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Model criticism is an important stage of model building and thus goodness of fit tests provides a set of tools for diagnostic
checking of the fitted model. Several tests are suggested in literature for diagnostic checking. These tests use autocorrelation or
partial autocorrelation in the residuals to criticize the adequacy of fitted model. The main idea underlying these portmanteau
tests is to identify if there is any dependence structure which is yet unexplained by the fitted model. In this paper, we suggest
mixed portmanteau tests based on autocorrelation and partial autocorrelation functions of the residuals.We derived the asymptotic
distribution of the mixture test and studied its size and power using Monte Carlo simulations.

1. Introduction

In practice, there are many possible linear and nonlinear
models for a problem under study, for example, autore-
gressive, moving average, mixed ARMA models, threshold
autoregressive. Box and Jenkins [1] have described time
series model building as a three-stage iterative procedure that
consists of identification, estimation, and validation.

Time series models should be able to describe the depen-
dence among the observations; see, for example, Li [2]. It
is a well-discussed issue that in time series model criticism
the residuals obtained from fitting a potential model to the
observed time series play a vital role and can be used to detect
departures from the underlying assumptions, [1, 2].

In particular, if the model is a good fit to the observed
series then the residuals should behave somewhat like a
white noise process. So, taking into account of the effect of
estimation, the residuals obtained from a good fit should
be approximately uncorrelated. While looking at the signifi-
cance of residual autocorrelations, one approach is to test the
significance of each individual residual autocorrelationwhich
seems to be quite cumbersome. Another approach is to have
some portmanteau test capable of testing the significance of
the first, say, 𝑚, residual autocorrelations [1, 2], an approach
we now describe.

Since Box and Pierce [3] paper, the portmanteau test
has become the vital part of time series diagnostic checking.
Several modifications and versions of Box and Pierce [3]
have been suggested in the literature; see, for example, Ljung
and Box [4], McLeod and Li [5], Monte [6], Katayama [7],
and Katayama [8]. These tests are capable of testing the
significance of the autocorrelations (partial autocorrelations)
up to a finite number of lags.

The residuals are very commonly used as a diagnostic tool
to test the goodness of fit of models. In a time series context,
if the fittedmodel is good then it should be able to explain the
dependence pattern among successive observations. In other
words, all the dependence in terms of autocorrelations and
partial autocorrelations of the data generating process (DGP)
should be explained by the fitted model so there should be
no significant autocorrelation and partial autocorrelation in
successive terms of the residuals.

In practice, the most popular way for diagnostic checking
of a time series model is the portmanteau test, which tests
whether any of the first 𝑚 autocorrelations (𝑟

1
, . . . , 𝑟

𝑚
) of a

time series are significantly different from zero. This type
of test was first suggested by Box and Pierce [3], in which
they studied the distribution of residual autocorrelations in
ARIMA processes.
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Based on the autocorrelations of the residuals obtained by
fitting an ARMA(𝑝, 𝑞) model, Box and Pierce [3] suggested
the following portmanteau test:

𝑄
𝑚

= 𝑛

𝑚

∑

𝑘=1

𝑟
2

𝑘
, (1)

where 𝑟
𝑘
is the residual autocorrelation at lag 𝑘. They

suggested that 𝑄
𝑚

∼ 𝜒
2

𝑚−𝑝−𝑞
, for moderate values of 𝑚, and

the fitted model is adequate, under the following conditions:

(1) 𝜓
𝑗
≤ 𝑂(𝑛

−1/2
) for 𝑗 ≥ 𝑚 − 𝑝,

(2) 𝑚/𝑛 = 𝑂(𝑛
−1/2

),

where 𝜓
𝑗
are the weights in the MA(∞) representation. This

approximation requires substitution of residuals, 𝜀
𝑡
, for the

error term, 𝜀
𝑡
, in themodel but this sort of substitution can be

a serious underestimation of significance level in diagnostic
checking [9]. Many other researchers have also questioned
the distribution of 𝑄

𝑚
(see, e.g., [10] and references therein).

The choice of𝑚 is an important issue.
Ljung and Box [4] suggested the use of the modified

statistic

𝑄
∗

𝑚
= 𝑛 (𝑛 + 2)

𝑚

∑

𝑘=1

𝑟
2

𝑘

𝑛 − 𝑘

. (2)

They have shown that the modified portmanteau statistic
𝑄
∗

𝑚
has a finite sample distribution which is much closer

to 𝜒
2

𝑚−𝑝−𝑞
. Their results also show that 𝑄∗

𝑚
is insensitive to

the normality assumption of 𝜀
𝑡
. As pointed out by many

researchers, for example, Davies et al. [11], Ansley and
Newbold [12], the true significance levels of 𝑄

𝑚
tend to be

much lower than predicted by the asymptotic theory and
though the mean of 𝑄

∗

𝑚
is much closer to the asymptotic

distribution, this corrected version of the portmanteau test
has an inflated variance. But Ljung and Box [4] pointed out
that approximate expression of variance given by Davies et al.
[11] overestimates the variance of 𝑄∗

𝑚
.

