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Based on the theory of fractional calculus, the generalized Gronwall inequality and estimates of mittag-Leffer functions, the finite-
time stability of Caputo fractional-order BAM neural networks with distributed delay is investigated in this paper. An illustrative
example is also given to demonstrate the effectiveness of the obtained result.

1. Introduction

Fractional calculus (integral and differential operations of
noninteger order) was firstly introduced 300 years ago. Due
to lack of application background and the complexity, it
did not attract much attention for a long time. In recent
decades fractional calculus is applied to physics, applied
mathematics, and engineering [1–6]. Since the fractional-
order derivative is nonlocal and has weakly singular kernels,
it provides an excellent instrument for the description of
memory and hereditary properties of dynamical processes.
Nowadays, study on the complex dynamical behaviors of
fractional-order systems has become a very hot research
topic.

We know that the next state of a system not only
depends upon its current state but also upon its history
information. Since a model described by fractional-order
equations possesses memory, it is precise to describe the
states of neurons. Moreover, the superiority of the Caputo’s
fractional derivative is that the initial conditions for fractional
differential equations with Caputo derivatives take on the
similar form as those for integer-order differentiation.There-
fore, it is necessary and interesting to study fractional-order
neural networks both in theory and in applications.

Recently, fractional-order neural networks have been
presented and designed to distinguish the classical integer-
order models [7–10]. Currently, some excellent results about

fractional-order neural networks have been investigated,
such as Kaslik and Sivasundaram [11, 12], Zhang et al. [13],
Delavari et al. [14], and Li et al. [15, 16]. On the other hand,
time delay is one of the inevitable problems on the stability
of dynamical systems in the real word [17–20]. But till now,
there are few results on the problems for fractional-order
delayed neural networks; Chen et al. [21] studied the uniform
stability for a class of fractional-order neural networks with
constant delay by the analytical approach; Wu et al. [22]
investigated the finite-time stability of fractional-order neural
networks with delay by the generalized Gronwall inequality
and estimates of Mittag-Leffler functions; Alofi et al. [23]
discussed the finite-time stability of Caputo fractional-order
neural networks with distributed delay.

The integer-order bidirectional associative memory
(BAM) model known as an extension of the unidirectional
autoassociator of Hopfield [24] was first introduced by Kosko
[25]. This neural network has been widely studied due to its
promising potential for applications in pattern recognition
and automatic control. In recent years, integer-order BAM
neural networks have been extensively studied [26–29].
However, to the best of our knowledge, there is no effort
being made in the literature to study the finite-time stability
of fractional-order BAM neural networks so far.

Motivated by the above-mentioned works, we were
devoted to establishing the finite-time stability of Caputo
fractional-order BAM neural networks with distributed
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delay. In this paper, we will apply Laplace transform, gen-
eralized Gronwall inequality, and estimates of Mittag-Leffler
functions to establish the finite-time stability criterion of
fractional-order distributed delayed BAM neural networks.

This paper is organized as follows. In Section 2, some
definitions and lemmas of fractional differential and integral
calculus are given and the fractional-order BAM neural
networks are presented. A criterion for finite-time stability
of fractional-order BAM neural networks with distributed
delay is obtained in Section 3. Finally, the effectiveness and
feasibility of the theoretical result is shown by an example in
Section 4.

2. Preliminaries

For the convenience of the reader, we first briefly recall some
definitions of fractional calculus; formore details, see [1, 2, 5],
for example.

Definition 1. The Riemann-Liouville fractional integral of
order 𝛼 > 0 of a function 𝑢 : (0,∞) → 𝑅 is given by

𝐼
𝛼

0
+𝑢 (𝑡) =

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠 (1)

provided that the right side is pointwise defined on (0,∞),
where Γ(⋅) is the Gamma function.

Definition 2. The Caputo fractional derivative of order 𝛾 > 0

of a function 𝑢 : (0,∞) → 𝑅 can be written as

𝐶

0
𝐷
𝛾

𝑡
𝑢 (𝑡) =

1

Γ (𝑛 − 𝛾)

∫

𝑡

0

𝑢
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝛾+1−𝑛

𝑑𝑠,

𝑛 − 1 < 𝛾 < 𝑛.

(2)

Definition 3. The Mittag-Leffler function in two parameters
is defined as

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 𝛽)

, (3)

where 𝛼 > 0, 𝛽 > 0, and 𝑧 ∈ C, where C denotes the complex
plane. In particular, for 𝛽 = 1, one has

𝐸
𝛼,1

(𝑧) = 𝐸
𝛼
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 1)

. (4)

The Laplace transform of Mittag-Leffler function is

L {𝑡
𝛽−1

𝐸
𝛼,𝛽

(−𝜆𝑡
𝛼

)} =

𝑠
𝛼−𝛽

𝑠
𝛼
+ 𝜆

,

(R (𝑠) > |𝜆|
1/𝛼

) ,

(5)

where 𝑡 and 𝑠 are, respectively, the variables in the time
domain and Laplace domain andL{⋅} stands for the Laplace
transform.

