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We revisit a homogeneous reaction-diffusion Turing model subject to the Neumann boundary conditions in the one-dimensional
spatial domain.With the help of theHopf bifurcation theory applicable to the reaction-diffusion equations, we are capable of proving
the existence of Hopf bifurcations, which suggests the existence of spatially homogeneous and nonhomogeneous periodic solutions
of this particular system. In particular, we also prove that the spatial homogeneous periodic solutions bifurcating from the smallest
Hopf bifurcation point of the system are always unstable.This together with the instability results of the spatially nonhomogeneous
periodic solutions by Yi et al., 2009, indicates that, in this model, all the oscillatory patterns from Hopf bifurcations are unstable.

1. Introduction

In 1952, Turing published his pioneering paper describing
the chemical process between signalingmolecules that spread
away from their source to form a concentration gradient
within a series of cells [1]. In this paper, Turing suggested that
diffusion could destabilize an otherwise stable equilibrium of
the reaction-diffusion system and lead to nonuniform spatial
patterns [2–10].

The followingmodel (whichwe calledTuringmodel here)
is one of the famous models used by Turing to argue the
above-mentioned mechanism:

𝑢
𝑡
= 𝑑
𝑢
Δ𝑢 + 𝑠 (𝑢V − 𝑢 − 𝑎) , 𝑥 ∈ Ω, 𝑡 > 0,

V
𝑡
= 𝑑VΔV + 𝑠 (𝑏 − 𝑢V) , 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , V (𝑥, 0) = V

0
(𝑥) , 𝑥 ∈ Ω,

𝜕]𝑢 = 𝜕]V = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(1)

where Ω is a bounded connected domain (the reactor) in R𝑛
(𝑛 ≥ 1), with smooth boundary 𝜕Ω; the reactor is assumed
to be closed; thus reflexive Neumann boundary condition is
imposed (here 𝜕]𝑢 is the outer normal derivative of 𝑢); here
𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) are the morphogen concentration at the

time 𝑡 and the positions 𝑥, 𝑎, and 𝑏 can be thought of as being
a decay and growth rate of 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡), respectively, and
𝑠 is the reaction rate.

Since the time when the model was proposed by Turing,
many researchers have studied themodel extensively (see [11]
and the references therein for great details). However, they
mostly focus on the pattern formations of Turing type.

It is well known that, apart from occurring Turing
patterns, a reaction-diffusion equation system might also
exhibit other types of patterns, say, oscillatory patterns.

In [12], the authors derived a simplified Hopf bifurca-
tion theorem for the general semilinear reaction-diffusion
equations on the one-dimensional domain and used the
abstract theorem to prove the existence of oscillatory patterns
emerging from Hopf bifurcations. Since then, more papers
can be found in the existing literatures to study the existence
of oscillatory patterns of the R-D systems by using Hopf
bifurcation techniques, and we refer to [12–14] and the
references therein for details.

To the best of our knowledge, in the existing literature,
no papers were found to deal with the oscillatory pattern
formation of this Turing model from purely analytical point
of view.Thus,motivated by [12], we are interested in consider-
ing the existence of Hopf bifurcations and the corresponding
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periodic solutions by using the abstract bifurcation results in
[12].

In order to set our problem in the framework of [12], we
assume that the domain is one- dimensional spatial interval
(0, 𝜉𝜋) with 𝜉 > 0. In this case, the system (1) is reduced to

𝑢
𝑡
= 𝑑
𝑢
𝑢
𝑥𝑥
+ 𝑠 (𝑢V − 𝑢 − 𝑎) , 𝑥 ∈ (0, 𝜉𝜋) , 𝑡 > 0,

V
𝑡
= 𝑑VV𝑥𝑥 + 𝑠 (𝑏 − 𝑢V) , 𝑥 ∈ (0, 𝜉𝜋) , 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , V (𝑥, 0) = V

0
(𝑥) , 𝑥 ∈ (0, 𝜉𝜋) ,

𝑢
󸀠
(0, 𝑡) = 𝑢

󸀠
(𝜉𝜋, 𝑡) = V󸀠 (0, 𝑡) = V󸀠 (𝜉𝜋, 𝑡) = 0, 𝑡 > 0.

