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A paraconsistent semantics has been presented for hybrid MKNF knowledge bases—a combination method for description logics
and rules. However, it is invalid when incoherency occurs in the knowledge base. In this paper, we introduce a semi-𝑆

5
semantics

for hybrid MKNF knowledge bases on the basis of nine-valued lattice, such that it is paraconsistent for incoherent knowledge base.
It is shown that a semi-𝑆

5
model can be computed via a fixpoint operator and is in fact a paraconsistent MKNF model when the

knowledge base is incoherent. Moreover, we apply six-valued lattice to hybrid MKNF knowledge bases and present a suspicious
semantics to distinguish different trust level information. At last, we investigate the relationship between suspicious semantics and
paraconsistent semantics.

1. Introduction and Motivation

The Semantic Web [1] extends the current World Wide
Web by standards and techniques that help machines to
understand the meaning of data on the web to enable more
powerful intelligent system applications. The essence of the
Semantic Web is to describe data on the web by metadata
that conveys the meaning of the data and that is expressed
by means of ontologies.

Web Ontology Language (OWL) [1] is based on the
Description Logic SROIQ(D) [2] and has been recom-
mended by the World Wide Web Consortium for repre-
senting ontologies. However, as monotonic logic, description
logics (DLs for short) are not as expressive as needed for
modeling some real world problems. Consequently, how
to improve OWL has become a very important branch of
research in the Semantic Web field, and one of the hot topics
is how to better combine DL and rules in the sense of logic
programming (LP), which is complementary to modeling
in DL with respect to expressivity, have become a mature
reasoning mechanism in the past thirty years.

Several integration methods have been proposed. As a
bridge between monotonic reasoning and nonmonotonic

reasoning, hybrid MKNF knowledge bases have favourable
properties of decidability, flexibility, faithfulness, and tight-
ness. However, due to nonmonotonicity of rules, hybrid
MKNF knowledge bases may be incoherent; that is, they do
not have an MKNF model due to cyclic dependencies of a
modal atom from default negation of the atom in the rule
part. Standard reasoning systemswill break down in this case.
Nevertheless, one might want to derive useful information
from incoherent hybridMKNF knowledge bases.This is sim-
ilar to paraconsistency, where nontrivial consequences shall
be derivable from an inconsistent theory. For distinguishing
the former reasoningwith the later, we use term paracoherent
reasoning to denote reasoning with incoherent knowledge
bases. Both types of reasoning for rules have been studied,
for example, Sakama and Inoue [3] and Eiter et al. [4]. For
hybrid MKNF knowledge bases, Huang et al. [5] presented
paraconsistent semantics for it, where only inconsistency can
be handled. In this paper, we study the incoherency problem
inhybridMKNFknowledge bases andpresent a paracoherent
reasoning system such that nontrivial conclusions can be
drawn from incoherent knowledge bases.

The remainder of the paper is organized as follows. In
Section 2we have a quick look over hybridMKNF knowledge
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bases. In Section 3, we present paracoherent semantics for
hybrid MKNF knowledge bases on the basis of nine-valued
lattice. In Section 4, we give suspicious MKNF models for
such knowledge bases to distinguish different trust level
information. In Section 5, we discuss the related work. We
conclude and discuss the future work in Section 6.

2. Hybrid MKNF Knowledge Bases

At first, the logic of MKNF is a variant of first-order modal
logic with two modal operators: K and not. We present
the syntax of MKNF formulae taken from [6]. Let Σ be a
signature that consists of constants and function symbols and
first-order predicates, including the binary equality predicate
≈. A first-order atom 𝑃(𝑡

1
, . . . , 𝑡

𝑙
) is an MKNF formula,

where 𝑃 is a first-order predicate and 𝑡
𝑖
are first-order terms.

Other MKNF formulae are built over Σ by using standard
connectives in first-order logic and two modal operators as
follows: true, ¬𝜑, 𝜑

1
∧ 𝜑
2
, ∃𝑥 : 𝜑, K𝜑, not𝜑. Moreover,

the symbols ∨, ⊃, ∀, and ≡ represent the usual boolean
combination of previously introduced connectors. Formulae
of the formK𝜑 (not𝜑) are calledmodal K-atoms (not-atoms).
Modal K-atoms and not-atoms are called modal atoms. An
MKNF formula 𝜑 is called closed if it contains no free
variables and called ground if it is without any variables. An
MKNF formula 𝜑 is called modally closed if it is closed and
all modal operators are applied to closed subformulae. 𝜑[𝑡/𝑥]
is the formula obtained from 𝜑 by substituting the term t
for the variable x. Moreover, the equality predicate ≈ in Σ is
interpreted as an equivalence relation on Δ, which is called a
universe and contains an infinite supply of constants, besides
the constants occurring in the formulae.

