑢
, 𝑔
𝑢
)𝑑𝑓
𝑢
and ∫⋅

0
(𝜕𝐹/𝜕𝑔)(𝑓

𝑢
, 𝑔
𝑢
)𝑑𝑔
𝑢
exist in the

Young sense and the following change of variables formula
holds:

𝐹 (𝑓
𝑡
, 𝑔
𝑡
) = 𝐹 (𝑓

0
, 𝑔
0
) + ∫

𝑡

0

𝜕𝐹

𝜕𝑓
(𝑓
𝑢
, 𝑔
𝑢
) 𝑑𝑓
𝑢

+ ∫

𝑡

0

𝜕𝐹

𝜕𝑔
(𝑓
𝑢
, 𝑔
𝑢
) 𝑑𝑔
𝑢
, 𝑡 ∈ [0, 𝑇] .

(24)

As a consequence, if𝐻 ∈ (1/2, 1) and (𝑢
𝑡
, 𝑡 ∈ [0, 𝑇]) is a

process withHölder paths of order 𝛼 < (1−𝐻, 1), the integral
∫
𝑇

0
𝑢
𝑠
𝑑𝐵
𝐻

𝑠
is well defined as Young integral. Suppose that, for

any 𝑡 ∈ [0, 𝑇], 𝑢
𝑡
∈ D1,2(|H|), and

∬

𝑇

0

󵄨󵄨󵄨󵄨𝐷𝑠𝑢𝑡
󵄨󵄨󵄨󵄨 |𝑡 − 𝑠|

2𝐻−2
𝑑𝑠 𝑑𝑡 < ∞ a.s. (25)

Then, following from Alòs and Nualart [15], we have

∫

𝑡

0

𝑢
𝑠
𝑑𝐵
𝐻

𝑠
= ∫

𝑡

0

𝑢
𝑠
𝛿
𝐻
𝐵
𝐻

𝑠
+ 𝐻 (2𝐻 − 1)

×∬

𝑡

0

𝐷
𝑠
𝑢
𝑟
|𝑟 − 𝑠|

2𝐻−2
𝑑𝑟 𝑑𝑠.

(26)

In particular, when 𝜑 is a nonrandom Hölder continuous
function of order 𝛼 ∈ (1 − 𝐻, 1), we have

∫

𝑡

0

𝜑
𝑠
𝑑𝐵
𝐻

𝑠
= ∫

𝑡

0

𝜑
𝑠
𝛿
𝐻
𝐵
𝐻

𝑠
= 𝐵
𝐻
(𝜑) . (27)

In addition, for all 𝜑, 𝜓 ∈ |H|,

𝐸(∫

𝑇

0

𝜑
𝑠
𝑑𝐵
𝐻

𝑠
∫

𝑇

0

𝜓
𝑠
𝑑𝐵
𝐻

𝑠
)

= 𝐻 (2𝐻 − 1)∬

𝑇

0

𝜑
𝑢
𝜓V|𝑢 − V|

2𝐻−2
𝑑𝑢 𝑑V.

(28)

3. Asymptotic Behavior of
the Least Squares Estimator

Throughout this paper we assume𝐻 ∈ (1/2, 1). We will study
(1) driven by a fractional Brownian motion 𝐵𝐻 with Hurst
parameter𝐻 and 𝛼 > 0 being the unknown parameter to be
estimated for discretely observed𝑋. It is readily checked that
we have the following explicit expression for𝑋

𝑡
:

𝑋
𝑡
= (𝑇 − 𝑡)

𝛼
∫

𝑡

0

(𝑇 − 𝑠)
−𝛼
𝑑𝐵
𝐻

𝑠
, 0 ≤ 𝑡 < 𝑇, (29)

where the integral can be understood as Young integral. In
order to study the asymptotic behavior of the least squares
estimator, let us introduce the following processes:

𝐴
𝑡
:= ∫

𝑡

0

(𝑇 − 𝑠)
−𝛼
𝑑𝐵
𝐻

𝑠
, 0 ≤ 𝑡 < 𝑇. (30)

Hence, we have

𝑋
𝑡
= (𝑇 − 𝑡)

𝛼
𝐴
𝑡
, 0 ≤ 𝑡 < 𝑇. (31)

For simplicity, we assume that the notation 𝑎
𝑛
⊵ 𝑏
𝑛
means

that there exists positive constants 𝐶 = 𝐶
𝐻,𝛼
> 0 (depending

only on𝐻, 𝛼 and its value may differ from line to line) so that

sup
𝑛≥1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

< 𝐶 < ∞. (32)

We firstly give the following lemmas.