(2)

We are going to show that if we choose 𝑎 as the bifurcation
parameter, then the system might exhibit a sequence of Hopf
bifurcation points, at which oscillatory patterns exist. By
using the center manifold theory, normal formmethods, and
the abstract results in [12], we are able to prove that the
spatially homogeneous periodic solutions bifurcating from
the smallest Hopf bifurcation point are unstable. From [12],
all the spatially nonhomogeneous periodic solutions are all
unstable. Thus, our bifurcation results suggest that all the
Hopf bifurcating periodic solutions are all unstable.

The rest of this paper is structured in the following
way. In Section 2, we use the standard Hopf bifurcation
theorem to prove the existence of the Hopf bifurcations
of the system. In Section 3, we prove the instability of the
spatially homogeneous periodic solutions bifurcating from
the smallestHopf bifurcation point. In Section 4, we draw our
conclusions.

2. Existence of Hopf Bifurcations

In this section, we consider the following PDEs subject
to Neumann boundary condition on spatial domain Ω =

(0, 𝜉𝜋), with 𝜉 ∈ R+ :

𝜕𝑢

𝜕𝑡

= 𝑑
𝑢
𝑢
𝑥𝑥
+ 𝑠 (𝑢V − 𝑢 − 𝑎) , 𝑥 ∈ (0, 𝜉𝜋) , 𝑡 > 0,

𝜕V
𝜕𝑡

= 𝑑VV𝑥𝑥 + 𝑠 (𝑏 − 𝑢V) , 𝑥 ∈ (0, 𝜉𝜋) , 𝑡 > 0,

𝑢
󸀠
(0) = 𝑢

󸀠
(𝜉𝜋) = V󸀠 (0) = V󸀠 (𝜉𝜋) = 0, 𝑡 > 0.

(3)

System (3) has a unique equilibrium solution (𝑢
𝑎
, V
𝑎
),

with

𝑢
𝑎
= 𝑏 − 𝑎, V

𝑎
=

𝑏

𝑏 − 𝑎

, (4)

which is in the first quadrat if and only if 0 < 𝑎 < 𝑏. In the
following, we always assume that 0 < 𝑎 < 𝑏 holds and choose
𝑎 as the bifurcation parameter.

Define the real Sobolev space in the following way:

𝑋 : = {(𝑢, V)𝑇 ∈ 𝐻2 (0, 𝜉𝜋)

× 𝐻
2
(0, 𝜉𝜋) : (𝑢

𝑥
, V
𝑥
)

󵄨
󵄨
󵄨
󵄨
󵄨𝑥=0,𝜉𝜋

= 0} ,

(5)

and𝑋C := {𝑈 = 𝑈1 + 𝑖𝑈2 : 𝑈1, 𝑈2 ∈ 𝑋}.

The aim of the whole paper is just to study the existence
and the stability of the spatial homogeneous and nonhomo-
geneous periodic solutions of system (3) in the real-valued
Sobolev space𝑋 by using the Hopf bifurcation techniques.

To that end, we calculate the linearized operator of system
(3) evaluated at (𝑢

𝑎
, V
𝑎
) which is given by

𝐿 (𝑎) :=

[

[

[

[

𝑑
𝑢
Δ +

𝑠𝑎

𝑏 − 𝑎

, 𝑠 (𝑏 − 𝑎)

−

𝑠𝑏

𝑏 − 𝑎

, 𝑑VΔ − 𝑠 (𝑏 − 𝑎) ,

]

]

]

]

, (6)

where𝐷
𝐿(𝑎)

= 𝑋C.
One thing is to know more detailed information on the

eigenvalues of the linearized operator 𝐿(𝑎) defined in (6).
Notice that the eigenvalues of −Δ subject to the Neumann
boundary condition in (0, 𝜉𝜋) are given by

𝜌
𝑘
=

𝑘
2

𝜉
2
, (7)

with the corresponded eigenfunctions 𝜙
𝑘
(𝑥) = cos(𝑘𝑥/𝜉),

with 𝑘 = 0, 1, 2, . . ..
We consider the characteristic problem of 𝐿(𝑎) taking in

the following form:

𝐿 (𝑎) (

𝜙

𝜑
) = 𝛽 (𝑎) (

𝜙

𝜑
) . (8)

Setting

(

𝜙

𝜑
) = (

∞

∑

𝑘=0

𝑚
𝑘
𝜙
𝑘
(𝑥)

∞

∑

𝑘=0

𝑛
𝑘
𝜙
𝑘
(𝑥)