McLeod [10, Theorem 1] has shown that r̂ = (𝑟
1
, . . . , 𝑟

𝑚
)

is approximately normal with mean 0 and Var(r̂) = (I −

C)/𝑛, where C = XI−1X𝑇, I is the identity matrix, and I is
the Fisher information matrix. The superscript 𝑇 stands for
transposition of matrix. We noticed that approximation of
C by D = X(X𝑇X)

−1X𝑇, especially when 𝑚 is small, is a
source of bias in approximating the asymptotic distribution
of portmanteau tests.

In practice, the optimal choice of 𝑚 is difficult as the
use of the 𝜒

2

𝑚−𝑝−𝑞
approximation and diagnostic checking

require large values of 𝑚 which results in less power and
unstable size of test, as noticed by Ljung [13] and Katayama
[7]. Katayama [8] suggested a multiple portmanteau test to
overcome this problem. His suggested test is based on several
portmanteau tests for a range of small to medium values
of 𝑚. He showed using some numerical examples that his
suggestion leads to a superior test. He also discussed the
linkage between his suggested multiple test and the test due
to Peña and Rodŕıguez [14]. He suggested a method based on

some iterative procedure to approximate joint distribution of
themultiple test as the computation of the distribution is very
hard due to correlated elements.

The portmanteau tests 𝑄
𝑚

and 𝑄
∗

𝑚
are based on the

autocorrelations. Monti [6] suggested a portmanteau test

𝑄
∗

𝑚
(𝜔̂) = 𝑛 (𝑛 + 2)

𝑚

∑

𝑘=1

𝜔̂
2

𝑘

𝑛 − 𝑘

, (3)

where 𝜔̂
𝑘
is the residual partial autocorrelation at lag 𝑘. She

showed that 𝑄∗
𝑚
(𝜔̂), analogously to 𝑄

∗

𝑚
, has an asymptotic

null distribution 𝜒
2

𝑚−𝑝−𝑞
and that 𝑄∗

𝑚
(𝜔̂) is more powerful

than 𝑄
∗

𝑚
especially when the order of the moving average

component is understated. Chand andKamal [15] had studied
the size of Monti’s test.

Portmanteau tests, for example, Box-Pierce test, which
are based on residuals autocorrelations, have good power
against the understatement of autoregressive component
while the tests using residuals partial autocorrelations have
shown good power against the understatement of moving
average term. A new test using both autocorrelation and
partial autocorrelations is expected to perform better in
both of these two scenarios and will be capable of picking
up understatement in moving average and autoregressive
components.

2. Materials and Methods

In this section, we give the algorithms for the Monte Carlo
method used to compute the empirical size and power of the
diagnostic tests defined in Section 2. For each Monte Carlo
run, a sample time series {𝑦

𝑡
}
𝑛

𝑡=1
is simulated under themodel

M. For empirical size, M is the null model while for the
computation of power it is the alternative model. In both of
the situations, we estimate the null model for the simulated
sample time series and 𝑇 is calculated from the residuals, 𝜀

𝑡
.

Algorithm 1 gives the bootstrap procedure used in our
numerical study. From this algorithm, we obtain the boot-
strap approximation of the distribution of the test. We will
use this algorithm to compute empirical size in the following
algorithm of our simulation study consisting of 𝑁 Monte
Carlo runs.

3. Results

Suppose we have an observed time series {𝑦
𝑡
: 𝑡 = 1, 2, . . . , 𝑛}

generated by an ARMA(𝑝, 𝑞)model given by

𝜙 (𝐵) 𝑦
𝑡
= 𝜃 (𝐵) 𝜀

𝑡
, (4)

where 𝐵 is the backward shift operator, 𝜙(𝐵) = 1 − 𝜙
1
𝐵 −

𝜙
2
𝐵
2
− ⋅ ⋅ ⋅ − 𝜙

𝑝
𝐵
𝑝 is the autoregressive polynomial of order

𝑝, and 𝜃(𝐵) = 1 + 𝜃
1
𝐵 + 𝜃

2
𝐵
2
+ ⋅ ⋅ ⋅ + 𝜃

𝑞
𝐵
𝑞 is the moving

average polynomial of order 𝑞. Let an appropriately identified
model be fitted to the observed time series and let residuals
𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
be obtained. These residuals play an important
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Step 1. Generate bootstrap sample 𝑦∗
𝑡
using resamples of residuals, 𝜀

𝑡
,

obtained by fitting the model under null hypothesis to the simulated time
series. We denoted these resampled residuals as 𝜀∗

𝑡
.

Step 2. Fit the null model to the bootstrap sample 𝑦∗
𝑡
and obtain residuals

as 𝜀∗
𝑡
= 𝑦
∗

𝑡
− 𝑦
∗

𝑡
, where 𝑦∗

𝑡
is the fitted series.

Step 3. Using the residuals, 𝜀∗
𝑡
, obtained in Step 2 above, calculate

test-statistic 𝑇. We denote it as 𝑇∗.
Step 4. Repeat Step 1–3 for each of the 𝐵 bootstrap samples.

