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Leptospirosis is an infectious disease that damages the liver and kidneys, found mainly in dogs and farm animals and caused by
bacteria. In this paper, we present the optimal control problem applied to a dynamical leptospirosis infected vector and human
population by using multiple control variables. First, we show the existence of the control problem and then use analytical and
numerical techniques to investigate the existence cost effective control efforts for prevention of indirect and direct transmission of
this disease. In order to do this, we consider three control functions two for human and one for vector population. We completely
characterize the optimal control problem and compute the numerical solution of the optimality system using an iterative method.

1. Introduction

Leptospirosis disease is a globally important infectious dis-
ease. The disease is caused by a bacteria which is called
Leptospira. Human as well as cattle is mostly infected from
this disease [1]. The human is infected by means of drinking
the water in which a rat was found dead, and cattle that
drink this water become infectious. The human whose urine
is used by other animals and cattle is also infected because
the leptospirosis disease germs come out in urine. Those
who wade through dirty water are mostly infected from this
disease. Weil’s first time described leptospirosis as a unique
disease process in 1886, while 30 years before Inada and his
colleagues identified the causal organism. The symptoms of
leptospirosis are high fever, headache, chills, muscle aches,
conjunctivitis (red eyes), diarrhea, vomiting, and kidney or
liver problems (which may also include jaundice), anemia,
and, sometimes, rash. Symptoms may last from a few days
and up to several weeks. Deaths from this disease may occur,
but they are rare. For some cases the infections can be mild
and without obvious symptom [2–6].

Many models have been proposed to represent the
dynamics of both human and vector population [7–9].
Pongsuumpun et al. [10] developed mathematical models to
study the behavior of leptospirosis disease. They represent
the rate of change for both rats and human population.
The human population is further divided into two main
groups: juveniles and adults. Triampo et al. [11] considered
a deterministic model for the transmission of leptospirosis
disease [11]. In their work they considered a number of lep-
tospirosis infections in Thailand and showed the numerical
simulations. Zaman [12] considered the real data presented
in [11] to study the dynamical behavior and role of optimal
control theory.The dynamical interaction including local and
global stability of leptospirosis infected vector and human
population can be found in Zaman et al. [13]. In their work
they also presented the bifurcation analysis and presented the
numerical simulations for different values of infection rate.
In [14], the author presented an epidemic model of malaria,
by using three control variables, and obtained their optimal
solutions; for more references, see, for example, [14–17].
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In this paper, we consider the basic model studied in [13]
to incorporate some important epidemiological features. We
use optimal control theory to reduce the proportion of the
infected human and infected vector population by usingmul-
tiple control. At the long-term level of infected human, every
infected human on average causes one further secondary
case. Therefore, if we can reduce the number of infected
humans further, the disease does less well and increase the
recovered human. Here we define the control variables; the
first control is to cover all cuts and wear dry, full-cover
boots, shoes and long sleeve shirts when handling animals.
The second control represents washing hands thoroughly
on a regular basis and showering after work. Cleaning up
both work place and home is our third control. To do this,
we first show the existence of the optimal control system.
Then, by solving the optimality system analytically, which
consists of the original state system, the adjoint system and
their boundary conditions. The real data presented for lep-
tospirosis epidemic inThailand have been used in numerical
simulations. We also conclude by discussing the results of
the numerical simulations for our epidemic mathematical
model.

The structure of the paper is organized as follows.
Section 2 is devoted to the mathematical formulation and
solution of the problem which is further divided into
the following subsections. Section 2.1 includes the formu-
lation of the mathematical model followed by Section 2.2
which contains optimal control problem whereas Section 2.3
explains the bifurcation analysis of the control problem. The
last Section 2.4 discusses the existence of control problem.
Section 3 is devoted to the numerical solution of the optimal-
ity system. Finally, the conclusion is presented in Section 4.

2. Mathematical Formulation and Solution

2.1. Mathematical Model. In this section, a vector-host
epidemic model with direct transmission is presented. The
host population at time 𝑡 is divided into susceptible 𝑆ℎ(𝑡),
𝐼ℎ(𝑡) infected and recovered 𝑅ℎ(𝑡) individuals. The vector
(rats) populations at time 𝑡 is divided into susceptible 𝑆V(𝑡)
and infected vector population 𝐼V(𝑡). The total population
of human is denoted by 𝑁ℎ and the total population of the
vector is denoted by 𝑁V. Thus, 𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡)

and 𝑁V(𝑡) = 𝑆V(𝑡) + 𝐼V(𝑡). The mathematical representa-
tion of the model which consists of the system of nonlin-
ear differential equations with five state variables is given
by

𝑑𝑆ℎ

𝑑𝑡
= 𝑏1 − 𝜇ℎ𝑆ℎ − 𝛽2𝑆ℎ𝐼V − 𝛽1𝑆ℎ𝐼ℎ + 𝜆ℎ𝑅ℎ,

𝑑𝐼ℎ

𝑑𝑡
= 𝛽2𝑆ℎ𝐼V + 𝛽1𝑆ℎ𝐼ℎ − 𝜇ℎ𝐼ℎ − 𝛿ℎ𝐼ℎ − 𝛾ℎ𝐼ℎ,

𝑑𝑅ℎ

𝑑𝑡
= 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ − 𝜆ℎ𝑅ℎ,

𝑑𝑆V

𝑑𝑡
= 𝑏2 − 𝛾V𝑆V − 𝛽3𝑆V𝐼ℎ,

𝑑𝐼V

𝑑𝑡
= 𝛽3𝑆V𝐼ℎ − 𝛾V𝐼V − 𝛿V𝐼V.