) , (9)

and introducing it into (8), one has

𝐿
𝑘
(𝑎) (

𝑚
𝑘

𝑛
𝑘

) = 𝛽 (𝑎) (

𝑚
𝑘

𝑛
𝑘

) , (10)

where

𝐿
𝑘
(𝑎) :=

[

[

[

[

−

𝑑
𝑢
𝑘
2

𝜉
2
+

𝑠𝑎

𝑏 − 𝑎

, 𝑠 (𝑏 − 𝑎)

−

𝑠𝑏

𝑏 − 𝑎

, −

𝑑V𝑘
2

𝜉
2
− 𝑠 (𝑏 − 𝑎)

]

]

]

]

. (11)

This suggests that the eigenvalues of 𝐿(𝑎) can be given
by the eigenvalues of the matrix 𝐿

𝑘
(𝑎), 𝑘 = 0, 1, 2, . . .. For

more details on how to derive 𝐿
𝑘
(𝑎), we suggest the interested

readers to refer to [9, 12] andmore references therein for great
details.

The characteristic equation of 𝐿
𝑘
(𝑎) for certain fixed 𝑘 is

given by

𝜌
2
− 𝜌𝑇
𝑘
(𝑎) + 𝐷

𝑘
(𝑎) = 0, (𝑘 = 0, 1, 2, . . .) , (12)
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where

𝑇
𝑘
(𝛼) =

𝑠 [−𝑎
2
+ (1 + 2𝑏) 𝑎 − 𝑏

2
]

𝑏 − 𝑎

−

(𝑑
𝑢
+ 𝑑V) 𝑘

2

𝜉
2

,

𝐷
𝑘
(𝛼) =

𝑑
𝑢
𝑑V𝑘
4

𝜉
4

+

𝑠𝑘
2

𝜉
2
[𝑑
𝑢
(𝑏 − 𝑎) −

𝑑V𝑎

𝑏 − 𝑎

] + 𝑠
2
(𝑏 − 𝑎) ,

(13)

where we adopt the same notations of𝑇
𝑘
(𝑎) and𝐷

𝑘
(𝑎), which

stand for the trace and determinant of 𝐿
𝑘
(𝑎), respectively, as

done in [12].
Before proceeding, we state the following useful lemma

on the existence of local Hopf bifurcations of the system (3).

Lemma 1 (see [12]). Suppose that, at a certain 𝑎
0
∈ 𝑅, the

following condition holds.

(H) There exists a neighborhood O of 𝑎
0
, such that, for

any 𝑎 ∈ O, 𝐿(𝑎) has a pair of simple, conjugate, and
complex eigenvalues 𝜌(𝑎) = 𝛼(𝑎) + 𝜔(𝑎), continuously
differentiable in 𝑎, with 𝛼(𝑎

0
) = 0, 𝜔(𝑎

0
) > 0,

and 𝛼󸀠(𝑎
0
) ̸= 0; all the other eigenvalues of 𝐿(𝑎) have

nonzero real parts.

Then, system (3) has a family of real-valued𝑇(𝑠)-periodic solu-
tions (𝑎(𝑠), 𝑢(𝑠)(𝑥, 𝑡), V(𝑠)(𝑥, 𝑡)), 𝑠 sufficiently small, bifurcat-
ing from (𝑎

0
, 𝑎
0
, 𝑏
0
). More precisely, there exists a unique

𝑘 ∈ {0, 1, 2, . . .}, such that the bifurcating periodic solutions
(𝑎(𝑠), 𝑢(𝑠)(𝑥, 𝑡), V(𝑠)(𝑥, 𝑡)) can be expressed by

𝑢 (𝑠) (𝑥, 𝑡) = 𝑠 [ℎ
𝑘
𝑒
2𝜋𝑖𝑡/𝑇(𝑠)

+ ℎ
𝑘
𝑒
−2𝜋𝑖𝑡/𝑇(𝑠)

] cos(𝑘𝑥
𝜉

) + 𝑜 (𝑠
2
) ,

V (𝑠) (𝑥, 𝑡) = 𝑠 [𝑔
𝑘
𝑒
2𝜋𝑖𝑡/𝑇(𝑠)

+ 𝑔
𝑘
𝑒
−2𝜋𝑖𝑡/𝑇(𝑠)

] cos(𝑘𝑥
𝜉

) + 𝑜 (𝑠
2
) ,

(14)

where

𝐿
𝑘
(𝑎
0
) (

𝑚
𝑘

𝑛
𝑘

) = 𝑖𝜔 (𝑎
0
) (

𝑚
𝑘

𝑛
𝑘

) . (15)