In this paper, we are interested in the finite-time stability
of fractional-order BAM neural networks with distributed
delay by the following state equations:

𝐶

0
𝐷

𝛼

𝑡
𝑥
𝑖
(𝑡) = − 𝑐

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

∫

𝜏

0

𝑟
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝑠)) 𝑑𝑠 + 𝐼

𝑖
,

𝑡 ≥ 0,

𝐶

0
𝐷

𝛽

𝑡
𝑦
𝑗
(𝑡) = − 𝑐

𝑗
𝑦
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
𝑔i (𝑥𝑖 (𝑡))

+

𝑛

∑

𝑖=1

∫

𝜏

0

𝑝
𝑗𝑖
(𝑠) 𝑔
𝑖
(𝑥
𝑖
(𝑡 − 𝑠)) 𝑑𝑠 + 𝐼

𝑗
,

𝑖, 𝑗 = 1, . . . , 𝑛,

(6)

or in the matrix-vector notation

𝐶

0
𝐷

𝛼

𝑡
𝑥 (𝑡) = − 𝐶𝑥 (𝑡) + 𝐵𝑓 (𝑦 (𝑡))

+ ∫

𝜏

0

𝑅 (𝑠) 𝑓 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠 + 𝐼,

𝐶

0
𝐷

𝛽

𝑡
𝑦 (𝑡) = − 𝐶𝑦 (𝑡) + 𝐷𝑔 (𝑥 (𝑡))

+ ∫

𝜏

0

𝑃 (𝑠) 𝑔 (𝑥 (𝑡 − 𝑠)) 𝑑𝑠 + 𝐼, 𝑡 ≥ 0,

(7)

where 1 < 𝛼, 𝛽 < 2. The model (6) is made up of two neural
fields 𝐹

𝑥
and 𝐹

𝑦
, where 𝑥

𝑖
(𝑡) and 𝑦

𝑗
(𝑡) are the activations of

the 𝑖th neuron in 𝐹
𝑥
and the 𝑗th neuron in 𝐹

𝑦
, respectively;

(𝑥 (𝑡) , 𝑦 (𝑡)) = (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡) , 𝑦
1
(𝑡) , . . . , 𝑦

𝑛
(𝑡))
𝑇

∈ R
2𝑛

(8)

is the state vector of the network at time 𝑡; the functions

𝑓 (𝑦 (𝑡)) = (𝑓
1
(𝑦
1
(𝑡)) , 𝑓

2
(𝑦
2
(𝑡)) , . . . , 𝑓

𝑛
(𝑦
𝑛
(𝑡)))
𝑇

,

𝑔 (𝑥 (𝑡)) = (𝑔
1
(𝑥
1
(𝑡)) , 𝑔

2
(𝑥
2
(𝑡)) , . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡)))
𝑇

(9)

are the activation functions of the neurons at time 𝑡; 𝐶 =

diag(𝑐
𝑖
) is a diagonal matrix; 𝑐

𝑖
> 0 represents the rate with

which the 𝑖th unit will reset its potential to the resting state in
isolation when disconnected from the network and external
inputs; 𝐵 = (𝑏

𝑖𝑗
)
𝑛×𝑛

and𝐷 = (𝑑
𝑗𝑖
)
𝑛×𝑛

are the feedback matrix;
𝜏 > 0 denotes the maximum possible transmission delay
from neuron to another; 𝑅 = (𝑟

𝑖𝑗
)
𝑛×𝑛

and 𝑃 = (𝑝
𝑗𝑖
)
𝑛×𝑛

are the delayed feedback matrix; 𝐼 = (𝐼
1
, . . . , 𝐼

𝑛
)
𝑇 and 𝐼 =

(𝐼
1
, . . . , 𝐼

𝑛
)
𝑇 are two external bias vectors.

Let C1([−𝜏, 0],R𝑛) be the Banach space of all continu-
ously differential functions over a time interval of length 𝜏,
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mapping the interval [−𝜏, 0] into R𝑛 with the norm defined
as follows: for every 𝜑 ∈ C1([−𝜏, 0],R𝑛),

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩1

= max {󵄩󵄩󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
}

= max{ sup
𝜃∈[−𝜏,0]

󵄨
󵄨
󵄨
󵄨
𝜑 (𝜃)

󵄨
󵄨
󵄨
󵄨
, sup
𝜃∈[−𝜏,0]

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
󸀠

(𝜃)

󵄨
󵄨
󵄨
󵄨
󵄨
} .

(10)

The initial conditions associated with (6) are given by

𝑥
𝑖
(𝜃) = 𝜑

𝑖
(𝜃) , 𝑥

󸀠

𝑖
(𝜃) = 𝜑

󸀠

𝑖
(𝜃) , 𝑦

𝑗
(𝜃) = 𝜓

𝑗
(𝜃) ,

𝑦
󸀠

𝑗
(𝜃) = 𝜓

󸀠

𝑗
(𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(11)

where 𝜑
𝑖
, 𝜓
𝑗
∈ 𝐶
1

([−𝜏, 0],R).
In order to obtain main result, we make the following

assumptions.

