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The Cuntz comparison, introduced by Cuntz in early 1978, associates each C∗-algebra with an abelian semigroup which is an
invariant for the classification of the nuclear C∗-algebras and called the Cuntz semigroup. In this paper, we study the Cuntz
comparison in the standard C∗-algebra. We characterize the Cuntz comparison in terms of the dimension of the operator range.
Also, we consider the structure of the semilinear map which preserves the Cuntz comparison.

1. Introduction and the Statement of Results

Throughout this paper, let H and K be complex Hilbert
spaces, let B(H,K) be the algebra of all bounded linear
operators from H into K, and abbreviate B(H,H) to
B(H). For an operator 𝑇 ∈ B(H,K), by 𝑇∗, N(𝑇), and
R(𝑇) we denote the adjoint, the null space, and the range
of 𝑇, respectively. An operator 𝑇 ∈ B(H) is said to have
finite rank ifR(𝑇) is finite, dimensional, and, in this case, we
write rank(𝑇) = dim(R(𝑇)). Denote byF(H) the ideal of all
finite rank operators inB(H). A standard C∗-algebra acting
on the Hilbert space H is a C∗-subalgebra of B(H) which
contains the identity 𝐼 and the idealF(H). In this paper, we
always assume thatA andB are standard C∗-algebras acting
onH andK, respectively. Furthermore, we denote byA

+
the

positive cone of all positive elements inA.
In [1], Cuntz introduced a notion of the comparison

for positive elements which extends the usual Murray-von
Neumann comparison for projections in the C∗-algebra.This
comparison that we will denote by ≾ is nowadays called the
Cuntz comparison.

Definition 1 (see [1]). Let 𝐴, 𝐵 ∈ A
+
. One writes 𝐴 ≾ 𝐵, if

there exists a sequence (𝑋
𝑛
)
∞

𝑛=1
of elements inA such that

𝐴 = lim
𝑛→∞

𝑋
𝑛
𝐵𝑋
∗

𝑛
. (1)

In this case, we say that 𝐴 is Cuntz subequivalent to 𝐵.
Furthermore, we say that𝐴 is Cuntz equivalent to𝐵 andwrite
𝐴 ∼ 𝐵, if 𝐴 ≾ 𝐵 and 𝐵 ≾ 𝐴.

The Cuntz comparison plays an important role in Elliott’s
program for the classification of the nuclear separable simple
C∗-algebras. Indeed, the Cuntz comparison associates each
C∗-algebra with an abelian semigroup which is an invariant
for the classification of the nuclear C∗-algebras and called the
Cuntz semigroup. Recently, it has been studied intensively by
many authors (see [2–7]). In the present paper, we study the
Cuntz comparison in the standard C∗-algebra.

In Section 2, we characterize the Cuntz comparison in
terms of the dimension of the operator range. To classify
C∗-algebras via their Cuntz semigroups, one will prove
the uniqueness and existence theorem for homomorphisms
between C∗-algebras. The uniqueness theorem says that if
a semigroup map between the Cuntz semigroups of C∗-
algebrasA andB is induced by two homomorphisms 𝛼 and
𝛽 between C∗-algebras A and B, then 𝛽 = 𝐴𝑑𝑢 ∘ 𝛼 for
some unitary 𝑢 ∈ B. Motivated by the investigation of this
uniqueness theorem and the extensive study of the preserver
problems in matrix spaces or general operator algebras (see
[8–15]), we discuss the structure of the semilinear map 𝜙

betweenA
+
andB

+
which preserves the Cuntz comparison.

Recall that a map 𝜙 : A
+

→ B
+
is said to be semilinear

if 𝜙 is additive, and 𝜙(𝜆𝐴) = 𝜆𝜙(𝐴) for all positive numbers
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𝜆 and 𝐴 ∈ A
+
. Moreover, it is said to preserve the Cuntz

comparison, if 𝜙(𝐴) ≾ 𝜙(𝐵)whenever𝐴 ≾ 𝐵. In Section 3, we
present some results for the semilinear map which preserves
the Cuntz comparison.

2. The Cuntz Comparison in
the Standard C∗-Algebra

In this section, we characterize the Cuntz comparison in
terms of the dimension of the operator range.