In the following, we will use Lemma 1 to prove the
existence of the Hopf bifurcations and its corresponding
periodic solutions, spatially homogeneous and nonhomoge-
neous. Clearly, the condition (H) stated in Lemma 1 holds at
a certain critical point 𝑎𝐻 if and only if one of the following
conditions holds:

𝑇
𝑘
(𝑎
𝐻
) = 0, 𝐷

𝑘
(𝑎
𝐻
) > 0;

𝑇
𝑗
(𝑎
𝐻
) ̸= 0, 𝐷

𝑗
(𝑎
𝐻
) ̸= 0

for 𝑗 ̸= 𝑘; 𝑇
󸀠

𝑘
(𝑎
𝐻
) ̸= 0

(16)

or

𝑇
𝑘
(𝑎
𝐻
) = 0, 𝐷

𝑘
(𝑎
𝐻
) > 0;

𝑇
𝑗
(𝑎
𝐻
) = 0, 𝐷

𝑗
(𝑎
𝐻
) < 0

for 𝑗 ̸= 𝑘; 𝑇
󸀠

𝑘
(𝑎
𝐻
) ̸= 0.

(17)

We define𝐴(𝑎) = (−𝑎2 + (1+ 2𝑏)𝑎− 𝑏2)/(𝑏 − 𝑎). Then it is
direct to check that, for all 𝑎 ∈ (0, 𝑎

0
), we have 𝐴(𝑎) < 0; and,

for all 𝑎 ∈ (𝑎
0
, 𝑏), we have 𝐴(𝑎) > 0, where

𝑎
0
:=

2𝑏 + 1 − √4𝑏 + 1

2

. (18)

This implies that, for all 𝑎 ∈ (0, 𝑎
0
), 𝑇
𝑘
(𝑎) < 0 for all 𝑘 ∈ N.

Thus, Hopf bifurcation is impossible.
Then, any potential Hopf bifurcation point 𝛼𝐻 must be

in the interval [𝑎
0
, 𝑏). For any Hopf bifurcation point 𝑎𝐻 in

[𝑎
0
, 𝑏), let𝛼(𝑎)±𝑖𝜔(𝑎) be the eigenvalues of𝐿

𝑘
(𝑎)near 𝑎 = 𝑎𝐻;

then we have

𝛼 (𝑎) =

𝑠 [−𝑎
2
+ (1 + 2𝑏) 𝑎 − 𝑏

2
]

2 (𝑏 − 𝑎)

−

(𝑑
𝑢
+ 𝑑V) 𝑛

2

2𝜉
2

,

𝜔 (𝑎) = √𝐷
𝑘
(𝑎) − 𝛼

2
(𝑎) ,

(19)

𝛼
󸀠
(𝑎
𝐻
) =

𝑠(𝑏 − 𝑎)
2
+ 𝑠𝑏

2(𝑏 − 𝑎)
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑎=𝑎
𝐻

> 0. (20)

This implies that 𝛼󸀠(𝑎𝐻) ̸= 0 is always satisfied for any 𝑎𝐻 ∈
[𝑎
0
, 𝑏).
In the following we fix 𝑑

𝑢
, 𝑑V, 𝑏, 𝑠 > 0 but choose 𝜉

appropriately. We notice that

lim
𝑎→𝑏

−

𝐴 (𝑎) = lim
𝑎→𝑏

−

−𝑎
2
+ (1 + 2𝑏) 𝑎 − 𝑏

2

𝑏 − 𝑎

= +∞. (21)

Then, for any 0 ≤ 𝑗, 𝐴(𝑎) = (𝑑
𝑢
+ 𝑑V)𝑗

2
/𝑠𝜉
2 has positive

roots in [𝑎
0
, 𝑏). We define 𝛼𝐻

𝑗
to be the roots of 𝐴(𝑎) = (𝑑

𝑢
+

𝑑V)𝑗
2
/𝑠𝜉
2 satisfying 0 < 𝑎𝐻

0
< 𝑎
𝐻

𝑗
< 𝛽 and lim

𝑗→∞

𝑎
𝐻

𝑗
= 𝑏. These

points satisfy

0 < 𝑎
0
= 𝑎
𝐻

0
< 𝑎
𝐻

1
< 𝑎
𝐻

2
< ⋅ ⋅ ⋅ < 𝑎

𝐻

𝑛
< ⋅ ⋅ ⋅ < 𝑏. (22)

Clearly𝑇
𝑗
(𝑎
𝐻

𝑗
) = 0 and𝑇

𝑖
(𝑎
𝐻

𝑗
) ̸= 0 for 𝑖 ̸= 𝑗. Nowwe only need

to verify whether 𝐷
𝑖
(𝑎
𝐻

𝑗
) ̸= 0 for all 𝑖 ∈ {0, 1, 2, . . .} and, in

particular,𝐷
𝑗
(𝑎
𝐻

𝑗
) > 0.