(H1) For 𝑖, 𝑗 = 1, . . . , 𝑛, the functions 𝑟
𝑖𝑗
(⋅) and 𝑝

𝑗𝑖
(⋅) are

continuous on [0, 𝜏].

(H2) The neurons activation functions 𝑓
𝑖
and 𝑔

𝑗
(𝑖, 𝑗 =

1, . . . , 𝑛) are bounded.

(H3) The neurons activation functions 𝑓
𝑖
and 𝑔

𝑗
are Lips-

chitz continuous; that is, there exist positive constants
ℎ
𝑖
, 𝑙
𝑗
(𝑖, 𝑗 = 1, . . . , 𝑛) such that

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑢) − 𝑓

𝑖
(V)󵄨󵄨󵄨

󵄨
≤ ℎ
𝑖
|𝑢 − V| ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑙
𝑗
|𝑢 − V| ,

∀𝑢, V ∈ R.

(12)

Since the Caputo’s fractional derivative of a constant is
equal to zero, the equilibriumpoint of system (6) is a constant
vector (𝑥

∗

, 𝑦
∗

) = (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
, 𝑦
∗

1
, 𝑦
∗

2
, . . . , 𝑦

∗

𝑛
)
𝑇

∈ R2𝑛

which satisfies the system

𝑐
𝑖
𝑥
∗

𝑖
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
∗

𝑗
) −

𝑛

∑

𝑗=1

∫

𝜏

0

𝑟
𝑖𝑗
(𝑠) 𝑓
𝑗
(𝑦
∗

𝑗
) 𝑑𝑠 − 𝐼

𝑖
= 0,

𝑖 = 1, . . . , 𝑛,

𝑐
𝑗
𝑦
∗

𝑗
−

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
𝑔
𝑖
(𝑥
∗

𝑖
) −

𝑛

∑

𝑖=1

∫

𝜏

0

𝑝
𝑗𝑖
(𝑠) 𝑔
𝑖
(𝑥
∗

𝑖
) 𝑑𝑠 − 𝐼

𝑗
= 0,

𝑗 = 1, . . . , 𝑛.

(13)

By using the Schauder fixed point theorem and assumptions
(H1)–(H3), it is easy to prove that the equilibrium points of
system (6) exist. We can shift the equilibrium point of system
(6) to the origin. Denoting

(𝑢 (𝑡) , V (𝑡)) = (𝑢
1
(𝑡) , . . . , 𝑢

𝑛
(𝑡) , V
1
(𝑡) , . . . , V

𝑛
(𝑡))
𝑇

= (𝑥
1
(𝑡) − 𝑥

∗

1
, . . . , 𝑥

𝑛
(𝑡)

−𝑥
∗

𝑛
, 𝑦
1
(𝑡) − 𝑦

∗

1
, . . . , 𝑦

𝑛
(𝑡) − 𝑦

∗

𝑛
)
𝑇

,

(14)

then system (6) can be written as

𝐶

0
𝐷

𝛼

𝑡
𝑢
𝑖
(𝑡) = − 𝑐

𝑖
𝑢
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝐹
𝑗
(V
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

∫

𝜏

0

𝑟
𝑖𝑗
(𝑠) 𝐹
𝑗
(V
𝑗
(𝑡 − 𝑠)) 𝑑𝑠,

𝑡 ≥ 0,

𝐶

0
𝐷

𝛽

𝑡
V
𝑗
(𝑡) = − 𝑐

𝑗
V
𝑗
(𝑡) +

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
𝐺
𝑖
(𝑢
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

∫

𝜏

0

𝑝
𝑗𝑖
(𝑠) 𝐺
𝑖
(𝑢
𝑖
(𝑡 − 𝑠)) 𝑑𝑠,

𝑖, 𝑗 = 1, . . . , 𝑛,

(15)

with the initial conditions

𝑢
𝑖
(𝜃) = 𝜑

𝑖
(𝜃) , 𝑢

󸀠

𝑖
(𝜃) = 𝜑

󸀠

𝑖
(𝜃) , V

𝑗
(𝜃) = 𝜓

𝑗
(𝜃) ,

V󸀠
𝑗
(𝜃) = 𝜓

󸀠

𝑗
(𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(16)

where

𝐹
𝑗
(V
𝑗
(𝑡)) = 𝑓

𝑗
(V
𝑗
(𝑡) + 𝑦

∗

𝑗
) − 𝑓
𝑗
(𝑦
∗

𝑗
) ,

𝐺
𝑖
(𝑢
𝑖
(𝑡)) = 𝑔

𝑖
(𝑢
𝑖
(𝑡) + 𝑥

∗

𝑖
) − 𝑔
𝑖
(𝑥
∗

𝑖
) ,

𝜑
𝑖
(𝜃) = 𝜑

𝑖
(𝜃) − 𝑥

∗

𝑖
, 𝜓

𝑗
(𝜃) = 𝜓

𝑗
(𝜃) − 𝑦

∗

𝑗
,

𝜃 ∈ [𝜏, 0] .