Lemma 1. Let 𝛼 > 0, 1/2 < 𝐻 < 1. Then

∫

𝑇𝑛

0

𝑋
𝑠

𝑇 − 𝑠
𝑑𝐵
𝐻

𝑠
= ∫

𝑇𝑛

0

𝑋
𝑠

𝑇 − 𝑠
𝛿
𝐻
𝐵
𝐻

𝑠
+ 𝛽
𝑛
, (33)

where

𝛽
𝑛
= 𝐻 (2𝐻 − 1)∫

𝑇𝑛

0

∫

𝑟

0

(𝑇 − 𝑟)
𝛼−1
(𝑇 − 𝑠)

−𝛼
(𝑟 − 𝑠)

2𝐻−2
𝑑𝑠 𝑑𝑟,

lim
𝑛→∞

𝛽
𝑛
= 𝐻𝐵 (𝛼, 2𝐻 − 1) 𝑇

2𝐻−1
.

(34)
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Proof. By (26), we have

∫

𝑇𝑛

0

𝑋
𝑠

𝑇 − 𝑠
𝑑𝐵
𝐻

𝑠
= ∫

𝑇𝑛

0

𝑋
𝑠

𝑇 − 𝑠
𝛿
𝐻
𝐵
𝐻

𝑠
+ 𝐻 (2𝐻 − 1)

×∬

𝑇𝑛

0

𝐷
𝐻

𝑠

𝑋
𝑟

𝑇 − 𝑟
|𝑠 − 𝑟|

2𝐻−2
𝑑𝑟 𝑑𝑠

= ∫

𝑇𝑛

0

𝑋
𝑠

𝑇 − 𝑠
𝛿
𝐻
𝐵
𝐻

𝑠
+ 𝐻 (2𝐻 − 1)

× ∫

𝑇𝑛

0

∫

𝑟

0

(𝑇 − 𝑟)
𝛼−1
(𝑇 − 𝑠)

−𝛼
(𝑟 − 𝑠)

2𝐻−2
𝑑𝑠 𝑑𝑟

= ∫

𝑇𝑛

0

𝑋
𝑠

𝑇 − 𝑠
𝛿
𝐻
𝐵
𝐻

𝑠
+ 𝛽
𝑛
.

(35)

On the other hand,

lim
𝑛→∞

𝛽
𝑛

= 𝐻 (2𝐻 − 1)

× lim
𝑛→∞

∫

𝑇𝑛

0

∫

𝑟

0

(𝑇 − 𝑟)
𝛼−1
(𝑇 − 𝑠)

−𝛼
(𝑟 − 𝑠)

2𝐻−2
𝑑𝑠 𝑑𝑟

= 𝐻 (2𝐻 − 1) lim
𝑛→∞

∫

𝑇

𝑇−𝑇𝑛

∫

𝑇

𝑟

𝑟
𝛼−1
𝑠
−𝛼
(𝑠 − 𝑟)

2𝐻−2
𝑑𝑠 𝑑𝑟

= 𝐻 (2𝐻 − 1) lim
𝑛→∞

∫

𝑇𝑛

0

∫

𝑇𝑛

𝑟

(𝑇 − 𝑇
𝑛
+ 𝑟)
𝛼−1

× (𝑇 − 𝑇
𝑛
+ 𝑠)
−𝛼

(𝑠 − 𝑟)
2𝐻−2
𝑑𝑠 𝑑𝑟

= 𝐻 (2𝐻 − 1)∫

𝑇

0

∫

𝑇

𝑟

𝑟
𝛼−1
𝑠
−𝛼
(𝑠 − 𝑟)

2𝐻−2
𝑑𝑠 𝑑𝑟

= 𝐻 (2𝐻 − 1)∫

𝑇

0

𝑠
−𝛼
∫

𝑠

0

𝑟
𝛼−1
(𝑠 − 𝑟)

2𝐻−2
𝑑𝑟 𝑑𝑠

= 𝐻𝐵 (𝛼, 2𝐻 − 1) 𝑇
2𝐻−1
.