(1)

Here 𝑏1 is the recruitment rate of human population, sus-
ceptible human can be infected by two ways of transmission,
that is, directly or through infected individuals, and 𝛽1, 𝛽2

are the mediate transmission coefficients. 𝜇ℎ is the natural
mortality rate for human; 𝛾ℎ is the recovery rate for human
from the infections. We assumed that disease may be fatal
to some infectious host, so disease related death rate from
infected class occurs at humanpopulations at𝛿ℎ.The immune
human once again is susceptible at constant rate 𝜆ℎ. 𝑏2 is the
recruitment rate for vector population. The infectious vector
dies due to disease at vector populations at the rate of 𝛿V. 𝛽3

represents the disease carrying of susceptible vector per host
per unit time; 𝛾V is the death rate of vector.

2.2. Optimal Control Problem. Optimal control theory is
a powerful mathematical tool which makes the decision
involving complex dynamical systems [18]. Optimal control
method has been used to study the dynamics of the disease;
we refer the reader to [19–21]; no such method is used,
according to the author’s knowledge, to determine optimal
control measure for vector-host epidemic direct transmis-
sion. The problem is to minimize the infected human and
vector population and to maximize the recovered human
population. In the system (1) we have five state variables 𝑆ℎ(𝑡),
𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝑆V(𝑡), and 𝐼V(𝑡). In this optimal control problem
we use three control variables.

(i) The first control 𝑢1(𝑡) (Figure 7) represents that
human should cover all cuts, abrasions with water-
proof dressing, grazes, wear dry clothes, wear full-
cover shoes, gloves, and use the shirts with long
sleeves when handling the animals.

(ii) The second control 𝑢2(𝑡) (Figure 8) shows that after
work human should bath or shower regularly and
adopt the habit of washing hands regularly.

(iii) Our third control 𝑢3(𝑡) (Figure 9) represents cleaning
the home and working area.

In the human population, the associated force of infections
are reduced by factors of (1−𝑢1(𝑡)) and (1−𝑢2(𝑡)), respectively.
We assume that the mortality rate of vector population
increases at a rate proportional to 𝑢3(𝑡), where 𝜖1 > 0 and
𝜖2 > 0 are rate constants. Taking into account the extensions
and assumptions made above, it follows that the dynamics of
the system (1) are governed by the following system of five
differential equations:

𝑑𝑆ℎ

𝑑𝑡
= 𝑏1 − 𝜇ℎ𝑆ℎ − 𝛽2𝑆ℎ𝐼V (1 − 𝑢1 (𝑡))

− 𝛽1𝑆ℎ𝐼ℎ (1 − 𝑢2 (𝑡)) + 𝜆ℎ𝑅ℎ,
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𝑑𝐼ℎ

𝑑𝑡
= 𝛽2𝑆ℎ𝐼V (1 − 𝑢1 (𝑡)) + 𝛽1𝑆ℎ𝐼ℎ (1 − 𝑢2 (𝑡))

− 𝜇ℎ𝐼ℎ − 𝛿ℎ𝐼ℎ − 𝛾ℎ𝐼ℎ − 𝑢2 (𝑡) 𝐼ℎ,

𝑑𝑅ℎ

𝑑𝑡
= 𝛾ℎ𝐼ℎ − 𝜇ℎ𝑅ℎ − 𝜆ℎ𝑅ℎ + 𝑢1 (𝑡) 𝑆ℎ + 𝑢2 (𝑡) 𝐼ℎ,

𝑑𝑆V

𝑑𝑡
= 𝑏2 − 𝛾V𝑆V − 𝛽3𝑆V𝐼ℎ − 𝜖1𝑢3 (𝑡) 𝑆V,

𝑑𝐼V

𝑑𝑡
= 𝛽3𝑆V𝐼ℎ − 𝛾V𝐼V − 𝛿V𝐼V − 𝜖2𝑢3 (𝑡) 𝐼V

(2)

with initials conditions

𝑆ℎ (0) ≥ 0, 𝐼ℎ (0) ≥ 0, 𝑅ℎ (0) ≥ 0,

𝑆V (0) ≥ 0, 𝐼V (0) ≥ 0,

(3)

where 𝐴1, 𝐴2, 𝐵1, and 𝐵2 are positive constants to keep
the balance of the size of the individuals 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑆V(𝑡),
and 𝐼V(𝑡), respectively. For the optimal control problem we
consider the control variable 𝑢1 ∈ 𝑈. Here, 𝑢1, 𝑢2, 𝑢3 ∈ 𝑈 is
measurable; 0 ≤ 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡) ≤ 1.

2.3. Bifurcation Analysis of the Control Problem. In this sub-
section, we present the endemic equilibria which is further
used in the bifurcation analysis. In order to do this we set
the left-hand side of the system (2) equal to zero and use the
technique developed in [22], getting

𝑆
∗

ℎ
=

𝑃1𝑃2 (𝛾V + 𝛽3𝐼
∗

ℎ
+ 𝜖1𝑢3)

𝛽2𝛽3𝑏2 (1 − 𝑢1) + 𝑃1𝛽1 (1 − 𝑢2) (𝛾V + 𝛽3𝐼
∗

ℎ
+ 𝜖1𝑢3)

,

𝑆
∗

V =
𝑏2

𝛾V + 𝛽3𝐼
∗

ℎ
+ 𝜖1𝑢3

,

𝐼
∗

V =
𝛽3𝑏2𝐼

∗

ℎ

𝑃1 (𝛾V + 𝛽3𝐼
∗

ℎ
+ 𝜖1𝑢3)

,

𝑅
∗

ℎ
= (𝑃3𝐼

∗

ℎ
(𝛽2𝛽3𝑏2 (1 − 𝑢1)

+𝑃1𝛽1 (1 − 𝑢2) (𝛾V + 𝛽3𝐼
∗

ℎ
+ 𝜖1𝑢3) + 𝑢1)

×𝑃1𝑃2 (𝛾V + 𝛽3𝐼
∗

ℎ
+ 𝜖1𝑢3))

× (𝑃4 (𝛽2𝛽3𝑏2 (1 − 𝑢1) + 𝑃1𝛽1 (1 − 𝑢2)

× (𝛾V + 𝛽3𝐼
∗

ℎ
+ 𝜖1𝑢3)))

−1
,

(4)

where

𝑃1 = 𝛾V + 𝛿V + 𝜖2𝑢3,

𝑃2 = 𝜇ℎ + 𝛿ℎ + 𝛾ℎ + 𝑢2,

𝑃3 = 𝜇ℎ + 𝜆ℎ.

(5)

The reproduction number for the control system (2) is given
by

𝐾𝑢 =
𝑏1

𝜇ℎ

(
𝛽2𝛽3𝑏2 (1 − 𝑢1)

𝑃1𝑃2 (𝛾V − 𝜖1𝑢3)
+
𝛽1 (1 − 𝑢2)

𝑃2

) . (6)

The reproduction number for without control system is given
by

𝐾0 =
𝑏1

𝜇ℎ

(
𝛽2𝛽3𝑏2

𝛾V𝑃
1

0
𝑃

2

0

+
𝛽1

𝑃
2

0

) , (7)

where 𝑃1

0
= (𝛿V + 𝛾V) and 𝑃

2

0
= (𝜇ℎ + 𝛿ℎ + 𝛾ℎ). In the above

expression for the endemic equilibria the infected component
𝐼
∗

ℎ
is nonzero. Using the value of 𝑆∗

ℎ
, 𝑅∗

ℎ
, and 𝐼

∗

V in the first
equation of the system (2), we obtained

𝑓 (𝐼
∗

ℎ
) = 𝑎𝐼

∗

ℎ

2
+ 𝑏𝐼

∗

ℎ
+ 𝑐 = 0, (8)

where

𝑎 = 𝜆ℎ𝛽
2

3
𝑃1𝛽1 (1 − 𝑢2) ,

𝑏 = 𝜆ℎ𝛽
2

3
𝛽2𝑏2 (1 − 𝑢1) + 𝑃4𝑏1𝛽1𝑃1 (1 − 𝑢2) 𝛽3

+ 𝜆ℎ𝛽3𝑃1 (𝛾V + 𝜖1𝑢3) 𝛽1 (1 − 𝑢2)

− 𝑃2𝑃4𝛽2 (1 − 𝑢1) 𝛽3𝛽2𝑏2 − 𝛽1 (1 − 𝑢2) 𝑃1𝛽3

+ 𝑢1𝜆ℎ𝑃1𝛽3,

𝑐 = −𝑃1𝑃2𝑃4 (𝛾V + 𝜖1𝑢3) 𝜇ℎ (𝛽1 (1 − 𝑢2) − 𝑢1𝜆ℎ) (1 − 𝐾𝑢) .

(9)

Here the coefficient 𝑎 is positive always and 𝑐 depends
upon the value of 𝐾𝑢; if the value of 𝐾𝑢 < 1, then 𝑐

is positive; otherwise negative. The positive solution of the
above equation depends upon the value of 𝑏 and 𝑐. For the
value of 𝐾𝑢 > 1, the above equation leads to two roots,
positive and negative. If we substitute 𝐾𝑢 = 1, then the
equation has no positive solution. This is possible if and only
if 𝑏 < 0. For 𝑏 < 0 and 𝐾𝑢 = 1, the equilibria depend upon
𝐾𝑢; then there exists an open interval having two positive
roots, that is, 𝐼1 = (−𝑏 − √𝑏

2
− 4𝑎𝑐)/2𝑎 and 𝐼2 = (−𝑏 +

√𝑏
2
− 4𝑎𝑐)/2𝑎. For 𝑐 > 0 either 𝑏2

< 4𝑎𝑐 or 𝑏 ≥ 0, then
the above have no positive solution.