As shown in [6], hybrid MKNF knowledge bases consist
of a finite number ofMKNF rules and a decidable description
logic knowledge base O, which satisfies the following condi-
tions: (i) each knowledge baseO ∈ DL can be translated to a
formula 𝜋(O) of function-free first-order logic with equality
(see [2] for standard translation for description logic axioms),
(ii) it supports ABox assertions of the form 𝑃(𝑡

1
, . . . , 𝑡

𝑙
),

where 𝑃 is a predicate and each 𝑡
𝑖
a constant ofDL, and (iii)

satisfiability checking and instance checking (i.e., checking
entailments of the form O ⊨ 𝑃(𝑡

1
, . . . , 𝑡

𝑙
)) are decidable.

Definition 1. Let O be a DL knowledge base. A first-order
function-free atom 𝑃(𝑡

1
, . . . , 𝑡

𝑛
) over Σ such that 𝑃 is ≈ or it

occurs inO is called aDL atom; all other atoms are called non-
DL atoms. AnMKNF rule 𝑟 has the following formwhere𝐻

𝑖
,

𝐴
𝑖
, 𝐵
𝑖
, are first-order function-free atoms:

K𝐻
1
∨ . . . ∨ K𝐻

𝑛

←󳨀 K𝐴
𝑛+1

∧ . . . ∧ K𝐴
𝑚
∧ not𝐵

𝑚+1
∧ . . . ∧ not𝐵

𝑘
.

(1)

The sets {K𝐻
𝑖
}, {K𝐴

𝑖
}, and {not𝐵

𝑖
} are called the rule head,

the positive body, and the negative body, respectively. An
MKNF rule 𝑟 is nondisjunctive if 𝑛 = 1; 𝑟 is positive if𝑚 = 𝑘;
𝑟 is a fact if𝑚 = 𝑘 = 0. A programP is a finite set of MKNF
rules. A hybrid MKNF knowledge baseK is a pair (O,P).

To ensure that the MKNF logic is decidable, DL safety is
introduced as a restriction to MKNF rules.

Definition 2. An MKNF rule is DL safe if every variable in 𝑟
occurs in at least one non-DL atomK𝐵 occurring in the body
of 𝑟. A hybrid MKNF knowledge base K is DL safe if all its
rules are DL safe.

In the rest of this paper, without explicitly stating it, we
only consider hybrid MKNF knowledge bases which are DL
safe.

Definition 3. Given a hybridMKNF knowledge baseK = (O,
P), the ground instantiation ofK is the knowledge baseK

𝐺

= (O, P
𝐺
), where P

𝐺
is obtained from P by replacing each

rule r of P with a set of rules substituting each variable in r
with constants fromK in all possible ways.

Grounding the knowledge baseK ensures that rules inP
apply only to objects that occur inK. And it has been proved
byMotik and Rosati [6] that theMKNFmodels ofK andK

𝐺

coincide.
Hybrid MKNF knowledge bases provide a paradigm for

representing data sources on the web by rules and description
logics simultaneously. Local closed world reasoning in the
knowledge bases bridges the rules and DLs, accordingly
overcomes the expressive limitation of rules and DLs, and
enhance the expressivity.

3. Paracoherent Semantics for
Hybrid MKNF Knowledge Base

Huang et al. [5] presented a four-valued paraconsistent
semantics for hybrid MKNF knowledge bases, which can
handle inconsistent information in the knowledge base.
However, there is a kind of knowledge base which has no
four-valued paraconsistent MKNF model but still contains
useful information, for instance, the following example.

Example 4. LetK
𝐺
= (O,P

𝐺
) be a ground knowledge base,

where O = {𝑝} andP
𝐺
= {K𝑎 ← not𝑎} (𝑝, 𝑎 are literals).

From [5], we know thatK
𝐺
has no paraconsistentMKNF

model. Generally, MKNF rule of the form K𝑎 ← not𝑎 will
lead to incoherency, which is a kind of inconsistency but
cannot be handled by four-valued paraconsistent semantics.
Therefore, it is desirable to provide a framework for inco-
herent knowledge bases. In this section, we will present a
nine-valued semantics which is paraconsistent for incoherent
knowledge bases.