(17)

Similarly, by using thematrix-vector notation, system (15) can
be expressed as

𝐶

0
𝐷

𝛼

𝑡
𝑢 (𝑡) = − 𝐶𝑢 (𝑡) + 𝐵𝐹 (V (𝑡))

+ ∫

𝜏

0

𝑅 (𝑠) 𝐹 (V (𝑡 − 𝑠)) 𝑑𝑠,

𝑡 ≥ 0,

𝐶

0
𝐷

𝛽

𝑡
V (𝑡) = − 𝐶V (𝑡) + 𝐷𝐺 (𝑢 (𝑡))

+ ∫

𝜏

0

𝑃 (𝑠) 𝐺 (𝑢 (𝑡 − 𝑠)) 𝑑𝑠,

𝑡 ≥ 0,

(18)

with the initial condition

𝑢 (𝜃) = 𝜑 (𝜃) , 𝑢
󸀠

(𝜃) = 𝜑
󸀠

(𝜃) , V (𝜃) = 𝜓 (𝜃) ,

V󸀠 (𝜃) = 𝜓
󸀠

(𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(19)

where

𝐹 (V (𝑡)) = (𝐹
1
(V
1
(𝑡)) , 𝐹

2
(V
2
(𝑡)) , . . . , 𝐹

𝑛
(V
𝑛
(𝑡)))
𝑇

,

𝐺 (𝑢 (𝑡)) = (𝐺
1
(𝑢
1
(𝑡)) , 𝐺

2
(𝑢
2
(𝑡)) , . . . , 𝐺

𝑛
(𝑢
𝑛
(𝑡)))
𝑇

.

(20)
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Define the functions as follows:

ℎ
𝑖
(𝑡) =

{
{

{
{

{

𝐹
𝑖
(V
𝑖
(𝑡))

V
𝑖
(𝑡)

, V
𝑖
(𝑡) ̸= 0,

0, V
𝑖
(𝑡) = 0,

𝑙
𝑗
(𝑡) =

{
{

{
{

{

𝐺
𝑗
(𝑢
𝑗
(𝑡))

𝑢
𝑗
(𝑡)

, 𝑢
𝑗
(𝑡) ̸= 0,

0, 𝑢
𝑗
(𝑡) = 0,

(21)

where 𝑖, 𝑗 = 1, . . . , 𝑛. From assumption (H3), we can obtain
|ℎ
𝑖
(𝑡)| ≤ ℎ

𝑖
, |𝑙
𝑗
(𝑡)| ≤ 𝑙

𝑗
. By (21), we have

𝐹
𝑖
(V
𝑖
(𝑡)) = ℎ

𝑖
(𝑡) V
𝑖
(𝑡) , 𝐺

𝑗
(𝑢
𝑗
(𝑡)) = 𝑙

𝑗
(𝑡) 𝑢
𝑗
(𝑡) ,

𝑖, 𝑗 = 1, . . . , 𝑛.

(22)

Thus, system (18) can be furtherwritten as the following form:

𝐶

0
𝐷

𝛼

𝑡
𝑢 (𝑡) = − 𝐶𝑢 (𝑡) + 𝐵𝐻 (𝑡) V (𝑡)

+ ∫

𝜏

0

𝑅 (𝑠)𝐻 (𝑡 − 𝑠) V (𝑡 − 𝑠) 𝑑𝑠,

𝑡 ≥ 0,

𝐶

0
𝐷

𝛽

𝑡
V (𝑡) = − 𝐶V (𝑡) + 𝐷𝐿 (𝑡) 𝑢 (𝑡)

+ ∫

𝜏

0

𝑃 (𝑠) 𝐿 (𝑡 − 𝑠) 𝑢 (𝑡 − 𝑠) 𝑑𝑠,

𝑡 ≥ 0,

(23)

where𝐻(𝑡) = diag{ℎ
𝑖
(𝑡)}, 𝐿(𝑡) = diag{𝑙

𝑗
(𝑡)}.

Definition 4. System (23) with the initial condition (19) is
finite-time stable with respect to {𝛿, 𝜀, 𝑡

0
, 𝐽}, 𝛿 < 𝜀, if and only

if
󵄩
󵄩
󵄩
󵄩
(𝜑, 𝜓)

󵄩
󵄩
󵄩
󵄩1

:=
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩1

+
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩1

< 𝛿 (24)

implies

‖(𝑢 (𝑡) , V (𝑡))‖ = ‖𝑢 (𝑡)‖ + ‖V (𝑡)‖ < 𝜀, ∀𝑡 ∈ 𝐽, (25)

where 𝛿 is a positive real number and 𝜀 > 0, 𝛿 < 𝜀, 𝑡
0
denotes

the initial time of observation of the system, and 𝐽 denotes
time interval 𝐽 = [𝑡

0
, 𝑡
0
+ 𝑇).

A technical result about norm upper-bounding function
of the matrix function 𝐸

𝛼,𝛽
is given in [30] as follows.

Lemma 5. If 𝛼 ≥ 1, then, for 𝛽 = 1, 2, 𝛼, one has
󵄩
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼,𝛽

(𝐴𝑡
𝛼

)

󵄩
󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝐴𝑡
𝛼󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

, 𝑡 ≥ 0. (26)

Moreover, if 𝐴 is a diagonal stability matrix, then
󵄩
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼,𝛽

(𝐴𝑡
𝛼

)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝑒
−𝜔𝑡

, 𝑡 ≥ 0, (27)

where −𝜔 (𝜔 > 0) is the largest eigenvalue of the diagonal
stability matrix 𝐴.