For backward bifurcation, we set 𝑏2
−4𝑎𝑐 = 0 and𝐾𝑢 = 𝑅𝑐

and solve for the critical value of 𝐾𝑐, which is given by

𝑅𝑐 = 1 −
𝑏
2

4𝑎𝑃1𝑃2𝑃4 (𝛾V + 𝜖1𝑢3) 𝜇ℎ (𝛽1 (1 − 𝑢2) − 𝑢1𝜆ℎ)
.

(10)

It is proved by simulating the set of parameter values pre-
sented in Table 1. Figure 1 shows the bifurcation of the control
system (2). The high bold black line shows the bifurcation at
𝑢1 = 𝑢2 = 𝑢3 = 0, that is, without control. The small black
bold line shows the bifurcation at 𝑢1 = 𝑢2 = 𝑢3 ̸= 0, that
is, with control. The change occurs in the bifurcation rapidly
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Table 1: Parameter values used in the control bifurcation.

Notation Value
𝑏2 10
𝛽1 0.048
𝛽3 0.006
𝑢2 0.001
𝜆ℎ 0.068
𝛾ℎ 0.041
𝑏1 10
𝛽2 0.0008
𝑢1 0.541
𝑢3 0.081
𝜇ℎ 0.091
𝛿ℎ 0.10
𝛿V 0.009
𝜖2 0.009
𝜖1 0.00001
𝛾V 0.087
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Figure 1: The plot shows the backward bifurcation for control and
without control system.

when we apply the control variable. 𝑢1 is the first control,
which is represented by the bold dotted line, the dotted
dashed line represents the second control, which shows the
change in the control, the very narrow dotted line represent
the third control, and bifurcation occurs for the control
variable.

2.4. Existence of Control Problem. We use the bounded
Lebesgue measurable control and define our objective func-
tional as

𝐽 (𝑢1, 𝑢2, 𝑢3)

= min∫
𝑇

0

(𝐴1𝑆ℎ (𝑡) + 𝐴2𝐼ℎ (𝑡) + 𝐵1𝑆V (𝑡) + 𝐵2𝐼V (𝑡)

+
1

2
(𝑊1𝑢

2

1
+𝑊2𝑢

2

2
+𝑊3𝑢

2

3
)) 𝑑𝑡.

(11)
Here, in (11), 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝑊1, 𝑊2, and 𝑊3 represent the
weight/balance factors just to keep the balance of individuals
in the objective functional. The control set is defined as

𝑈 = {𝑢 = (𝑢1, 𝑢2, 𝑢3) | 𝑢𝑖 (𝑡) is Lebesgue measureable,

0 ≤ 𝑢𝑖 (𝑡) ≤ 1, 𝑡 ∈ [0, 𝑇] , for 𝑖 = 1, 2, 3} .

(12)

Note. The details of the control variables 𝑢1, 𝑢2, and 𝑢3 are
available in Section 2.2.

First, we show the existence for the control system (2).
Let 𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝑆V(𝑡), and 𝐼V(𝑡) be the state variables
with control variables 𝑢1(𝑡), 𝑢2(𝑡), and 𝑢3(𝑡). For existence we
consider the control system (2).Thenwe can write the system
(2) in the following form:

𝑋
󸀠
= 𝐴𝑋 + 𝐹 (𝑋) , (13)

where

𝑋
󸀠
=

[
[
[
[
[
[

[

𝑆ℎ (𝑡)

𝐼ℎ (𝑡)

𝑅ℎ (𝑡)

𝑆V (𝑡)

𝐼V (𝑡)

]
]
]
]
]
]

]

,

𝐴 =

[
[
[
[
[

[

−𝜇ℎ 0 𝜆ℎ 0 0

0 −𝜇ℎ − 𝛿ℎ − 𝛾ℎ − 𝑢2 (𝑡) 0 0 0

𝑢1 𝛾ℎ + 𝑢2 (𝑡) −𝜇ℎ − 𝜆ℎ 0 0

0 0 0 −𝛾V − 𝜖1𝑢3 (𝑡) 0

0 0 0 0 −𝛾V − 𝛿V − 𝜖2𝑢3 (𝑡)

]
]
]
]
]

]

,

𝐹 (𝑋) =

[
[
[
[
[
[

[

𝑏1 − 𝛽2𝑆ℎ (𝑡) 𝐼V (1 − 𝑢1 (𝑡)) − 𝛽1𝑆ℎ (𝑡) 𝐼ℎ (𝑡) (1 − 𝑢2 (𝑡))

𝛽2𝑆ℎ (𝑡) 𝐼V (1 − 𝑢1 (𝑡)) + 𝛽1𝑆ℎ (𝑡) 𝐼ℎ (𝑡) (1 − 𝑢2 (𝑡)) (1 − 𝑢2 (𝑡))

0

𝑏2 − 𝛽3𝑆V (𝑡) 𝐼ℎ (𝑡)

𝛽3𝑆V (𝑡) 𝐼ℎ (𝑡)

]
]
]
]
]
]

]

,

(14)
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where 𝑋󸀠 denotes the derivative with respect to time 𝑡. The
system (13) is a nonlinear system with a bounded coefficient.
We set