Firstly, we introduce the nine-valued lattice N
9
. Besides

the four basic values t, f , ⊤, and ⊥, which constitute four-
valued latticeFOUR and, respectively, represent true, false,
contradictory (both true and false), and unknown (neither
true nor false), N

9
contains five extra truth values bt, bf ,

b⊤, tcb, and fcb, which denote believed true, believed false,
believed contradictory, true with contradictory belief, and false
with contradictory belief, respectively. These values constitute
a lattice of nine-valued logic N

9
[3] (as shown in Figure 1)
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Figure 1: Nine-valued LatticeN
9
.

such that ⊥≤ bf ≤ x ≤ xcb ≤ ⊤ and bx ≤ b⊤ ≤ xcb
(x ∈ {t, f}).

LetF be a first-order theory andB(F) is the Herbrand
base ofF. LetF𝑘 =B(F)∪{K𝐴 | 𝐴 is a literal inB(F)}, and
let 𝐼 be a subset of F𝑘. Then a nine-valued interpretation 𝐼

under the logicN
9
is defined as a function 𝐼:B(F) → N

9

such that, for each literal 𝐴 ∈ B(F),

(𝐴)
𝐼
= lub {𝑥 | 𝑥 = t if 𝐴 ∈ 𝐼,

𝑥 = f if ¬𝐴 ∈ 𝐼,

𝑥 = bt if K𝐴 ∈ 𝐼,

𝑥 = bf if K¬𝐴 ∈ 𝐼,

𝑥 =⊥ otherwise} ,

(2)

where the term lub denotes least upper bound.
Every formula in F is assigned a value in N

9
. The

intuitive meaning of new introduced operator K is “belief.”
For instance, K𝐴 ∈ 𝐼means we believe that literal 𝐴 belongs
to interpretation 𝐼, which coincides with the truth value bt.
By the order structure of nine-valued lattice, (𝐴)𝐼 = b⊤ iff
both K𝐴 ∈ 𝐼 and K¬𝐴 ∈ 𝐼; (𝐴)𝐼 = fcb iff both K𝐴 ∈ 𝐼 and
¬𝐴 ∈ 𝐼; (𝐴)𝐼 = tcb iff both𝐴 ∈ 𝐼 and K¬𝐴 ∈ 𝐼. Furthermore,
(𝐴)
𝐼 = t iff (¬𝐴)𝐼 = f , (𝐴)𝐼 =⊤ iff (¬𝐴)𝐼 =⊤, (𝐴)𝐼 =⊥ iff (¬𝐴)𝐼

= ⊥, (𝐴)𝐼 = bt iff (¬𝐴)𝐼 = bf , (𝐴)𝐼 = tbc iff (¬𝐴)𝐼 = fbc, and
(𝐴)
𝐼 = b⊤ iff (¬𝐴)𝐼 = b⊤.
Under this logic, satisfaction of literals and default nega-

tion is defined as follows: 𝐼 ⊨
9
𝐴 iff t ≤ (𝐴)

𝐼, 𝐼 ⊨
9
¬𝐴 iff

f ≤ (𝐴)𝐼, 𝐼 ⊨
9
not𝐴 iff (𝐴)𝐼 ≤ f , and 𝐼 ⊨

9
not¬𝐴 iff (𝐴)𝐼 ≤ t.

Satisfaction of other connectors is defined as usual.
Now we come to the nine-valued semantics for hybrid

MKNF knowledge bases.
For distinguishing the two hybrid MKNF knowledge

bases with stable model semantics and nine-valued seman-
tics, we call the latterN

9
-MKNF knowledge bases.

We use the syntax of para-MKNF knowledge base pre-
sented by Huang et al. [5] as the syntax ofN

9
-MKNF knowl-

edge bases, which is similar to the classical knowledge base
as presented in Section 2. The only difference between them
is that MKNF rules are restricted to literals in para-MKNF

knowledge bases. In our paper, we use MKNF rules defined
as follows:

K𝐻
1
∨ . . . ∨ K𝐻

𝑛

←󳨀 K𝐴
𝑛+1

∧ . . . ∧ K𝐴
𝑚
∧ not𝐵

𝑚+1
∧ . . . ∧ not𝐵

𝑘
,

(3)

where𝐻
𝑖
, 𝐴
𝑖
, and 𝐵

𝑖
are first-order function-free literals.