(36)

This completes the proof.

The following Lemma 2 comes from Lemma 3.2 of Es-
Sebaiy and Nourdin [5].

Lemma 2. Letting 0 < 𝛼 < 𝐻, 1/2 < 𝐻 < 1, one has

𝐸(
𝑋
𝑡

𝑇 − 𝑡
)

2

≤
𝐻 (2𝐻 − 1)

𝐻 − 𝛼
𝐵 (1 − 𝛼, 2𝐻 − 1) (𝑇 − 𝑡)

2𝛼−2
𝑇
2𝐻−2𝛼

,

0 ≤ 𝑡 < 𝑇.

(37)

Lemma 3. Assume 1 − 𝐻 < 𝛼 < 𝐻, 1/2 < 𝐻 < 1, and let
𝐹
𝑇𝑛
= ∫
𝑇𝑛

0
(𝑋
𝑡
/(𝑇 − 𝑡))𝛿

𝐻
𝐵
𝐻

𝑡
. Then

lim
𝑛→∞

𝐸 (𝐹
2

𝑇𝑛
)

=
𝐻
2
(2𝐻 − 1)

2
𝐵 (𝛼, 2𝐻 − 1) 𝐵 (1 − 𝛼, 2𝐻 − 1)

2 (𝐻 + 𝛼 − 1) (𝐻 − 𝛼)
𝑇
4𝐻−2
.

(38)

Proof. By the isometry property of the double stochastic
integral 𝐼

2
, the variance of 𝐹

𝑇𝑛
is given by

𝐸 (𝐹
2

𝑇𝑛
) =
𝐻
2
(2𝐻 − 1)

2

2
𝐼
𝑇𝑛
, (39)

where

𝐼
𝑇𝑛
= ∫
[0,𝑇𝑛]

4

(𝑇 − 𝑡
1
)
𝛼−1

(𝑇 − 𝑠
1
)
−𝛼

(𝑇 − 𝑡
2
)
𝛼−1

(𝑇 − 𝑠
2
)
−𝛼

×
󵄨󵄨󵄨󵄨𝑠1 − 𝑠2

󵄨󵄨󵄨󵄨
2𝐻−2󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨
2𝐻−2

𝑑𝑠
1
𝑑𝑠
2
𝑑𝑡
1
𝑑𝑡
2
.

(40)

Now, we study 𝐼
𝑇𝑛
, by setting

𝐼
1
= ∫
[0,𝑇𝑛]

2

(𝑇 − 𝑠
1
)
−𝛼

(𝑇 − 𝑠
2
)
−𝛼󵄨󵄨󵄨󵄨𝑠1 − 𝑠2

󵄨󵄨󵄨󵄨
2𝐻−2

𝑑𝑠
1
𝑑𝑠
2
,

𝐼
2
= ∫
[0,𝑇𝑛]

2

(𝑇 − 𝑡
1
)
𝛼−1

(𝑇 − 𝑡
2
)
𝛼−1󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨
2𝐻−2

𝑑𝑡
1
𝑑𝑡
2
.

(41)

We have 𝐼
𝑇𝑛
= 𝐼
1
𝐼
2
. By (17.40) of Es-Sebaiy and Nourdin [5],

we have

𝐼
1
= ∫
[0,𝑇𝑛]

2

(𝑇 − 𝑠
1
)
−𝛼

(𝑇 − 𝑠
2
)
−𝛼󵄨󵄨󵄨󵄨𝑠1 − 𝑠2

󵄨󵄨󵄨󵄨
2𝐻−2

𝑑𝑠
1
𝑑𝑠
2

=
𝐵 (1 − 𝛼, 2𝐻 − 1)

𝐻 − 𝛼
𝑇
2𝐻−2𝛼

𝑛

󳨀→
𝐵 (1 − 𝛼, 2𝐻 − 1)

𝐻 − 𝛼
𝑇
2𝐻−2𝛼

, 𝑛 󳨀→ ∞.