𝐺 (𝑋) = 𝐴𝑋 + 𝐹 (𝑋) . (15)

The second term on the right-hand side of (15) satisfies
󵄨󵄨󵄨󵄨
𝐹 (𝑋1) − 𝐹 (𝑋2)

󵄨󵄨󵄨󵄨

≤ 𝐶1 (
󵄨󵄨󵄨󵄨
(𝑆1ℎ (𝑡) − 𝑆2ℎ (𝑡))

󵄨󵄨󵄨󵄨
+ 𝐶2

󵄨󵄨󵄨󵄨
(𝐼1ℎ (𝑡) − 𝐼2ℎ (𝑡))

󵄨󵄨󵄨󵄨

+ 𝐶3

󵄨󵄨󵄨󵄨
(𝑅1ℎ (𝑡) − 𝑅2ℎ (𝑡))

󵄨󵄨󵄨󵄨
+ 𝐶4

󵄨󵄨󵄨󵄨
(𝑆1V (𝑡) − 𝑆2V (𝑡))

󵄨󵄨󵄨󵄨

+ 𝐶5

󵄨󵄨󵄨󵄨
(𝐼1V (𝑡) − 𝐼2V (𝑡))

󵄨󵄨󵄨󵄨
)

≤ 𝐶 (
󵄨󵄨󵄨󵄨
(𝑆1ℎ (𝑡) − 𝑆2ℎ (𝑡))

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
(𝐼1ℎ (𝑡) − 𝐼2ℎ (𝑡))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨
(𝑅1ℎ (𝑡) − 𝑅2ℎ (𝑡))

󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨
(𝑆1V (𝑡) − 𝑆2V (𝑡))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨
(𝐼1V (𝑡) − 𝐼2V (𝑡))

󵄨󵄨󵄨󵄨
) ,

(16)

where the positive constant 𝐶 = max(𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5) is
independent of the state variables. Also we have

󵄨󵄨󵄨󵄨
𝐺 (𝑋1) − 𝐺 (𝑋2)

󵄨󵄨󵄨󵄨
≤ 𝐶

󵄨󵄨󵄨󵄨
𝑋1 − 𝑋2

󵄨󵄨󵄨󵄨
, (17)

where 𝐶 = 𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 + 𝐶5 + ‖𝑀‖ < ∞. So, it
follows that the function𝐺 is uniformly Lipschitz continuous.
From the definition of control variables and nonnegative
initial conditions we can see that a solution of the system
(13) exists; see [23]. Now, we consider the control system (2)
with the initial conditions (3) to show the existence of the
control problem.Note that for bounded Lebesguemeasurable
controls and nonnegative initial conditions, nonnegative
bounded solutions to the state system exist [23]. Let us go
back to the optimal control problem (2)-(3). In order to find
an optimal solution, first we will find the Lagrangian 𝐿 and
Hamiltonian 𝐻 for the optical control problem (2)-(3). The
Lagrangian for our control problem is given by

𝐿 = 𝐴1𝑆ℎ + 𝐴2𝐼ℎ + 𝐵1𝑆V + 𝐵2𝐼V

+
1

2
(𝑊1𝑢

2

1
+𝑊2𝑢

2

2
+𝑊3𝑢

2

3
) .

(18)

For the minimum value of Lagrangian, we define the Hamil-
tonian for the control problem:

𝐻 = 𝐿 (𝑆ℎ, 𝐼ℎ, 𝑆V, 𝐼V, 𝑢1, 𝑢2, 𝑢3)

+ 𝜆1

𝑑𝑆ℎ

𝑑𝑡
+ 𝜆2

𝑑𝐼ℎ

𝑑𝑡
+ 𝜆3

𝑑𝑅ℎ

𝑑𝑡
+ 𝜆4

𝑑𝑆V

𝑑𝑡
+ 𝜆5

𝑑𝐼V

𝑑𝑡
.

(19)

For the existence of our control problem, we state and prove
the following theorem.

Theorem1. Thereexistsanoptimal control𝑢∗
= (𝑢

∗

1
, 𝑢

∗

2
, 𝑢

∗

3
) ∈

𝑈 such that

𝐽 (𝑢
∗

1
, 𝑢

∗

2
, 𝑢

∗

3
) = min

(𝑢1,𝑢2 ,𝑢3)∈𝑈

𝐽 (𝑢1, 𝑢2, 𝑢3) , (20)

subject to the control system (2) with the initial conditions (3).

Proof. To prove the existence of an optimal control, we use
the result in [24]; the control and the state variable are
nonnegative values. In this minimizing of the problem, the
necessary convexity of the objective functional in 𝑢1, 𝑢2, and
𝑢3 is satisfied. The set of control variables (𝑢1, 𝑢2, 𝑢3) ∈ 𝑈 is
also convex and closed by the definition. The optimal system
is boundedwhich determines the compactness needed for the
existence of optimal control. The integrand in the objective
functional (11) is𝐴1𝑆(𝑡)+𝐴2𝐼(𝑡)+𝐵1𝑆V+𝐵2𝐼V+(1/2)(𝑊1𝑢

2

1
+

𝑊2𝑢
2

2
+ 𝑊3𝑢

2

3
) which is convex in the control set 𝑈. Also we

can easily see that there exist a constant 𝜎 > 1 and positive
numbers 𝜔1 and 𝜔2 such that

𝐽 (𝑢1, 𝑢2, 𝑢3) ≥ 𝜔1 (
󵄨󵄨󵄨󵄨
𝑢1

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨
𝑢2

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨
𝑢3

󵄨󵄨󵄨󵄨

2
)
𝜎/2

− 𝜔2,
(21)

which is the existence of an optimal control problem.