In fact, if the discriminant of𝐷
𝑖
(𝑎) is less than 0, then we

can get 𝐷
𝑖
(𝑎) > 0 for all 𝑖 ∈ {0, 1, 2, . . .} and, in particular,

𝐷
𝑗
(𝑎
𝐻

𝑗
) > 0. The discriminant of𝐷

𝑖
(𝑎) is given by

Δ = 𝑠
2
{[𝑑
𝑢
(𝑏 − 𝑎) −

𝑑V𝑎

𝑏 − 𝑎

]

2

− 4𝑑
𝑢
𝑑V (𝑏 − 𝑎)} , (23)

which is negative when 𝛼 ∈ [𝑎𝐻
0
, 𝑎
𝑐
), where

𝑎
𝑐
:=

2𝑑
𝑢
𝑏 − 𝑑V − 2√𝑑𝑢𝑑V𝑏 + √𝑑

2

V + 4𝑑2√𝑑𝑢𝑑V𝑏

2𝑑
𝑢

.
(24)

Summarizing our analysis above, we obtain our main
result in this subsection.
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Theorem 2. Let 𝑎𝐻
𝑗
, 𝑗 ∈ {0, 1, 2, . . .} be defined above. Then,

at any 𝑎𝐻
𝑗
satisfying 𝑎𝐻

𝑗
∈ [𝑎
𝐻

0
, 𝑎
𝑐
), the system (1) undergoes a

Hopf bifurcation at 𝛼 = 𝛼𝐻
𝑗
. Moreover,

(1) the bifurcating periodic solutions from 𝑎 = 𝑎
𝐻

0
are

spatially homogeneous, which coincides with the peri-
odic solution of the corresponding ODE system;

(2) the bifurcating periodic solutions from 𝑎 = 𝑎
𝐻

𝑗
, 𝑗 ∈

{1, 2, . . .}, are spatially nonhomogeneous.

Proof. By the analysis above, we know that the condition
(17) holds true (while (16) does not). This implies that the
condition (H) in Lemma 1 is satisfied. Thus, by Lemma 1, the
local Hopf bifurcation occurs near (𝑎𝐻

𝑗
, 𝑢
𝑎
𝐻

𝑗

, V
𝑎
𝐻

𝑗

) at 𝑎 = 𝑎𝐻
𝑗
,

with 𝑗 ∈ {0, 1, 2, . . .}. By the expression of (14), if 𝑘 = 0, then
the solution depends only on the time variable 𝑡; thus, the
periodic solution is exactly the same as that of the periodic
solutions in the corresponding ODEs system. However, if
𝑘 ≥ 1, then the periodic solutions depend not only on 𝑥 but
also on 𝑡 and thus are spatially nonhomogeneous.

3. Stability of the Spatially Homogeneous
Periodic Solutions Bifurcating from 𝑎 = 𝑎

𝐻

0

In this section, we consider the Hopf bifurcation direction
and the stability of the bifurcating spatially homogeneous
periodic solutions from the Hopf bifurcation points 𝑎𝐻

0
.

Theorem 3. For the system (1), the Hopf bifurcation at 𝑎 =

𝑎
𝐻

0
is subcritical, and the bifurcating (spatial homogeneous)

periodic solutions are unstable.

Proof. By Theorem 2.1 of [12], in order to determine the
stability and bifurcation direction of the bifurcating periodic
solution, we need to calculate Re(𝑐

1
(𝑎
𝐻

0
)). When 𝑎 = 𝑎𝐻

0
, we

put

𝑞 := (

𝑚
0

𝑛
0

) = (

1

−1 +

𝑖𝜔
0

𝑠 (𝑏 − 𝑎
𝐻

0
)

) ,

𝑞
∗
:= (

𝑚
∗

0

𝑛
∗

0

) =(

1

2𝜉𝜋

+

𝑖𝑠 (𝑏 − 𝑎
𝐻

0
)

2𝜔
0
𝜉𝜋

𝑖𝑠 (𝑏 − 𝑎
𝐻

0
)

2𝜔
0
𝜉𝜋

),

(25)

where 𝜔
0
= 𝑠√𝑏 − 𝑎

𝐻

0
.