Semantically, we first introduce N
9
-MKNF structure

(I,M,N).

Definition 5. An N
9
-MKNF structure (I,M,N) consists

of a nine-valued interpretation I and two nonempty sets
of nine-valued interpretation interpretations M and N. A
nonempty set of nine-valued interpretations M is called a
N
9
-MKNF interpretation.

Definition 6. Let (I,M,N) be a N
9
-MKNF structure. N

9

satisfaction of closed MKNF formulae is defined inductively
as follows:

(I,M,N) ⊨
9
𝑃 (𝑡
1
, . . . , 𝑡

𝑙
) iff 𝑃

I
(𝑡
1
, . . . , 𝑡

𝑙
) ≥ t,

(I,M,N) ⊨
9
¬𝜑 iff (I,M,N) (𝜑) ≥ f ,

(I,M,N) ⊨
9
𝜑
1
∧ 𝜑
2

iff (I,M,N) ⊨
9
𝜑
𝑖
, 𝑖 = 1, 2,

(I,M,N) ⊨
9
∃𝑥 : 𝜑 iff (I,M,N) ⊨

9
𝜑 [𝑎𝑥]

for some 𝛼 ∈ Δ,

(I,M,N) ⊨
9
𝜑
1
⊃ 𝜑
2

iff (I,M,N) ⊭
9
𝜑
1

or (I,M,N) ⊨
9
𝜑
2
,

(I,M,N) ⊨
9
K𝜑 iff (J,M,N) ⊨

9
𝜑 ∀J ∈ M,

(I,M,N) ⊨
9
not𝜑 iff (J,M,N) (𝜑) ≤ f

for some J ∈ N.

(4)

A N
9
-MKNF interpretation M is a semi-𝑆

5
model of a

given closedMKNF formula𝜑, written as M ⊨
9
𝜑 if and only

if (I,M,M) ⊨
9
𝜑 for eachI ∈ M.

How to obtain models of a knowledge base is a basic
problem in the reasoning process. The next work is around
this topic.

Let K
𝐺
= (O, P

𝐺
) be a ground N

9
-MKNF knowledge

base. The set of K-atoms of K
𝐺
, written as KA(K

𝐺
), is the

smallest set that contains (1) all groundK-atoms occurring in
P
𝐺
and (3) a modal atom K𝜉 for each ground modal atom

not𝜉 occurring in P
𝐺
. Let KA𝑘(K

𝐺
) = KA(K

𝐺
) ∪ {KK𝐴 |

K𝐴 is an element in KA(K
𝐺
)}. Furthermore, HA(K

𝐺
) is the

subset of KA(K
𝐺
) that contains all K-atoms occurring in the

head of some rule inP
𝐺
. HA𝑘(K

𝐺
) is a subset of KA𝑘(K

𝐺
).

We now recall the fixpoint operator of positive paracon-
sistent MKNF knowledge base, which will be used to search
for the semi-𝑆

5
models ofN

9
-MKNF knowledge bases.
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Definition 7 (see [5]). LetK
𝐺
= (O,P) be a ground positive

para-MKNF knowledge base and S ∈ 2
2
HA(K𝐺) . A mapping

TK𝐺
: 22

HA(K𝐺)

→ 2
2
HA(K𝐺) is defined as

TK𝐺
(S) = ⋃

S∈S

𝑇K𝐺
(S) , (5)

where the mapping 𝑇K𝐺 : 2
HA(K𝐺) → 2

2
HA(K𝐺) is defined as

follows.

(i) If OBO,S ⊨4𝐴 𝑖, 𝑛 + 1 ≤ 𝑖 ≤ 𝑚 for some ground integ-
rity constraint← K𝐴

𝑛
+ 1 ∧ . . . ∧ K𝐴

𝑚
in P
𝐺
, then

𝑇K𝐺
(S) = 0.

(ii) Otherwise, 𝑇K𝐺
(S) = {Q

𝑡
⊆ HA(K

𝐺
) |

Q
𝑡

= S ∪ R
𝑡
∪ H}, where R

𝑡
= {K𝐻

𝑡
|

for each ground MKNF rule 𝐶
𝑗
∈ P
𝐺
: OBO,S ⊨4

𝐴
𝑖
, 𝑛 + 1 ≤ 𝑖 ≤ 𝑚} and H = {K𝜉 ∈ HA(K

𝐺
) |

OBO,S ⊨4𝜉}.