To find the optimal solution, we apply Pontryagin’s
maximum principle [25] given by the following.

If (𝑥, 𝑢) is an optimal solution for an optimal control
problem, then there exists a nontrivial vector function 𝜆 =

(𝜆1, 𝜆2, . . . , 𝜆𝑛) which satisfies the following inequalities:

𝑑𝑥

𝑑𝑡
=

𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝜆
,

0 =
𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝑢
,

𝑑𝜆

𝑑𝑡
= −

𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝑥
.

(22)

Nowwe apply the necessary conditions to theHamiltonian𝐻
in (19).

Theorem 2. Suppose that 𝑆∗

ℎ
, 𝐼∗

ℎ
, 𝑅∗

ℎ
, 𝑆∗

V and 𝐼
∗

V are the opti-
mal state solutions with associated optimal control variables
(𝑢

∗

1
, 𝑢

∗

2
, 𝑢

∗

3
) for the optimal control problem (2)-(3). Then there

exist adjoint variables 𝜆𝑖, for 𝑖 = 1, 2, . . . , 5, satisfying

𝑑𝜆1

𝑑𝑡
= (𝜆1 − 𝜆2) (𝛽2𝐼V (1 − 𝑢1) + 𝛽1𝐼ℎ (1 − 𝑢2))

+ 𝜆1𝜇ℎ − 𝑢1𝜆3 − 𝐴1,

𝑑𝜆2

𝑑𝑡
= (𝜆1 − 𝜆2) 𝛽1𝑆ℎ (1 − 𝑢2) + 𝜇ℎ𝜆2 + 𝛿ℎ𝜆2 + 𝛾ℎ𝜆2

+ 𝑢2𝜆2 − 𝜆3𝛾ℎ − 𝜆3𝑢2 + 𝛽3𝑆V (𝜆4 − 𝜆5) − 𝐴2,

𝑑𝜆3

𝑑𝑡
= (𝜆3 − 𝜆1) 𝜆ℎ + 𝜇ℎ𝜆3,

𝑑𝜆4

𝑑𝑡
= (𝜆4 − 𝜆5) 𝛽3𝐼ℎ + 𝜆4𝛾V + 𝜆4𝜖1𝑢3 − 𝐵1,

𝑑𝜆5

𝑑𝑡
= (𝜆1 − 𝜆2) 𝛽2𝑆ℎ (1 − 𝑢1)

− 𝜆5𝜇V + 𝜆5𝛾V + 𝜆5𝛿V + 𝜆5𝜖2𝑢3 − 𝐵2

(23)

with transversality conditions (or boundary conditions)

𝜆𝑖 (𝑇) = 0, 𝑖 = 1, 2, . . . , 5. (24)
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Furthermore, optimal controls 𝑢∗

1
, 𝑢∗

2
, and 𝑢∗

3
are given by

𝑢
∗

1
= max{min{

(𝜆2 − 𝜆1) 𝛽2𝑆
∗

ℎ
𝐼
∗

V − 𝜆3𝑆
∗

ℎ

𝑊1

, 1} , 0} ,

𝑢
∗

2
= max{min{

(𝜆2 − 𝜆1) 𝛽1𝑆
∗

ℎ
𝐼
∗

ℎ
+ (𝜆2 − 𝜆3) 𝐼

∗

ℎ

𝑊2

, 1} , 0} ,

𝑢
∗

3
= max{min{

(𝜆4𝜖1𝑆
∗

V + 𝜆5𝜖2𝐼
∗

V )

𝑊3

, 1} , 0} .

(25)

Proof. To find the adjoint equations and the transversality
conditions, we use the Hamiltonian (19). By setting 𝑆ℎ(𝑡) =

𝑆
∗

ℎ
(𝑡), 𝐼ℎ(𝑡) = 𝐼

∗

ℎ
(𝑡), 𝑅ℎ(𝑡) = 𝑅

∗

ℎ
(𝑡), 𝑆V(𝑡) = 𝑆

∗

V (𝑡), and 𝐼V(𝑡) =

𝐼
∗

V (𝑡) and differentiating the Hamiltonian (19) with respect to
𝑆ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆V, and 𝐼V, respectively, we get (23). Then solving
the equations 𝜕𝐻/𝜕𝑢1 = 0, 𝜕𝐻/𝜕𝑢2 = 0, and 𝜕𝐻/𝜕𝑢3 = 0 on
the interior of the control set and then using the optimality
conditions and also the property of control space 𝑈, we can
derive (25).