Lemma 2. Let 𝐴, 𝐵 ∈ A
+
with 𝐴 ≾ 𝐵 and 𝐵 having finite

rank. Then

rank (𝐴) ≤ rank (𝐵) . (2)

Proof. Let rank(𝐵) = 𝑘. Then one has 𝑒
1
, . . . , 𝑒

𝑘
∈ H such

that

𝐵 =

𝑘

∑
𝑖=1

𝑒
𝑖
⊗ 𝑒
𝑖
, (3)

where 𝑒
𝑖
⊗ 𝑒
𝑖
is the rank-1 operator satisfying (𝑒

𝑖
⊗ 𝑒
𝑖
)(ℎ) =

⟨ℎ, 𝑒
𝑖
⟩𝑒
𝑖
for all ℎ ∈ H.

Since 𝐴 ≾ 𝐵, there exists a sequence {𝑋
𝑛
}
∞

𝑛=1
of elements

inA such that

𝐴 = lim
𝑛→∞

𝑋
𝑛
𝐵𝑋
∗

𝑛 (4)

with respect to the norm topology onB(H). It follows that

𝐴 = lim
𝑛→∞

𝑋
𝑛
(

𝑘

∑
𝑖=1

𝑒
𝑖
⊗ 𝑒
𝑖
)𝑋
∗

𝑛
= lim
𝑛→∞

𝑘

∑
𝑖=1

𝑋
𝑛
(𝑒
𝑖
) ⊗ 𝑋
𝑛
(𝑒
𝑖
)

(5)

with respect to the norm topology onB(H). So the sequence
{∑
𝑘

𝑖=1
𝑋
𝑛
(𝑒
𝑖
) ⊗𝑋
𝑛
(𝑒
𝑖
)}
∞

𝑛=1
is bounded, and thus, for each 𝑖, the

sequence {𝑋
𝑛
(𝑒
𝑖
)}
∞

𝑛=1
is bounded.Now, one has a subsequence

{𝑛
𝑗
}
∞

𝑗=1
and a sequence {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑘
} of elements in H such

that, for each 𝑖,

lim
𝑗→∞

𝑋
𝑛𝑗
(𝑒
𝑖
) = 𝑒
𝑖 (6)

with respect to the weak topology onH. Consequently,

lim
𝑗→∞

𝑘

∑
𝑖=1

𝑋
𝑛𝑗
(𝑒
𝑖
) ⊗ 𝑋
𝑛𝑗
(𝑒
𝑖
) =

𝑘

∑
𝑖=1

𝑒
𝑖
⊗ 𝑒
𝑖

(7)

with respect to the weak operator topology on B(H). By
formulas (5) and (7),

𝐴 =

𝑘

∑
𝑖=1

𝑒
𝑖
⊗ 𝑒
𝑖
. (8)

Thus 𝐴 has finite rank, and rank(𝐴) ≤ 𝑘 = rank(𝐵).

If 𝐴, 𝐵 ∈ A
+
and there exists an element 𝑋 ∈ A such

that 𝐴 = 𝑋𝐵𝑋∗, then 𝐴 ≾ 𝐵 by Definition 1. The converse
statement is not true in the general case (see [2]). But, we have
the following.

Theorem 3. Let 𝐴, 𝐵 ∈ A
+
with at least one of them having

finite rank. Then the following statements are equivalent:

(a) 𝐴 ≾ 𝐵,
(b) dim(R(𝐴)) ≤ dim(R(𝐵)),
(c) 𝐴 = 𝑋𝐵𝑋∗ for some finite rank operator𝑋 ∈ F(H).

Proof. It is clear that (c)⇒(a).
(a)⇒(b). Suppose that 𝐴 ≾ 𝐵. By Lemma 2, the desired

inequality clearly holds if 𝐵 has finite rank. Now, we suppose
that dim(R(𝐵)) is infinite. Then 𝐴 must have finite rank by
the given assumption. Thus, the inequality holds too.