Thenwe can use the following fixpoint procedure to com-
pute paraconsistent MKNF models of positive para-MKNF
knowledge bases:

TK𝐺
↑ 0 = 0,

TK𝐺
↑ 𝑛 + 1 = TK𝐺

(TK𝐺
↑ 𝑛) ,

TK𝐺
↑ 𝜔 = ⋃

𝛼<𝜔

⋂

𝛼≤𝑛<𝜔

TK𝐺
↑ 𝑛,

(6)

where 𝑛 is a successor ordinal and 𝜔 is a limit ordinal.
For general para-MKNF knowledge bases, a transforma-

tion was presented.

Definition 8. Let K
𝐺
= (O, P

𝐺
) be a ground para-MKNF

knowledge base. Then its transformation is defined as K∗
𝐺

obtained by replacing each general rule in P
𝐺

with the
following positive MKNF rule

K𝜇
1
∨ . . . ∨ K𝜇

𝑛
∨ KK𝐵

𝑚+1
∨ . . . ∨ KK𝐵

𝑘

←󳨀 K𝐴
𝑛+1

∧ . . . ∧ K𝐴
𝑚
,

(7)

K𝐻
𝑖
←󳨀 K𝜇

𝑖
for 1 ≤ 𝑖 ≤ 𝑛, (8)

←󳨀 K𝜇
𝑖
∧ K𝐵
𝑗

for 1 ≤ 𝑖 ≤ 𝑛, 𝑚 + 1 ≤ 𝑗 ≤ 𝑘, (9)

K𝜇
𝑖
←󳨀 K𝐻

𝑖
∧ K𝜇
𝑗

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (10)

Let 𝛾(TK𝐺
↑ 𝜔) = {S | S ∈ TK𝐺

↑ 𝜔, and S ∈ TK𝐺
({S})}

and min(S) = {S | there exists no Q ∈ S such that Q ⊂ S}.
Given a set S∗ that is a subset of 2HA(K

∗
𝐺), S∗ is canonical if

KK𝑎 ∈ S∗ implies K𝑎 ∈ S∗. Φ(S∗) = {S∗ ∩ KA(K
𝐺
) | S∗ ∈

S∗ and S∗ is 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙}.

Theorem 9. Let K
𝐺
= (O, P

𝐺
) be a ground para-MKNF

knowledge base, and then each paraconsistent MKNF model
ofK
𝐺
equalsM = {I | I⊨

4
OBO,𝑃ℎ

}, where 𝑃
ℎ
is an element

of the setQ = Φ(min(𝛾(TK∗
𝐺
↑ 𝜔))).

Note that the transformation of general MKNF rules is
a little different from the one in [5]. However, this does not
affect the result of Theorem 9. In fact, both two transforma-
tions have the same essence, transforming default negation
in the rule body to a literal in rule head, and the unique
difference is between “KK𝐵

𝑘
” and “K𝐵

𝑘
” in the transformed

MKNF rules. But from the canonical condition,KK𝐵
𝑘
implies

K𝐵
𝑘
, which does not change the original proof of [5,Theorem

4]. Therefore, Theorem 9 still holds if replacing K𝑎 in (3)
with KK𝑎. In a previous work, we have mentioned that K𝑎 is
interpreted by “belief true,” corresponding to the truth value
“bt.” As we have defined, a nine-valued interpretation can
be represented by special Herbrand interpretation equipped
with new elements of form K𝜀 based on classical Herbrand
interpretation, in which 𝜀 is a literal.

Given a set S∗ that is a subset of 2HA(K
∗
𝐺), S∗ ismaximally

canonical if there is no subset S∗
1
of 2HA(K

∗
𝐺), such that {KK𝑎 |

KK𝑎 ∈ S∗
1
and K𝑎 ∉ S∗

1
} ⊂ {KK𝑎 | KK𝑎 ∈ S∗ and K𝑎 ∉ S∗}:

Φmc (S
∗
) = {S

∗
∩ KA (K

𝐺
) | S
∗
∈ S
∗

and S
∗ is canonical} .

(11)

With maximally canonical condition, semi-𝑆
5
models of

a hybrid MKNF knowledge base can be computed by the
fixpoint operator presented in Definition 7.

Theorem 10. Let K
𝐺
= (O, P

𝐺
) be a N

9
-MKNF knowledge

base, if 𝑃
ℎ
is an element of the setQ = Φ

𝑚𝑐
(min(𝛾(TK∗

𝐺
↑ 𝜔)))

andM = {I | I⊨
9
OBO,𝑃ℎ

}, thenM is a semi-𝑆
5
model ofK

𝐺
.