Lemma 6 (see [31]). Let 𝑢(𝑡), 𝑎(𝑡) be nonnegative and local
integrable on [0, 𝑇)(𝑇 ≤ +∞), and let 𝑔 be a nonnegative,
nondecreasing continuous function defined on [0, 𝑇), 𝑔(𝑡) ≤

𝑀, and let𝑀 be a real constant, 𝛼 > 0, with

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑔 (𝑡) ∫

t

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇) . (28)

Then

𝑢 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

[

∞

∑

𝑛=1

(𝑔 (𝑡) Γ (𝛼))
𝑛

Γ (𝑛𝛼)

(𝑡 − 𝑠)
𝑛𝛼−1

𝑎 (𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 𝑇) .

(29)

Moreover, if 𝑎(𝑡) is a nondecreasing function on [0, 𝑇), then

𝑢 (𝑡) ≤ 𝑎 (𝑡) 𝐸
𝛼,1

(𝑔 (𝑡) Γ (𝛼) 𝑡
𝛼

) , 𝑡 ∈ [0, 𝑇) . (30)

3. Main Result

We first give a key lemma in the proof of our main result as
follows.

Lemma 7. Let 𝑢(𝑡), V(𝑡) be nonnegative and local integrable
on [0, 𝑇) (𝑇 ≤ +∞), and let 𝑎

1
(𝑡), 𝑎
2
(𝑡) be nonnegative,

nondecreasing and local integrable on [0, 𝑇), and let 𝑏
1
, 𝑏
2
be

two positive constants, 𝛼, 𝛽 > 1, with

𝑢 (𝑡) ≤ 𝑎
1
(𝑡) + 𝑏

1
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1V (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇) , (31)

V (𝑡) ≤ 𝑎
2
(𝑡) + 𝑏

2
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇) . (32)

Then

𝑢 (𝑡) ≤ (𝑎
1
(𝑡) + 𝑏

1
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
2
(𝑠) 𝑑𝑠)

× 𝐸
𝛼+𝛽

(𝑏
1
𝑏
2
Γ (𝛼) Γ (𝛽) 𝑡

𝛼+𝛽

) , 𝑡 ∈ [0, 𝑇) ,

V (𝑡) ≤ (𝑎
2
(𝑡) + 𝑏

2
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑎
1
(𝑠) 𝑑𝑠)

× 𝐸
𝛼+𝛽

(𝑏
1
𝑏
2
Γ (𝛼) Γ (𝛽) 𝑡

𝛼+𝛽

) , 𝑡 ∈ [0, 𝑇) .

(33)

Proof. Substituting (32) into (31), we obtain

𝑢 (𝑡) ≤ 𝑎
1
(𝑡) + 𝑏

1
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1V (𝑠) 𝑑𝑠

≤ 𝑎
1
(𝑡) + 𝑏

1
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
2
(𝑠) 𝑑𝑠

+ 𝑏
1
𝑏
2
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

∫

𝑠

0

(𝑠 − 𝜉)
𝛽−1

𝑢 (𝜉) 𝑑𝜉.

(34)
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Changing the order of integration in the above double
integral, we obtain

𝑢 (𝑡) ≤ 𝑎
1
(𝑡) + 𝑏

1
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
2
(𝑠) 𝑑𝑠

+ 𝑏
1
𝑏
2
∫

𝑡

0

𝑢 (𝜉) 𝑑𝜉∫

𝑡

𝜉

(𝑡 − 𝑠)
𝛼−1

(𝑠 − 𝜉)
𝛽−1

𝑑𝑠

= 𝑎
1
(𝑡) + 𝑏

1
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
2
(𝑠) 𝑑𝑠

+ 𝑏
1
𝑏
2
∫

𝑡

0

Γ (𝛼) Γ (𝛽)

Γ (𝛼 + 𝛽)

(𝑡 − 𝜉)
𝛼+𝛽−1

𝑢 (𝜉) 𝑑𝜉.

(35)

Let 𝑎(𝑡) = 𝑎
1
(𝑡) + 𝑏

1
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
2
(𝑠)𝑑𝑠, 𝑔(𝑡) =

𝑏
1
𝑏
2
((Γ(𝛼)Γ(𝛽))/Γ(𝛼 + 𝛽)); then 𝑎(𝑡) is a nonnegative, non-

decreasing, and local integrable function and 𝑔(𝑡) is a
nonnegative, nondecreasing continuous function. Thus, by
Lemma 6 (30), one has

𝑢 (𝑡) ≤ (𝑎
1
(𝑡) + 𝑏

1
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
2
(𝑠) 𝑑𝑠)

× 𝐸
𝛼+𝛽

(𝑏
1
𝑏
2
Γ (𝛼) Γ (𝛽) 𝑡

𝛼+𝛽

) .