(42)

Similarly

𝐼
2
󳨀→
𝐵 (𝛼, 2𝐻 − 1)

𝐻 + 𝛼 − 1
𝑇
2𝐻+2𝛼−2

. (43)

Thus, the proof is finished.

The following theorem gives the consistency of the least
squares estimator 𝛼̂

𝑛
of 𝛼.

Theorem 4. Let 1/2 < 𝛼 < 𝐻 < 1. If Δ
𝑛
→ 0, 𝑇

𝑛
= 𝑛Δ
𝑛
→

𝑇 as 𝑛 → ∞, and 𝑇
𝑛
+ Δ
𝑛
= 𝑇, then, one has

𝛼̂
𝑛

𝑃

󳨀→ 𝛼, 𝑛 󳨀→ ∞, (44)

where 𝑃󳨀→means convergence in probability.
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Proof. By (4), we have

𝛼̂
𝑛
− 𝛼 = −

(𝛼/𝑛)∑
𝑛

𝑖=1
𝑀
𝑖

(𝛼Δ
𝑛
/𝑛)∑
𝑛

𝑖=1
(𝑋2
𝑡𝑖−1
/(𝑇 − 𝑡

𝑖−1
)
2

)

. (45)

Letting 0 < 𝜀 < 1, we obtain

𝑃 (
󵄨󵄨󵄨󵄨𝛼̂𝑛 − 𝛼

󵄨󵄨󵄨󵄨 > 𝜀)

= 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝛼/𝑛)∑
𝑛

𝑖=1
𝑀
𝑖

(𝛼Δ
𝑛
/𝑛)∑
𝑛

𝑖=1
(𝑋2
𝑡𝑖−1
/(𝑇 − 𝑡

𝑖−1
)
2

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀)

≤ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛

𝑛

∑

𝑖=1

𝑀
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀 (1 − 𝜀))

+ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼Δ
𝑛

𝑛

𝑛

∑

𝑖=1

𝑋
2

𝑡𝑖−1

(𝑇 − 𝑡
𝑖−1
)
2
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀)

:= 𝐵
1
(𝑛) + 𝐵

2
(𝑛) .

(46)

First, we considering the term 𝐵
1
(𝑛), we have

𝐵
1
(𝑛)

= 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛

𝑛

∑

𝑖=1

𝑀
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀 (1 − 𝜀))

≤ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛

𝑛

∑

𝑖=1

[𝑀
𝑖
− ∫

𝑡𝑖

𝑡𝑖−1

𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

𝛿
𝐻
𝐵
𝐻

𝑡
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
1

3
𝜀 (1 − 𝜀))

+ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

−
𝑋
𝑡

𝑇 − 𝑡
) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
1

3
𝜀 (1 − 𝜀))

+ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛
∫

𝑇𝑛

0

𝑋
𝑡

𝑇 − 𝑡
𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
1

3
𝜀 (1 − 𝜀))

:= 𝐵
1,1
(𝑛) + 𝐵

1,2
(𝑛) + 𝐵

1,3
(𝑛) .

(47)

For the term 𝐵
1,1
(𝑛), using Lemma 2, we obtain

𝑛

∑

𝑖=1

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑀
𝑖
− ∫

𝑡𝑖

𝑡𝑖−1

𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

𝛿
𝐻
𝐵
𝐻

𝑡
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛼

𝑛

∑

𝑖=1

(𝐸(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

)

1/2

× ∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

−
𝑋
𝑡

𝑇 − 𝑡
)

2

)

1/2

𝑑𝑡

⊵

𝑛

∑

𝑖=1

(𝑇 − 𝑡
𝑖−1
)
𝛼−1

∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

−
𝑋
𝑡

𝑇 − 𝑡
)

2

)

1/2

𝑑𝑡

≤ Δ
𝛼−1

𝑛

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

−
𝑋
𝑡

𝑇 − 𝑡
)

2

)

1/2

𝑑𝑡

≤ Δ
𝛼−1

𝑛
[

[

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

)

1/2

𝑑𝑡

+

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡

𝑇 − 𝑡
)

2

)

1/2

𝑑𝑡]

]

≤ Δ
𝛼−1

𝑛
[

[

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

)

1/2

𝑑𝑡

+

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡𝑖

𝑇 − 𝑡
𝑖

)

2

)

1/2

𝑑𝑡]

]

⊵ 𝑛Δ
2𝛼−1

𝑛
.