Proof. Given a maximally canonical element 𝑃
∗

ℎ
∈

min(𝛾(TK∗
𝐺

↑ 𝜔)) and M∗ = {I | I⊨
9
OBO,𝑃∗

ℎ
}. M∗

is a paraconsistent 𝑆
5
model of K∗

𝐺
by [5, Lemma 4]. For

each transformed MKNF rules (3) and (7), if M∗⊨
9
K𝐴
𝑖
,

for each 𝑛 + 1 ≤ 𝑖 ≤ 𝑚, then either M∗ ⊨
9
K𝐻
𝑗
, for some

1 ≤ 𝑘 ≤ 𝑛, or M∗ ⊨
9
KK𝐵
𝑡
, for some 𝑚 + 1 ≤ 𝑡 ≤ 𝑘. Case 1:

M∗ ⊨
9
K𝐻
𝑗
, for some 1 ≤ 𝑘 ≤ 𝑛, then the corresponding

MKNF rule of form (1) is satisfied. Case 2: M∗ ⊨
9
KK𝐵
𝑡
,

for some 𝑚 + 1 ≤ 𝑡 ≤ 𝑘. Then for each nine-valued inter-
pretation 𝐼 ∈ M∗, 𝐼 ⊨

9
K𝐵
𝑡
, which means 𝐵I

𝑡
≥ bt and

then M ⊭
9
not𝐵
𝑡
. In either case, corresponding MKNF

rule of form (1) is satisfied. Let 𝑃
ℎ
= 𝑃
∗

ℎ
∩ KA(K

𝐺
) and M

= {I | I⊨
9
OBO,𝑃ℎ

}, and then M is a semi-𝑆
5
model of

K
𝐺
.

Corollary 11. If K
𝐺
is a coherent knowledge base, then its

semi-𝑆
5
model coincides with paraconsistent MKNF model.

Proof. When min(𝛾(TK∗
𝐺
↑ 𝜔)) contains canonical element,

it is alsomaximally canonical.Therefore, the result holds.

Theorem 12. Let K
𝐺
= (O, P

𝐺
) be a ground hybrid MKNF

knowledge base, ifK
𝐺
has an 𝑆

5
model, it has a semi-𝑆

5
model.

Proof. If K
𝐺

has an 𝑆
5
model, then it is easy to con-

struct a MKNF interpretation that satisfies K∗
𝐺
. Then

min(𝛾(TK∗
𝐺
↑ 𝜔)) contains maximally canonical elements.
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Thus Φmc(min(𝛾(TK∗
𝐺

↑ 𝜔))) is not empty. Theorem
holds.

Example 13. Consider the incoherent knowledge base K
𝐺

from Example 4. By Definition 8,P
𝐺
is transformed toP∗

𝐺
:

K𝜇 ∨ KK𝑎 ←󳨀 K𝑎

←󳨀 K𝜇

←󳨀 K𝜇 ∧ K𝑎.

(12)

We compute the fixpoint by applying the procedure presented
in Section 3 to the knowledge base K∗

𝐺
= (O,P∗

𝐺
). By evalu-

ating TK𝐺
↑ 𝑛 + 1 = TK𝐺

TK𝐺
↑ 𝑛 recursively, min(TK∗

𝐺
↑

𝑛) = {{KK𝑎,K𝑝}}. Also, it can be easily verified thatM = {I |

I⊨
9
{K𝑎, 𝑝}}.

4. Suspicious MKNF Models

As the beginning of this section,we give amotivation example
as follows.

Example 14. LetK
𝐺
= (O,P

𝐺
) be a ground knowledge base,

where O = {𝑝}, P
𝐺
= {K𝑎 ← K¬𝑝, K¬𝑝 ←, K𝑐 ←} (𝑝, 𝑎, 𝑐

are literals).

In the above paraconsistent hybrid MKNF knowledge
base K

𝐺
, both 𝑐 and 𝑎 are the consequence of it. However,

it is not difficult to find that 𝑎 is derived by inconsistent
information, while 𝑐 is not. Apparently 𝑎 is less credible than
𝑐.Therefore, it is necessary to distinguish information derived
by inconsistencies from others.