(b)⇒(c). Suppose that dim(R(𝐴)) ≤ dim(R(𝐵)). Let 𝐴
and so 𝐴

1/2 have finite rank 𝑘. As 𝐵 ≥ 0, dim(R(𝐵)) =

dim(R(𝐵1/2)) and thus we see that

dim (R (𝐵
1/2

)) ≥ 𝑘. (9)

Pick a 𝑘-dimensional subspaceH
1
ofR(𝐵1/2) and denote by

𝑃H1 the orthogonal projection ofH onto H
1
. Then 𝑃H1𝐵

1/2

has rank 𝑘. Consequently, there is an invertible element 𝑈 ∈

A such that

𝐴
1/2

= 𝑈𝑃H1𝐵
1/2

. (10)

It follows that

𝐴 = 𝑈𝑃H1𝐵𝑃H1𝑈
∗

. (11)

And thus the rank-𝑘 operator𝑋 = 𝑈𝑃H1 does the job.

Theorem 3 shows the relation between theCuntz compar-
ison and the dimension of the operator range. Moreover, we
can characterize the rank-𝑘 positive operator in terms of the
Cuntz equivalence as follows.

Corollary 4. Let 𝐴 ∈ A
+
. The following statements are

equivalent:

(a) rank(𝐴) = 𝑘,
(b) 𝐴 ∼ 𝑋 for all𝑋 ∈ A

+
with rank(𝑋) = 𝑘,

(c) 𝐴 ∼ 𝑋 for some 𝑋 ∈ A
+
with rank(𝑋) = 𝑘.

Proof. It is clear that (b)⇒(c).
(a)⇒(b). If 𝑋 ∈ A

+
and rank(𝑋) = 𝑘, then 𝐴 ≾ 𝑋 and

𝑋 ≾ 𝐴 byTheorem 3, and so 𝐴 ∼ 𝑋 by Definition 1.
(c)⇒(a). Suppose that𝐴 ∼ 𝑋 and rank(𝑋) = 𝑘.Then𝐴 ≾

𝑋 and𝑋 ≾ 𝐴 by Definition 1. FromTheorem 3, it follows that
rank(𝐴) ≤ rank(𝑋) and rank(𝑋) ≤ rank(𝐴).Thus, rank(𝐴) =
rank(𝑋) = 𝑘.

3. Preserver of the Cuntz Comparison

In this section, we focus our attention on the semilinear map
𝜙 : A

+
→ B

+
which preserves the Cuntz comparison. The

map 𝜙 : A
+

→ B
+
is said to be semilinear if 𝜙 is additive,

and 𝜙(𝜆𝐴) = 𝜆𝜙(𝐴) for all positive numbers 𝜆 and 𝐴 ∈

A
+
. Moreover, it is said to preserve the Cuntz comparison,

if 𝜙(𝐴) ≾ 𝜙(𝐵) whenever 𝐴 ≾ 𝐵. And it is said to preserve
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the Cuntz comparison in both directions when 𝜙(𝐴) ≾ 𝜙(𝐵)

if and only if 𝐴 ≾ 𝐵. In a similar way, 𝜙 is said to preserve the
Cuntz equivalence, if 𝜙(𝐴) ∼ 𝜙(𝐵) whenever 𝐴 ∼ 𝐵. And it
is said to preserve the Cuntz equivalence in both directions
when 𝜙(𝐴) ∼ 𝜙(𝐵) if and only if 𝐴 ∼ 𝐵.

For 𝐴 ∈ A, we denote by 𝜎A(𝐴) the spectrum of 𝐴 as an
element in the C∗-algebraA.

Lemma 5 (see [16]). LetA andB be unital 𝐶∗-algebras with
a common identity and norm such thatA ⊆ B. If𝐴 ∈ A, then
𝜎A(𝐴) = 𝜎B(𝐴).

Theorem 6. Let 𝜙 : F(H)
+

→ F(K)
+
be a semilinear

surjective transformation. The following statements are equiv-
alent.

(a) 𝜙 preserves the Cuntz comparison in both directions.
(b) 𝜙 preserves the Cuntz equivalence in both directions.
(c) rank(𝜙(𝐴)) = rank(𝐴) for all 𝐴 ∈ F(H)

+
.

Proof. (a)⇒(b). Let 𝐴, 𝐵 ∈ F(H)
+
. Then 𝐴 ∼ 𝐵 if and only

if 𝐴 ≾ 𝐵 and 𝐵 ≾ 𝐴, and, by (a), this is the case if and only if
𝜙(𝐴) ≾ 𝜙(𝐵) and 𝜙(𝐵) ≾ 𝜙(𝐴), or, equivalently, if and only if
𝜙(𝐴) ∼ 𝜙(𝐵).