(36)

Similarly, we get

V (𝑡) ≤ (𝑎
2
(𝑡) + 𝑏

2
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑎
1
(𝑠) 𝑑𝑠)

× 𝐸
𝛼+𝛽

(𝑏
1
𝑏
2
Γ (𝛼) Γ (𝛽) 𝑡

𝛼+𝛽

) .

(37)

For convenience, let

𝑅 = sup
0≤𝑠≤𝜏

{‖𝑅 (𝑠)‖} , 𝑃 = sup
0≤𝑠≤𝜏

{‖𝑃 (𝑠)‖} ,

ℎ = max
1≤𝑖≤𝑛

{ℎ
𝑖
} , 𝑙 = max

1≤𝑗≤𝑛

{𝑙
𝑗
} ,

Θ (𝑡) := max{ℎ

𝛼

𝑡
𝛼

(1 +

𝑡

𝛼 + 1

) (𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

) ,

𝑙

𝛽

𝑡
𝛽

(1 +

𝑡

𝛽 + 1

) (𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

)} ,

(38)

where −𝛾 is the largest eigenvalue of the diagonal stability
matrix −𝐶 and 𝜇(⋅) denotes the largest singular value of
matrix (⋅).

In the following, sufficient conditions for finite-time
stability of fractional-order BAM neural networks with dis-
tributed delay are derived.

Theorem 8. Let 1 < 𝛼, 𝛽 < 2. If system (23) satisfies (H1)–
(H3) with the initial condition (19), and

𝑒
−𝛾𝑡

((1 + 𝑡) + Θ (𝑡)) 𝐸
𝛼+𝛽

× [ℎ𝑙 (𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

) (𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

) Γ (𝛼) Γ (𝛽) 𝑡
𝛼+𝛽

]

<

𝜀

𝛿

,

(39)

where 𝑡 ∈ 𝐽 = [0, 𝑇), then system (23) is finite-time stable with
respect to {𝛿, 𝜀, 0, 𝐽}, 𝛿 < 𝜀.

Proof. By Laplace transform and inverse Laplace transform,
system (23) is equivalent to

𝑢 (𝑡) = 𝐸
𝛼
(−𝐶𝑡
𝛼

) 𝜑 (0) + 𝑡𝐸
𝛼,2

(−𝐶𝑡
𝛼

) 𝜑
󸀠

(0)

+ ∫

𝑡

0

(𝑡 − 𝑠 )
𝛼−1

𝐸
𝛼,𝛼

(−𝐶𝑡
𝛼

)

× [𝐵𝐻 (𝑠) V (𝑠)

+ ∫

𝜏

0

𝑅 (𝜂)𝐻 (𝑠 − 𝜂) V (𝑠 − 𝜂) 𝑑𝜂] 𝑑𝑠,

(40)

V (𝑡) = 𝐸
𝛽
(−𝐶𝑡
𝛽

) 𝜓 (0) + 𝑡𝐸
𝛽,2

(−𝐶𝑡
𝛽

) 𝜓
󸀠

(0)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝐸
𝛽,𝛽

(−𝐶𝑡
𝛽

)

× [𝐷𝐿 (𝑠) 𝑢 (𝑠)

+ ∫

𝜏

0

𝑃 (𝜂) 𝐿 (𝑠 − 𝜂) 𝑢 (𝑠 − 𝜂) 𝑑𝜂] 𝑑𝑠.

(41)

From (40), (41), and Lemma 5, we obtain

‖𝑢 (𝑡)‖ ≤ (
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
𝑡) 𝑒
−𝛾𝑡

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑒
−𝛾(𝑡−𝑠)

×

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐵𝐻 (𝑠) V (𝑠)

+ ∫

𝜏

0

𝑅 (𝜂)𝐻 (𝑠 − 𝜂) V (𝑠 − 𝜂) 𝑑𝜂

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑𝑠,

(42)
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‖V (𝑡)‖ ≤ (
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜓
󸀠󵄩󵄩
󵄩
󵄩
󵄩
𝑡) 𝑒
−𝛾𝑡

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑒
−𝛾(𝑡−𝑠)

×

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐷𝐿 (𝑠) 𝑢 (𝑠)

+ ∫

𝜏

0

𝑃 (𝜂) 𝐿 (𝑠 − 𝜂) 𝑢 (𝑠 − 𝜂) 𝑑𝜂

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑𝑠.

(43)

Let 𝑈(𝑡) = sup
𝜃∈[𝑡−𝜏,𝑡]

‖𝑢(𝜃)‖𝑒
𝛾𝜃, and 𝑉(𝑡) =

sup
𝜃∈[𝑡−𝜏,𝑡]

‖V(𝜃)‖𝑒𝛾𝜃; then

‖𝑢 (𝑠)‖ 𝑒
𝛾𝑠

≤ 𝑈 (𝑠) , ‖𝑢 (𝑠 − 𝜏)‖ 𝑒
𝛾(𝑠−𝜏)

≤ 𝑈 (𝑠) , (44)

‖V (𝑠)‖ 𝑒𝛾𝑠 ≤ 𝑉 (𝑠) , ‖V (𝑠 − 𝜏)‖ 𝑒
𝛾(𝑠−𝜏)