In order to distinguish two kinds of information, we
introduce six-valued lattice, which is used by Sakama and
Inoue [3] to present suspicious stable models for a program.
As shown in Figure 2, there are two new introduced values
sf and sf in six-valued lattice VI, which, respectively, stand
for suspiciously false and suspiciously true. These newly intro-
duced values together with FOUR constitute six-valued
lattice such that ⊥≤ sx ≤ x ≤ ⊤ (x ∈ {t, f}).

Let F be a first-order theory, F𝑠 = B(F) ∪ {𝐴
𝑠
| 𝐴 is a

literal in B(F)}, and 𝐼 be a subset of F𝑠. Then a six-valued
interpretation 𝐼 under the logic VI is defined as a function 𝐼:
B(F) → VI such that, for each literal 𝐴 ∈ B(F),

(𝐴)
𝐼
= lub {𝑥 | 𝑥 = t if 𝐴 ∈ 𝐼,

𝑥 = f if ¬𝐴 ∈ 𝐼,

𝑥 = st if 𝐴𝑠 ∈ 𝐼,

𝑥 = sf if ¬𝐴𝑠 ∈ 𝐼,

𝑥 =⊥ otherwise} .

(13)

Note that (𝐴)𝐼 = st if and only if (¬𝐴)𝐼 = sf . Under the logic
VI, satisfaction of literals and default negation is defined as
follows: 𝐼⊨

6
𝐴 if and only if st ≤ (𝐴)

𝐼, 𝐼⊨
6
¬𝐴 if and only if

sf ≤ (𝐴)𝐼, 𝐼 ⊨
6
not𝐴 if and only if (𝐴)𝐼 ≤ f , and 𝐼 ⊨

6
not¬𝐴

sf

f

st

t

⊥

⊤

Figure 2: Six-valued Lattice VI.

if and only if (𝐴)𝐼 ≤ t. Satisfaction of other connectors is
defined as usual.

Given a hybrid MKNF knowledge base, its suspicious
𝑆
5
models are defined by suspicious MKNF structure (I,

M,N), which is defined as usual.

Definition 15. A suspiciousMKNF structure (I,M,N) con-
sists of a six-valued interpretation I and two nonempty
sets of six-valued interpretation interpretationsM andN. A
nonempty set of six-valued interpretationsM is called a sus-
picious MKNF interpretation.

Definition 16. Let (I,M,N) be a suspicious MKNF struc-
ture. Six-valued satisfaction of closed MKNF formulae is
defined inductively as follows:

(I,M,N) ⊨
6
𝑃 (𝑡
1
, . . . , 𝑡

𝑙
) iff 𝑃

I
(𝑡
1
, . . . , 𝑡

𝑙
) ≥ st,

(I,M,N) ⊨
6
¬𝜑 iff (I,M,N) (𝜑) ≥ sf ,

(I,M,N) ⊨
6
𝜑
1
∧ 𝜑
2

iff (I,M,N) ⊨
6
𝜑
𝑖
, 𝑖 = 1, 2,

(I,M,N) ⊨
6
∃𝑥 : 𝜑 iff (I,M,N) ⊨

6
𝜑 [𝑎𝑥]

for some 𝛼 ∈ Δ,

(I,M,N) ⊨
6
𝜑
1
⊃ 𝜑
2

iff (I,M,N) ⊭
6
𝜑
1

or (I,M,N) ⊨
6
𝜑
2
,

(I,M,N) ⊨
6
K𝜑 iff (J,M,N) ⊨

6
𝜑 ∀J ∈ M,

(I,M,N) ⊨
6
not𝜑 iff (J,M,N) (𝜑) ≤ f

for some J ∈ N.

(14)

A suspicious MKNF interpretation M is a 𝑠𝑢𝑠𝑝𝑖-
𝑐𝑖𝑜𝑢𝑠 𝑆

5
𝑚𝑜𝑑𝑒𝑙 of a given closed MKNF formula 𝜑, written

as M ⊨
6
𝜑 if and only if (I,M,M) ⊨

6
𝜑 for eachI ∈ M.

To compute the suspicious 𝑆
5
models, we introduce a

new fixpoint operator T𝑠K𝐺 , which is little different from the
operatorTK𝐺

on the definition of𝑇K𝐺(S).We replace𝑇K𝐺(S)
with 𝑇𝑠K𝐺(S), which is defined as follows.