Here we call formulas (25) for the characterization of
the optimal control. The optimal control and the state are
determined by solving the optimality system,which consist of
the state system (1), the adjoint system (23), initial conditions
at (3), boundary conditions (24), and the characterization of
the optimal control (𝑢∗

1
, 𝑢

∗

2
, 𝑢

∗

3
) which is given by (25). In

addition, the second derivative of the Lagrangianwith respect
to 𝑢1, 𝑢2, and 𝑢3, respectively, is positive, which shows the
minimum of the optimal control 𝑢∗

1
, 𝑢∗

2
, and 𝑢∗

3
. Substituting

the values of 𝑢∗

1
, 𝑢∗

2
, and 𝑢

∗

3
in the control system (2), we

obtain the following system:

𝑑𝑆
∗

ℎ

𝑑𝑡

= 𝑏1 − 𝜇ℎ𝑆
∗

ℎ
− 𝛽2𝑆

∗

ℎ
𝐼
∗

V

× (1 −max{min{
(𝜆2 − 𝜆1) 𝛽2𝑆

∗

ℎ
𝐼
∗

V − 𝜆3𝑆
∗

ℎ

𝑊1

, 1} , 0})

−𝛽1𝑆
∗

ℎ
𝐼
∗

ℎ
(1 − max{min{

(𝜆2 − 𝜆1) 𝛽1𝑆
∗

ℎ
𝐼
∗

ℎ
+ (𝜆2 − 𝜆3) 𝐼

∗

ℎ

𝑊2

, 1} , 0})

+ 𝜆ℎ𝑅
∗

ℎ
,

𝑑𝐼
∗

ℎ

𝑑𝑡

= 𝛽2𝑆
∗

ℎ
𝐼
∗

V (1 −max{min{
(𝜆2 − 𝜆1) 𝛽2𝑆

∗

ℎ
𝐼
∗

V − 𝜆3𝑆
∗

ℎ

𝑊1

, 1} , 0})

− 𝜇ℎ𝐼
∗

ℎ
− 𝛿ℎ𝐼

∗

ℎ
+ 𝛽1𝑆

∗

ℎ
𝐼
∗

ℎ

×(1 −max{min{
(𝜆2 − 𝜆1) 𝛽1𝑆

∗

ℎ
𝐼
∗

ℎ
+ (𝜆2 − 𝜆3) 𝐼

∗

ℎ

𝑊2

, 1} , 0})

−𝛾ℎ𝐼
∗

ℎ
− (max{min{

(𝜆2 − 𝜆1) 𝛽1𝑆
∗

ℎ
𝐼
∗

ℎ
+ (𝜆2 − 𝜆3) 𝐼

∗

ℎ

𝑊2

, 1} , 0}) 𝐼
∗

ℎ
,

𝑑𝑅
∗

ℎ

𝑑𝑡

= 𝛾ℎ𝐼
∗

ℎ
− 𝜇ℎ𝑅

∗

ℎ
− 𝜆ℎ𝑅

∗

ℎ

+ (max{min{
(𝜆2 − 𝜆1) 𝛽2𝑆

∗

ℎ
𝐼
∗

V − 𝜆3𝑆
∗

ℎ

𝑊1

, 1} , 0}) 𝑆
∗

ℎ

+(max{min{
(𝜆2 − 𝜆1) 𝛽1𝑆

∗

ℎ
𝐼
∗

ℎ
+ (𝜆2 − 𝜆3) 𝐼

∗

ℎ

𝑊2

, 1}, 0}) 𝐼
∗

ℎ
,

𝑑𝑆
∗

V

𝑑𝑡

= 𝑏2 − 𝛾V𝑆
∗

V − 𝛽3𝑆
∗

V 𝐼
∗

ℎ

− 𝜖1𝑆
∗

V (max{min{
(𝜆4𝜖1𝑆

∗

V + 𝜆5𝜖2𝐼
∗

V )

𝑊3

, 1} , 0}) ,

𝑑𝐼
∗

V

𝑑𝑡

= 𝛽3𝑆
∗

V 𝐼
∗

ℎ
+ 𝜇V𝐼

∗

V − 𝛾V𝐼
∗

V − 𝛿V𝐼
∗

V

− 𝜖2𝐼
∗

V (max{min{
(𝜆4𝜖1𝑆

∗

V + 𝜆5𝜖2𝐼
∗

V )

𝑊3

, 1} , 0})

(26)

with Hamiltonian 𝐻
∗ at (𝑡, 𝑆

∗

ℎ
, 𝐼

∗

ℎ
, 𝑅

∗

ℎ
, 𝑆

∗

V , 𝐼
∗

V , 𝑢
∗

1
, 𝑢

∗

2
, 𝑢

∗

3
, 𝜆1,

𝜆2, 𝜆3, 𝜆4, 𝜆5):
𝐻

∗
= 𝐴1𝑆

∗

ℎ
+ 𝐴2𝐼

∗

ℎ
+ 𝐵1𝑆

∗

V + 𝐵2𝐼
∗

V

+
1

2
(𝑊1(max{min{

(𝜆2 − 𝜆1) 𝛽2𝑆
∗

ℎ
𝐼
∗

V − 𝜆3𝑆
∗

ℎ

𝑊1

, 1}, 0})