≤ 𝑉 (𝑠) . (45)

Thus, we have by (42) and (44) that

‖𝑢 (𝑡)‖ 𝑒
𝛾𝑡

≤
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
𝑡

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [ℎ𝜇 (𝐵) ‖V (𝑠)‖ 𝑒𝛾𝑠

+∫

𝜏

0

ℎ𝑅
󵄩
󵄩
󵄩
󵄩
V (𝑠 − 𝜂)

󵄩
󵄩
󵄩
󵄩
𝑒
𝛾(𝑠−𝜂)

𝑒
𝛾𝜂

𝑑𝜂] 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
𝑡

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

ℎ [𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

] 𝑉 (𝑠) 𝑑𝑠,

(46)

where 𝜇(𝐵) denotes the largest singular value of matrix 𝐵.
Similarly, by (43) and (45), we get

‖V (𝑡)‖ 𝑒𝛾𝑡

≤
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜓
󸀠󵄩󵄩
󵄩
󵄩
󵄩
𝑡

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

× [𝑙𝜇 (𝐷) ‖𝑥 (𝑠)‖ 𝑒
𝛾𝑠

+ ∫

𝜏

0

𝑙𝑃
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑠 − 𝜂)

󵄩
󵄩
󵄩
󵄩
𝑒
𝛾(𝑠−𝜂)

𝑒
𝛾𝜂

𝑑𝜂] 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜓
󸀠󵄩󵄩
󵄩
󵄩
󵄩
𝑡

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑙 [𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

] 𝑈 (𝑠) 𝑑𝑠.

(47)

Hence, by (46) and (47), we have

𝑈 (𝑡) ≤
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩1

(1 + 𝑡)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

ℎ [𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

] 𝑉 (𝑠) 𝑑𝑠,

𝑉 (𝑡) ≤
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩1

(1 + 𝑡)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑙 [𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

] 𝑈 (𝑠) 𝑑𝑠.

(48)

Set

𝑎
1
(𝑡) =

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩1

(1 + 𝑡) , 𝑎
2
(𝑡) =

󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩1

(1 + 𝑡) ,

𝑏
1
= ℎ (𝜇 (𝐵) + 𝑅𝜏𝑒

𝛾𝜏

) , 𝑏
2
= 𝑙 (𝜇 (𝐷) + 𝑃𝜏𝑒

𝛾𝜏

) .

(49)

By simple computation, we have

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑎
2
(𝑠) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩1

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(1 + 𝑠) 𝑑𝑠

=

󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩1

𝛼

𝑡
𝛼

(1 +

𝑡

𝛼 + 1

) ,

∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑎
1
(𝑠) 𝑑𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩1

∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

(1 + 𝑠) 𝑑𝑠

=

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩1

𝛽

𝑡
𝛽

(1 +

𝑡

𝛽 + 1

) .

(50)

It follows from (48)–(50) and Lemma 7 that

𝑈 (𝑡) ≤ [(1 + 𝑡)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩1

+

󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩1

𝛼

𝑡
𝛼

×(1 +

𝑡

𝛼 + 1

) ℎ (𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

) ]

⋅ 𝐸
𝛼+𝛽

[ℎl (𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

)

× (𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

) Γ (𝛼) Γ (𝛽) 𝑡
𝛼+𝛽

] ,

𝑉 (𝑡) ≤ [(1 + 𝑡)
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩1

+

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩1

𝛽

𝑡
𝛽

×(1 +

𝑡

𝛽 + 1

) 𝑙 (𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

) ]

⋅ 𝐸
𝛼+𝛽

[ℎ𝑙 (𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

)

× (𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

) Γ (𝛼) Γ (𝛽) 𝑡
𝛼+𝛽

] .

(51)
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By (51), we obtain

‖(𝑢 (𝑡) , V (𝑡))‖

= ‖𝑢 (𝑡)‖ + ‖V (𝑡)‖

≤ 𝑒
−𝛾𝑡󵄩

󵄩
󵄩
󵄩
(𝜑, 𝜓)

󵄩
󵄩
󵄩
󵄩1

((1 + 𝑡) + Θ (𝑡))

× 𝐸
𝛼+𝛽

[ℎ𝑙 (𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

)

× (𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

) Γ (𝛼) Γ (𝛽) 𝑡
𝛼+𝛽

] .

(52)

Thus, if condition (39) is satisfied and ‖(𝜑, 𝜓)‖
1

< 𝛿, then
‖(𝑢(𝑡), V(𝑡))‖ < 𝜀, 𝑡 ∈ 𝐽; that is, system (23) is finite-time
stable. This completes the proof.

4. An Illustrative Example

In this section, we give an example to illustrate the effective-
ness of our main result.