As in Section 2 of [12], we define

𝑓 (𝑎, 𝑢, V) = 𝑠 [(𝑢 + 𝑢
𝑎
) (V + V

𝑎
) − (𝑢 + 𝑢

𝑎
) − 𝑎] ,

𝑔 (𝑎, 𝑢, V) = 𝑠 [𝑏 − (𝑢 + 𝑢
𝑎
) (V + V

𝑎
)] ;

(26)

then we have, by (2.19) of [12], (we use the same notations of
𝑐
0
, 𝑑
0
, 𝑒
0
, 𝑓
0
, 𝑔
0
as those appeared in [12])

𝑐
0
= −𝑑
0
= 2𝑠 [−1 +

𝑖𝜔
0

𝑠 (𝑏 − 𝑎
𝐻

0
)

] ,

𝑒
0
= −𝑓
0
= −2𝑠, 𝑔

0
= ℎ
0
= 0.

(27)

Thus, as in [12], we need to calculate ⟨𝑞∗, 𝑄
𝑞𝑞
⟩, ⟨𝑞∗, 𝑄

𝑞𝑞
⟩,

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩, and ⟨𝑞∗, 𝐶

𝑞𝑞𝑞
⟩. They are

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ∫

𝜉𝜋

0

𝑞
∗𝑇
(𝑐
0
, 𝑑
0
)
𝑇

𝑑𝑥 =

𝑖𝜔
0

𝑏 − 𝑎
𝐻

0

− 𝑠,

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ∫

𝜉𝜋

0

𝑞
∗𝑇
(𝑒
0
, 𝑓
0
)
𝑇

𝑑𝑥 = −𝑠,

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ∫

𝜉𝜋

0

𝑞
∗𝑇
(𝑐
0
, 𝑑
0
)
𝑇

𝑑𝑥 =

𝑖𝜔
0

𝑏 − 𝑎
𝐻

0

− 𝑠,

⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞
⟩ = ∫

𝜉𝜋

0

𝑞
∗𝑇
(𝑔
0
, ℎ
0
)
𝑇

𝑑𝑥 = 0.

(28)

Hence it is straightforward to calculate

𝐻
20
= (

𝑐
0

𝑑
0

) − ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ (

𝑚
0

𝑛
0

) − ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ (

𝑚
0

𝑛
0

) = 0,

𝐻
11
= (

𝑒
0

𝑓
0

) − ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ (

𝑚
0

𝑛
0

) − ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ (

𝑚
0

𝑛
0

) = 0,

(29)

which implies that 𝑤
20
= 𝑤
11
= 0. So,

⟨𝑞
∗
, 𝑄
𝑤11𝑞

⟩ = ⟨𝑞
∗
, 𝑄
𝑤20𝑞

⟩ = 0. (30)

Therefore, after the steps of calculations, we obtain

Re (𝑐
1
(𝑎
𝐻

0
)) = Re{ 𝑖

2𝜔
0

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ ⋅ ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ +

1

2

⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞
⟩}

=

𝑠

2 (𝑏 − 𝑎
𝐻

0
)

> 0.

(31)

From (20), it follows that 𝛼󸀠(𝑎𝐻
0
) > 0, and then by

Theorem 2.2 of [12] the bifurcation is subcritical. On the
other hand, from (13), 𝑇

𝑘
(𝑎
𝐻

0
) < 0 and 𝐷

𝑘
(𝑎
𝐻

0
) > 0 for any

𝑛 ≥ 1, so the bifurcating periodic solutions are unstable since
Re(𝑐
1
(𝑎
𝐻

0
)) > 0.

4. Conclusions

In this paper, by using the standard Hopf bifurcation the-
orem, we are able to prove the existence of periodic solu-
tions of the system. And we also proved that the spatial
homogeneous periodic solution bifurcating from the smallest
Hopf bifurcation point 𝑎𝐻

0
is unstable. By [12], the spatially

nonhomogeneous periodic solutions bifurcating from 𝑎𝐻
𝑗
, 𝑗 ∈

{1, 2, . . .}, are all unstable.This togetherwith our results shows
that all the Hopf bifurcating periodic patterns are unstable.
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