2

+ 𝑊2

×(max{min{
(𝜆2 − 𝜆1) 𝛽1𝑆

∗

ℎ
𝐼
∗

ℎ
+ (𝜆2 − 𝜆3) 𝐼

∗

ℎ

𝑊2

,1}, 0})

2

+ 𝑊3

×(max{min{
(𝜆4𝜖1𝑆

∗

V + 𝜆5𝜖2𝐼
∗

V )

𝑊3

, 1} , 0})

2

)

+𝜆1

𝑑𝑆
∗

ℎ

𝑑𝑡
+ 𝜆2

𝑑𝐼
∗

ℎ

𝑑𝑡
+ 𝜆3

𝑑𝑅
∗

ℎ

𝑑𝑡
+ 𝜆4

𝑑𝑆
∗

V

𝑑𝑡
+ 𝜆5

𝑑𝐼
∗

V

𝑑𝑡
.

(27)

3. Numerical Results and Discussion

In this section, we present the numerical simulation for
the proposed model with and without control system. The
proposed model (1) and (2) is solved by the Runge-Kutta
order 4 scheme and then we compare the control system
with and without control. The optimal strategy is obtained
by solving the state system and the adjoint system with the
transversality conditions. In our numerical simulations, we
first start to solve the control system (2) by using the Runge-
Kutta order 4 scheme forward method in time and then
solve the state equations and the adjoint system with the
backward method previous iterations and the value from the
characterization of system (25). The weight constants used in
the objective functional are𝐴1 = 0.001,𝐴2 = 0.30, 𝐵1 = 100,
𝐵2 = 0.03,𝑊1 = 100,𝑊2 = 140, and𝑊3 = 120. The values of
the parameters are given in Table 2.



Abstract and Applied Analysis 7

Table 2: Parameter values used in the numerical simulations of the optimal control.

Notation Parameter description Value Reference
𝑏
1

Recruitment rate for human 1.6 [12]
𝜆ℎ Proportionality constant 0.066 [11]
𝜇ℎ Natural death rate of human 4.6 × 10−5 [12]
𝛾V Natural death rate of vector 1.8 × 10−3 [12]
𝛿ℎ Death rate due to disease at human class 1.0 × 10−5 [26]
𝛾
ℎ

Recovery rate of the infection 2.7 × 10−3 [26]
𝛿V Death rate at infected class of vector 1.82 × 10−3 [11]
𝑏2 Birth rate of vector 1.9 Assumed
𝛽2 Transmission between 𝑆ℎ and 𝐼V 0.0089 Assumed
𝛽3 Transmission between 𝑆V and 𝐼ℎ 0.0079 Assumed
𝛽

1
Transmission coefficient between 𝑆

ℎ
and 𝐼

ℎ
0.00013 Assumed

𝛾V Natural death rate of vector 0.0027 [12]
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Figure 2: The plot shows the population of susceptible human with
and without control.

Figures 2 and 3 represent the susceptible and infected
human population. In these plots the dotted line represents
the control system and the bold line shows the system of
without control. In Figure 2 the dotted line shows the control
in the population of susceptible human and the bold line
shows the population of susceptible human with control.
The dotted line decreases sharply than that of the bold line.
Figure 3 represents the plot for the population of infected
human for both the systems with and without control. The
bold line shows the population of infected human without
control and the dotted line shows the population of infected
human with control. The dotted line decreases sharply as
compared to the bold line; it means that the population of
infected individuals decrease in the control system.

In Figure 4 the plot represents the population of recov-
ered individuals of the two systems. The bold line shows
the population of the system of without control and the
dotted shows the population of the system with control.
The population of recovered individuals decrease sharply as
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Figure 3:The plot shows the population of infected humanwith and
without control.
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Figure 4: The plot shows the population of recovered human with
and without control.
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Figure 5: The plot shows the population of susceptible vector with
and without control.
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Figure 6:The plot shows the population of infected vector with and
without control.

compared to the system of without control. Figures 5 and 6
represent the population of susceptible vector and infected
vector, respectively. Figure 5 represents the population of
the vector and in two systems, with and without control.
The dotted line in Figures 5 and 6 shows the population
of the vector in the control system. The dotted line in the
Figures 5 and 6 shows the population of the vector without
control system. The population of susceptible vector in the
Figure 5 decreases a little bit than that of the dotted line.
The population of infected vector in the Figure 6 decreases
sharply than that of the dotted line.

4. Conclusion

In this paper, we studied the interaction of two nonlinear
systems of which one is human and the other one is vector.
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Figure 7: The plot shows the control variable 𝑢1.

0 10 20 30 40 50
Time (day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C

on
tro

l v
ar

ia
bl

e

Control variable u2

Figure 8: The plot shows the control variable 𝑢2.

The theoretical studies for the optimal control problem and
their numerical simulation are presented in the paper. We
used the optimal control strategies to minimize the infected
human, infected vector and to maximize the population of
susceptible human. The model which is developed from the
numerical simulations of the optimality system showed that
the population of infected human, infected vector decreases
and the population of susceptible human increases. We also
showed that with certain values of control rates there exist
their corresponding optimal solutions.
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Figure 9: The plot shows the control variable 𝑢3.
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