(i) If OBO,S ⊨6 𝐴 𝑖, 𝑛 + 1 ≤ 𝑖 ≤ 𝑚 for some ground
integrity constraint← K𝐴

1
∧ . . . ∧ K𝐴

𝑚
inP
𝐺
, then

𝑇
𝑠

K𝐺
(S) = 0.
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(ii) Otherwise, 𝑇𝑠K𝐺(S) = {S ∪ R
𝑡
∪ H | for each ground

MKNF rule𝐶
𝑗
∈ P
𝐺
:OBO,S ⊨6𝐴 𝑖, 𝑛+1 ≤ 𝑖 ≤ 𝑚, R

𝑡
=

∪
𝐶𝑗
{K𝐻󸀠
𝑡
} (1 ≤ 𝑡 ≤ 𝑛), where𝐻󸀠

𝑡
= 𝐻
𝑡
, if OBO,S⊨6𝐴 𝑖,

and OBO,S ⊭6 ¬𝐴 𝑖 for each 𝑛 + 1 ≤ 𝑖 ≤ 𝑚; 𝐻󸀠
𝑡
= 𝐻
𝑠

𝑡
,

otherwise. H = {K𝜉 ∈ HA(K
𝐺
) | OBO,S ⊨6𝜉}}.

Note that the only difference between operators 𝑇K𝐺 and
𝑇
𝑠

K𝐺
is replacing K𝐻

𝑖
with K𝐻𝑠

𝑖
when K𝐻

𝑖
is derived by

inconsistent information. However, this will not affect the
final results, since M⊨

6
K𝐻𝑠
𝑖
implies M⊨

6
K𝐻
𝑖
for any suspi-

cious MKNF interpretationM. The superscript “𝑠” inK𝐻𝑠
𝑖
is

just like a label of suspicious information.
Given a hybrid MKNF knowledge baseK

𝐺
and its trans-

formationK∗
𝐺
as shown in Definition 8, let 𝑃

ℎ
be an element

of the set Q = Φ(min(𝛾(T𝑠K∗
𝐺

↑ 𝜔))) and M = {I |

I⊨
6
OBO,𝑃ℎ

}. We callM the suspicious MKNF model ofK
𝐺
.

Theorem 17. Let K
𝐺
be a hybrid MKNF knowledge base. If

M is a suspicious MKNF model ofK
𝐺
, then it is a suspicious

𝑆
5
model ofK

𝐺
.

Proof. LetM󸀠 be the correspondingMKNF interpretation, in
which each literal𝐻𝑠

𝑖
is replaced by𝐻

𝑖
. It is easy to see thatM󸀠

is a paraconsistent MKNF model of K
𝐺
. Moreover, for each

literal𝐴,M󸀠 ⊨
4
K𝐴 if and only ifM⊨

6
K𝐴, andM󸀠 ⊨

4
not𝐴 if

and only if M⊨
6
not𝐴. Thus M satisfies each MKNF rule in

K
𝐺
. Hence the result follows.

5. Related Works

Huang et al. [5] presented a four-valued paraconsistent
semantics for hybridMKNFknowledge bases, which resolved
the inconsistency problem but was invalid to incoherency.

Michael Fink [7] proposed paraconsistent hybrid theory
for handling paraconsistent and paracoherent information in
a combination of DL and rules, which is based on here-and-
there logic.

Sakama and Inoue [3] proposed a paraconsistent stable
semantics for extended disjunctive programs. Moreover, they
introduced suspicious stable models to distinguish facts
affected by inconsistent information from others in a pro-
gram. At last, in order to handle incoherency occurring in
a program, they employed nine-valued lattice and presented
semistable models, which is also used in [8] to cope with
instability and also is the inspiration of our work on inco-
herency handling in hybrid MKNF knowledge bases.

6. Conclusion

In this paper we presented a semi-𝑆
5
semantics for hybrid

MKNF knowledge bases which is paraconsistent for inco-
herent knowledge bases. We showed that a semi-𝑆

5
model

can be computed via a fixpoint operator and is in fact a
paraconsistent MKNF model when the knowledge base is
incoherent. Furthermore, we applied six-valued lattice to
hybrid MKNF knowledge bases and present a suspicious
semantics to distinguish different trust level information.

Our future work can be directed towards several paths.
First of all, a well-founded semantics of hybridMKNFknowl-
edge bases has better complexity properties than paraconsis-
tent semantics, and paraconsistent approach could be carried
over to this paradigm. Moreover, in the real world, there
are some other problems, such as probabilistic uncertainty,
that cannot be coped with by classical reasoners. Then it is
necessary to extend probabilistic semantics to hybrid MKNF
knowledge bases.
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