(48)

So, we get

𝛼

𝑛

𝑛

∑

𝑖=1

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑀
𝑖
− ∫

𝑡𝑖

𝑡𝑖−1

𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

𝛿
𝐻
𝐵
𝐻

𝑡
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⊵ Δ
2𝛼−1

𝑛
. (49)

Hence,

𝐵
1,1
(𝑛) ⊵

Δ
2𝛼−1

𝑛

𝜀 (1 − 𝜀)
. (50)

For the term 𝐵
1,2
(𝑛), it follows the fact that, for 0 ≤ 𝑡 < T,

𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

−
𝑋
𝑡

𝑇 − 𝑡
= − [((𝑇 − 𝑡)

𝛼−1
− (𝑇 − 𝑡

𝑖−1
)
𝛼−1

)𝐴
𝑡𝑖−1

+(𝑇 − 𝑡)
𝛼−1
(𝐴
𝑡
− 𝐴
𝑡𝑖−1
)] .

(51)

We have

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

−
𝑋
𝑡

𝑇 − 𝑡
) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

((𝑇 − 𝑡)
𝛼−1
− (𝑇 − 𝑡

𝑖−1
)
𝛼−1

)𝐴
𝑡𝑖−1
𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝑇 − 𝑡)
𝛼−1
(𝐴
𝑡
− 𝐴
𝑡𝑖−1
) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(52)
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Using inequality (22) and 𝐸𝐴
𝑡
= 0,𝐷𝐻

𝑠
𝐴
𝑡
= (𝑇−𝑠)

−𝛼
1
[0,𝑡]
(𝑠),

we have

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

((𝑇 − 𝑡)
𝛼−1
− (𝑇 − 𝑡

𝑖−1
)
𝛼−1

)𝐴
𝑡𝑖−1
𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇𝑛

0

𝑛

∑

𝑖=1

((𝑇 − 𝑡)
𝛼−1
− (𝑇 − 𝑡

𝑖−1
)
𝛼−1

)𝐴
𝑡𝑖−1
1
(𝑡𝑖−1 ,𝑡𝑖]

(𝑡) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇𝑛

0

𝑛

∑

𝑖=1

((𝑇 − 𝑡)
𝛼−1
− (𝑇 − 𝑡

𝑖−1
)
𝛼−1

)

×𝐴
𝑡𝑖−1
1
(𝑡𝑖−1 ,𝑡𝑖]

(𝑡) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)

1/2

≤ 𝐶
𝐻
(∬

𝑇𝑛

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

((𝑇 − 𝑡)
𝛼−1
− (𝑇 − 𝑡

𝑖−1
)
𝛼−1

)

×𝐷
𝐻

𝑠
𝐴
𝑡𝑖−1
1
(𝑡𝑖−1 ,𝑡𝑖]

(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/𝐻

𝑑𝑠 𝑑𝑡)

𝐻

= 𝐶
𝐻
(∬

𝑇𝑛

0

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
((𝑇 − 𝑡)

𝛼−1
− (𝑇 − 𝑡

𝑖−1
)
𝛼−1

) (𝑇 − 𝑠)
−𝛼󵄨󵄨󵄨󵄨󵄨

1/𝐻

×1
(𝑡𝑖−1 ,𝑡𝑖]

(𝑡) 1
[0,𝑡𝑖−1)

(𝑠) 𝑑𝑠 𝑑𝑡)

𝐻

= 𝐶
𝐻
(

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

((𝑇 − 𝑡)
𝛼−1
− (𝑇 − 𝑡

𝑖−1
)
𝛼−1

)
1/𝐻

𝑑𝑡

×∫

𝑡𝑖−1

0

(𝑇 − 𝑠)
−𝛼/𝐻
𝑑𝑠)

𝐻

≤ 𝐶
𝐻
𝑇
𝐻−𝛼
(

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

Δ
(𝛼−1)/𝐻

𝑛
𝑑𝑡)

𝐻

≤ 𝐶
𝐻
𝑇
𝐻−𝛼
𝑛Δ
𝐻+𝛼−1

𝑛
.