(b)⇒(c). By (b) and Corollary 4, one can conclude that,
for any 𝐴, 𝐵 ∈ F(H)

+
,

rank (𝐴) = rank (𝐵) ⇐⇒ rank (𝜙 (𝐴)) = rank (𝜙 (𝐵)) .
(12)

This induces an injective map 𝑓 on 𝑁
0
, the set of all

nonnegative integers, such that, for any nonnegative integer
𝑘 ∈ 𝑁

0
,

rank (𝐴) = 𝑘 ⇐⇒ rank (𝜙 (𝐴)) = 𝑓 (𝑘) . (13)

Furthermore, since 𝜙 is surjective, so is𝑓.Thus𝑓 is a bijective
map. We claim that 𝑓 is indeed the identity map. Once the
claim is proved, (c) of Theorem 6 clearly follows.

Suppose 𝑓 is not the identity map. Since 𝑓 is bijective,
there exist 𝑘 and 𝑙 in𝑁

0
such that

𝑘 < 𝑙, 𝑓 (𝑘) > 𝑓 (𝑙) . (14)

Now take an operator 𝐵 ∈ F
𝑙
(H)
+
, where F

𝑙
(H)
+
denotes

the set of all rank 𝑙 operators inF(H)
+
. One can always find

two operators 𝐵
1
∈ F
𝑘
(H)
+
and 𝐵

2
∈ F
𝑙−𝑘

(H)
+
such that

𝐵 = 𝐵
1
+ 𝐵
2
. (15)

Since 𝜙 is additive and 𝜙(𝐵
2
) is a positive operator, we have

𝑓 (𝑙) = rank (𝜙 (𝐵)) = rank (𝜙 (𝐵
1
) + 𝜙 (𝐵

2
))

≥ rank (𝜙 (𝐵
1
)) = 𝑓 (𝑘) > 𝑓 (𝑙) .

(16)

Contradiction is reached.
(c)⇒(a). Let 𝐴, 𝐵 ∈ F(H)

+
. Then 𝐴 ≾ 𝐵 if and only if

rank(𝐴) ≤ rank(𝐵) by Theorem 3, and this is the case if and
only if rank(𝜙(𝐴)) ≤ rank(𝜙(𝐵)) by (c), which again is the
case if and only if 𝜙(𝐴) ≾ 𝜙(𝐵) byTheorem 3.

Now, we give an explicit version of the surjective trans-
formation which preserves the Cuntz comparison in both
directions.

Proposition 7. Let 𝜙 : A
+

→ B
+

be a surjective
transformation. If𝑀 ∈ B(H,K) is invertible and

𝜙 (𝐴) = 𝑀𝐴𝑀
∗ (17)

for all 𝐴 ∈ A
+
, then 𝜙 preserves the Cuntz comparison in both

directions.

Proof. Let 𝐴, 𝐵 ∈ A
+
and 𝐴 ≾ 𝐵. Then by Definition 1,

one has a sequence (𝑋
𝑛
)
∞

𝑛=1
of elements in A such that 𝐴 =

lim
𝑛→∞

𝑋
𝑛
𝐵𝑋∗
𝑛
. It follows that

𝜙 (𝐴) = 𝑀𝐴𝑀
∗

= lim
𝑛→∞

𝑀𝑋
𝑛
𝑀
−1

𝑀𝐵𝑀
∗

𝑀
∗−1

𝑋
∗

𝑛
𝑀
∗

= lim
𝑛→∞

(𝑀𝑋
𝑛
𝑀
−1

) 𝜙 (𝐵) (𝑀𝑋
𝑛
𝑀
−1

)
∗

.

(18)

To prove 𝜙(𝐴) ≾ 𝜙(𝐵), it remains to show that𝑀𝑋
𝑛
𝑀−1 ∈ B

for all 𝑛.
Since A and B are the linear spans of A

+
and B

+
,

respectively, it is easy to see that 𝑀𝑋
𝑛
𝑀∗ ∈ B for all 𝑛.