Consider the following two-state Caputo fractional BAM
type neural networks model with distributed delay

𝐶

0
𝐷

𝛼

𝑡
𝑥
1
(𝑡) = − 0.7𝑥

1
(𝑡) − 0.2𝑓

1
(𝑦
1
(𝑡)) + 0.1𝑓

2
(𝑦
2
(𝑡))

+ ∫

𝜏

0

𝑠
3/2

𝑓
1
(𝑦
1
(𝑡 − 𝑠)) 𝑑𝑠

+ ∫

𝜏

0

𝑠𝑓
2
(𝑦
2
(𝑡 − 𝑠)) 𝑑𝑠,

𝐶

0
𝐷

𝛼

𝑡
𝑥
2
(𝑡) = − 0.6𝑥

2
(𝑡) + 0.3𝑓

1
(𝑦
1
(𝑡)) + 0.2𝑓

2
(𝑦
2
(𝑡))

+ ∫

𝜏

0

𝑠𝑓
1
(𝑦
1
(𝑡 − 𝑠)) 𝑑𝑠

− ∫

𝜏

0

𝑠
3/2

𝑓
2
(𝑦
2
(𝑡 − 𝑠)) 𝑑𝑠,

𝐶

0
𝐷

𝛽

𝑡
𝑦
1
(𝑡) = − 0.7𝑦

1
(𝑡) + 0.4𝑔

1
(𝑥
1
(𝑡)) + 0.2𝑔

2
(𝑥
2
(𝑡))

− ∫

𝜏

0

𝑠𝑔
1
(𝑥
1
(𝑡 − 𝑠)) 𝑑𝑠

+ ∫

𝜏

0

𝑠
2

𝑔
2
(𝑥
2
(𝑡 − 𝑠)) 𝑑𝑠,

𝐶

0
𝐷

𝛽

𝑡
𝑦
2
(𝑡) = − 0.6𝑦

2
(𝑡) + 0.1𝑔

1
(𝑥
1
(𝑡)) − 0.3𝑔

2
(𝑥
2
(𝑡))

+ ∫

𝜏

0

𝑠
2

𝑔
1
(𝑥
1
(𝑡 − 𝑠)) 𝑑𝑠

+ ∫

𝜏

0

𝑠𝑔
2
(𝑥
2
(𝑡 − 𝑠)) 𝑑𝑠

(53)

with the initial condition

𝑥 (𝑡) = 𝜑 (𝑡) =

1

15

sin 𝑡, 𝑥
󸀠

(𝑡) = 𝜑
󸀠

(𝑡) =

1

15

cos 𝑡,

𝑡 ∈ [−𝜏, 0] ,

𝑦 (𝑡) = 𝜓 (𝑡) =

1

15

cos 𝑡, 𝑦
󸀠

(𝑡) = 𝜓
󸀠

(𝑡) = −

1

15

sin 𝑡,

𝑡 ∈ [−𝜏, 0] ,

(54)

where 𝛼 = 1.2, 𝛽 = 1.3, 𝜏 = 0.2, and𝑓
𝑗
(𝑥
𝑗
) = 𝑔

𝑗
(𝑥
𝑗
) =

(1/2)(|𝑥
𝑗
+ 1| − |𝑥

𝑗
− 1|), 𝑗 = 1, 2. It is easy to know that

(𝑥
∗

1
, 𝑥
∗

2
, 𝑦
∗

1
, 𝑦
∗

2
)
𝑇

= (0, 0, 0, 0)
𝑇 is an equilibrium point of

system (53). Since ‖(𝜑, 𝜓)‖
1

= 1/15 < 0.07, we may let
𝛿 = 0.07. Take

𝑡
0
= 0, 𝐽 = [0, 30) , 𝜀 = 1,

𝐶 = [

−0.7 0

0 −0.6
] , 𝐵 = [

−0.2 0.1

0.3 0.2
] ,

𝐷 = [

0.4 0.2

0.1 −0.3
] , 𝑅 (𝑠) = [

𝑠
3/2

𝑠

𝑠 −𝑠
3/2

] ,

𝑃 (𝑠) = [

−𝑠 𝑠
2

𝑠
2

𝑠

] .

(55)

It is easy to check that

ℎ = 𝑙 = 1, 𝛾 = 0.6, 𝜇 (𝐵) = 0.3828,

𝜇 (𝐷) = 0.4515, 𝑅 = 0.2894, 𝑃 = 0.24,

Θ (𝑡) = max {0.1697𝑡1.2 (𝑡 + 2.2) , 0.1691𝑡
1.3

(𝑡 + 2.3)} ,

𝐸
𝛼+𝛽

[ℎ𝑙 (𝜇 (𝐵) + 𝑅𝜏𝑒
𝛾𝜏

) (𝜇 (𝐷) + 𝑃𝜏𝑒
𝛾𝜏

) Γ (𝛼) Γ (𝛽) 𝑡
𝛼+𝛽

]

= 𝐸
2.5

(0.1867𝑡
2.5

) .

(56)

From condition (41) of Theorem 8, we can get

𝑒
−0.6𝑡

[ (1 + 𝑡)

+max {0.1697𝑡1.2 (𝑡 + 2.2) ,

0.1691𝑡
1.3

(𝑡 + 2.3)}]

× 𝐸
2.5

(0.1867𝑡
2.5

) <

1

0.07

.

(57)

We can obtain that the estimated time of finite-time stability
is 𝑇 ≈ 23.78. Hence, system (53) is finite-time stable with
respect to {0.07, 1, 0, [0, 30)}.
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