(53)

On the other hand,

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝑇 − 𝑡)
𝛼−1
(𝐴
𝑡
− A
𝑡𝑖−1
) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇𝑛

0

𝑛

∑

𝑖=1

(𝑇 − 𝑡)
𝛼−1
(𝐴
𝑡
− 𝐴
𝑡𝑖−1
) 1
(𝑡𝑖−1 ,𝑡𝑖]

(𝑡) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
𝐻
(∬

𝑇𝑛

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

(𝑇 − 𝑡)
𝛼−1
𝐷
𝐻

𝑠
(𝐴
𝑡
− 𝐴
𝑡𝑖−1
)

×1
(𝑡𝑖−1 ,𝑡𝑖]

(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/𝐻

𝑑𝑠 𝑑𝑡)

𝐻

≤ 𝐶
𝐻
(∬

𝑇𝑛

0

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
(𝑇 − 𝑡)

𝛼−1
𝐷
𝐻

𝑠
(𝐴
𝑡
− 𝐴
𝑡𝑖−1
)
󵄨󵄨󵄨󵄨󵄨

1/𝐻

×1
(𝑡𝑖−1,𝑡𝑖]

(𝑡) 𝑑𝑠 𝑑𝑡)

𝐻

= 𝐶
𝐻
(∬

𝑇𝑛

0

𝑛

∑

𝑖=1

((𝑇 − 𝑡)
𝛼−1
(𝑇 − 𝑠)

−𝛼
)
𝐻

1
[𝑡𝑖−1 ,𝑡]

(𝑠)

×1
(𝑡𝑖−1,𝑡𝑖]

(𝑡) 𝑑𝑠 𝑑𝑡)

𝐻

= 𝐶
𝐻
(

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝑇 − 𝑡)
(𝛼−1)/𝐻

𝑑𝑡∫

𝑡

𝑡𝑖−1

(𝑇 − 𝑠)
−𝛼/𝐻
𝑑𝑠)

𝐻

≤ 𝐶
𝐻
(

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝑇 − 𝑡)
(𝛼−1)/𝐻

𝑑𝑡∫

𝑡

𝑡𝑖−1

(𝑇 − 𝑡
𝑛
)
−𝛼/𝐻

𝑑𝑠)

𝐻

≤ 𝐶
𝐻
(𝑛Δ
(2𝐻−1)/𝐻

𝑛
)
𝐻

≤ 𝐶
𝐻
𝑛Δ
2𝐻−1

𝑛
.

(54)

So, we get

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

−
𝑋
𝑡

𝑇 − 𝑡
) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⊵ 𝑛Δ
𝐻+𝛼−1

𝑛
. (55)

Thus,

𝛼

𝑛
𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

−
𝑋
𝑡

𝑇 − 𝑡
) 𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⊵ Δ
𝐻+𝛼−1

𝑛
. (56)

Hence

𝐵
1,2
(𝑛) ⊵

Δ
𝐻+𝛼−1

𝑛

𝜀 (1 − 𝜀)
. (57)

For the term 𝐵
1,3
(𝑛), by setting 𝐹

𝑇𝑛
= ∫
𝑇𝑛

0
(𝑋
𝑡
/(𝑇 − 𝑡))𝛿

𝐻
𝐵
𝐻

𝑡

and by using Lemma 3, we get

𝐵
1,3
(𝑛) = 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛
∫

𝑇𝑛

0

𝑋
𝑡

𝑇 − 𝑡
𝛿
𝐻
𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
1

3
𝜀 (1 − 𝜀))

≤ [
3𝛼

𝜀 (1 − 𝜀) 𝑛
]

2

𝐸 (𝐹
2

𝑇𝑛
) ⊵

1

𝜀2(1 − 𝜀)
2
𝑛2
.