Moreover, since 𝑀𝑀∗ is invertible in B(K) and 𝑀𝑀∗ =

𝜙(𝐼H) ∈ B
+
, we conclude by Lemma 5 that (𝑀𝑀∗)

−1

∈ B
+
.

Thus𝑀𝑋
𝑛
𝑀−1 = 𝑀𝑋

𝑛
𝑀∗(𝑀𝑀∗)

−1

∈ B for all 𝑛.
Conversely, let 𝐴, 𝐵 ∈ A

+
with 𝜙(𝐴) ≾ 𝜙(𝐵). Then by

Definition 1, one has a sequence (𝑌
𝑛
)
∞

𝑛=1
of elements inB such

that 𝜙(𝐴) = lim
𝑛→∞

𝑌
𝑛
𝜙(𝐵)𝑌∗

𝑛
. It follows that

𝐴 = 𝑀
−1

𝜙 (𝐴)𝑀
∗−1

= lim
𝑛→∞

𝑀
−1

𝑌
𝑛
𝜙 (𝐵) 𝑌

∗

𝑛
𝑀
∗−1

= lim
𝑛→∞

(𝑀
−1

𝑌
𝑛
𝑀)𝐵(𝑀

−1

𝑌
𝑛
𝑀)
∗

.

(19)

Now, to prove that 𝐴 ≾ 𝐵, we show that𝑀−1𝑌
𝑛
𝑀 ∈ A for all

𝑛.
Since 𝜙 is surjective,𝑀−1B

+
𝑀∗
−1

= 𝑀−1𝜙(A
+
)𝑀∗
−1

=

A
+
. Noting that B is the linear span of B

+
, 𝑀−1𝑌

𝑛
𝑀∗
−1

∈

A for all 𝑛. Furthermore, since 𝑀−1𝑀∗
−1 is invertible in

B(H) and 𝑀−1𝑀∗
−1

= 𝑀−1𝐼K𝑀∗
−1

∈ A
+
, 𝑀∗𝑀 =

(𝑀−1𝑀∗
−1

)
−1

∈ A
+
by Lemma 5 again. So 𝑀−1𝑌

𝑛
𝑀 =

(𝑀−1𝑌
𝑛
𝑀∗
−1

)(𝑀∗𝑀) ∈ A for all 𝑛.

Proposition 7 shows that if 𝜙 has the explicit form as
formula (17), then 𝜙 preserves the Cuntz comparison in
both directions. Unfortunately, the converse statement fails to
hold. A counterexample, indebted to Professor Fangyan Lu, is
presented as follows.

Example 8. Let A = 𝑀
2
(C) and let 𝜙 be a map on A

+
such

that

𝜙((
𝑎 𝑏

𝑏 𝑑
)) = (

𝑑 𝑏

𝑏 𝑎
) . (20)
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Then it is easy to check that 𝜙 is a continuous semilinear
surjective map and rank(𝜙(𝐴)) = rank(𝐴) for all 𝐴 ∈

A
+
. From Theorem 6, it follows that 𝜙 preserves the Cuntz

comparison in both directions.
Now, we show that 𝜙 does not have the explicit form as

formula (17). Indeed, suppose on the contrary that there is a
matrix𝑀 = (

𝑥 𝑢

V 𝑦 ) satisfying

𝜙 (𝐴) = 𝑀𝐴𝑀
∗ (21)

for all 𝐴 ∈ A
+
. Then one has

(
𝑥 𝑢

V 𝑦
)(

𝑎 𝑏

𝑏 𝑑
)(

𝑥 V
𝑢 𝑦

) = (
𝑑 𝑏

𝑏 𝑎
) (22)

for all 𝑎, 𝑏, 𝑑 ∈ C with 𝑎, 𝑑 ≥ 0 and 𝑎𝑑 ≥ |𝑏|2.
If we take 𝑏 = 𝑑 = 0 and 𝑎 = 1 in (22), then we get 𝑥 = 0

and |V| = 1. If we take 𝑎 = 𝑏 = 0 and 𝑑 = 1 in (22), we get
𝑦 = 0 and |𝑢| = 1. Hence from formula (22), 𝑢V𝑏 = 𝑏 for all
𝑏 ∈ C, which is impossible.
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