(58)

As a consequence,

𝐵
1
(𝑛) ⊵

Δ
2𝛼−1

𝑛

𝜀 (1 − 𝜀)
+
Δ
𝐻+𝛼−1

𝑛

𝜀 (1 − 𝜀)
+

1

𝜀2(1 − 𝜀)
2
𝑛2
. (59)



Abstract and Applied Analysis 7

Second, we estimate the term 𝐵
2
(𝑛):

𝐵
2
(𝑛)

= 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼Δ
𝑛

𝑛

𝑛

∑

𝑖=1

(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀)

≤ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

[(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

− (
𝑋
𝑡

𝑇 − 𝑡
)

2

]𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀/2)

+ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛
∫

𝑇𝑛

0

(
𝑋
𝑡

𝑇 − 𝑡
)

2

𝑑𝑡 − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 𝜀/2)

:= 𝐵
2,1
(𝑛) + 𝐵

2,2
(𝑛) .

(60)

We firstly consider 𝐵
2,1
(𝑛), since

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑛

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

[(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

− (
𝑋
𝑡

𝑇 − 𝑡
)

2

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤
𝛼

𝑛

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

− (
𝑋
𝑡

𝑇 − 𝑡
)

2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤
𝛼

𝑛

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

+ 𝐸(
𝑋
𝑡

𝑇 − t
)

2

)𝑑𝑡

≤
𝛼

𝑛

𝑛

∑

𝑖=1

∫

𝑡𝑖

𝑡𝑖−1

(𝐸(
𝑋
𝑡𝑖−1

𝑇 − 𝑡
𝑖−1

)

2

+ 𝐸(
𝑋
𝑡𝑖

𝑇 − 𝑡
𝑖

)

2

)𝑑𝑡

≤
2𝛼

𝑛

𝑛

∑

𝑖=1

Δ
2𝛼−1

𝑛
⊵ Δ
2𝛼−1

𝑛
.

(61)

By Markov inequality, we obtain

𝐵
2,1
(𝑛) ⊵

Δ
2𝛼−1

𝑛

𝜀
. (62)

Now, we estimate the term 𝐵
2,2
(𝑛). Applying the change of

variable formula (24), we get

𝛼

𝑛
∫

𝑇𝑛

0

(
𝑋
𝑡

𝑇 − 𝑡
)

2

𝑑𝑡 − 1 =
1

𝑛 (𝛼 − (1/2))

× (
𝑋
𝑇𝑛

2Δ
𝑛

− ∫

𝑇𝑛

0

𝑋
𝑡

𝑇 − 𝑡
𝛿
𝐻
𝐵
𝐻

𝑡
− 𝛽
𝑛
) .

(63)

Hence,

𝐵
2,2
(𝑛) ≤ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
𝑇𝑛

𝑇
𝑛
(2𝛼 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝜀

6
)

+ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑛 (𝛼 − (1/2))
∫

𝑇𝑛

0

𝑋
𝑡

𝑇 − 𝑡
𝛿𝐵
𝐻

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>
𝜀

6
)

+ 𝑃(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽
𝑛

𝑛 (𝛼 − (1/2))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
>
𝜀

6
) .

(64)

By Markov inequality and Lemma 2, we obtain

𝐵
2,2
(𝑛) ⊵

Δ
2𝛼

𝑛

𝜀2𝑇2
𝑛

+
1

𝜀𝑛2
+
1

𝜀𝑛
. (65)

Therefore

𝐵
2
(𝑛) ⊵

Δ
2𝛼−1

𝑛

𝜀
+
Δ
2𝛼

𝑛

𝜀2𝑇2
𝑛

+
1

𝜀𝑛2
+
1

𝜀𝑛
≤
Δ
2𝛼−1

𝑛

𝜀
+
Δ
2𝛼

𝑛

𝜀2𝑇2
𝑛

+
1

𝜀𝑛
.

(66)

Combining (59) and (66), this completes the proof.
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