Algorithm 1: Bootstrap sampling procedure.

role in the diagnostic checking of the fitted model. The
residuals autocorrelation at lag 𝑘 can be defined as

𝑟
𝑘
=

∑
𝑛

𝑡=𝑘+1
𝜀
𝑡
𝜀
𝑡−𝑘

∑
𝑛

𝑡=1
𝜀
2

𝑡

𝑘 = 1, 2, . . . , (5)

where {𝜀
𝑡−𝑘

} is the series at lag 𝑘 of {𝜀
𝑡
}. Let 𝛽 =

(𝜙
1
, . . . , 𝜙

𝑝
, 𝜃
1
, . . . , 𝜃

𝑞
) be the vector of model parameters and

let ̂𝛽 = (
̂
𝜙
1
, . . . ,

̂
𝜙
𝑝
,
̂
𝜃
1
, . . . ,

̂
𝜃
𝑞
) be the corresponding estimator

of 𝛽.
Let us define autocorrelation of error term, 𝜀

𝑡
, that is,

white noise at lag 𝑘, as

𝑟
𝑘
=

∑
𝑛

𝑡=𝑘+1
𝜀
𝑡
𝜀
𝑡−𝑘

∑
𝑛

𝑡=1
𝜀
2

𝑡

𝑘 = 1, 2, . . . . (6)

The root mean square error of ̂𝛽 can be defined as

√𝐸(𝛽 − ̂𝛽)
2

.
(7)

As the above term is of order 1/√𝑛, thus we can use Taylor
series of first order to approximate 𝑟

𝑘
around 𝑟

𝑘
. We can write

𝑟
𝑘
= 𝑟
𝑘
+

𝑝+𝑞

∑

𝑗=1

(𝛽
𝑗
−

̂
𝛽
𝑗
)

2

𝜆
𝑗𝑘

+ 𝑂
𝑝
(

1

𝑛

) , (8)

where

𝜆
𝑗𝑘

= −

𝜕𝑟
𝑘

𝜕
̇

𝛽
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝛽̇=𝛽̂

,

̂
𝜆
𝑗𝑘

= −

𝜕𝑟
𝑘

𝜕
̇

𝛽
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝛽̇=𝛽̂

.

(9)

Take

𝜀
𝑡
= 𝑦
𝑡
− 𝜙
1
𝑦
𝑡−1

− ⋅ ⋅ ⋅ − 𝜙
𝑝
𝑦
𝑡−𝑝

− 𝜃
1
𝜀
𝑡−1

− ⋅ ⋅ ⋅ − 𝜃
𝑞
𝜀
𝑡−𝑞

. (10)

For an AR(𝑝) process

𝜀
𝑡
= 𝑦
𝑡
− 𝜙
1
𝑦
𝑡−1

− ⋅ ⋅ ⋅ − 𝜙
𝑝
𝑦
𝑡−𝑝

, (11)

at 𝛽 = ̇𝛽, that is, for an AR(𝑝), 𝜙 = ̇𝜙, we can write

̇𝜀
𝑡
= 𝑦
𝑡
−

̇
𝜙
1
𝑦
𝑡−1

− ⋅ ⋅ ⋅ −
̇

𝜙
𝑝
𝑦
𝑡−𝑝

,

𝜕 ̇𝜀
𝑡

𝜕
̇

𝜙
𝑗

= −𝑦
𝑡−𝑗

.

(12)

From (10) and summing over observed sample, we get

∑𝜀
2

𝑡
= ∑(𝑦

𝑡
− 𝜙
1
𝑦
𝑡−1

⋅ ⋅ ⋅ − 𝜙
𝑝
𝑦
𝑡−𝑝

)

2

. (13)

Partially differentiating with respect to 𝜙
𝑗

𝜕∑ 𝜀
2

𝑡

𝜕𝜙
𝑗

= 2∑(𝑦
𝑡
− 𝜙
1
𝑦
𝑡−1

⋅ ⋅ ⋅ − 𝜙
𝑝
𝑦
𝑡−𝑝

) (−𝑦
𝑡−𝑗

) . (14)

At 𝜙 = ̇𝜙

𝜕∑ 𝜀
2

𝑡

𝜕𝜙
𝑗

= 0. (15)

Now

̂
𝜆
𝑗𝑘

= −

𝜕𝑟
𝑘

𝜕
̇

𝜙
𝑗

= −

𝜕 (𝑐
𝑘
/𝑐
0
)

𝜕𝜙
𝑗

= −

𝜕

𝜕𝜙
𝑗

(

∑ 𝜀
𝑡
𝜀
𝑡−𝑘

∑𝜀
2

𝑡

) = −

1

∑ 𝜀
2

𝑡

𝜕 (∑ 𝜀
𝑡
𝜀
𝑡−𝑘

)

𝜕𝜙
𝑗

.

(16)

As

∑𝜀
𝑡
𝜀
𝑡−𝑘

= ∑ (𝜙 (𝐵) 𝑦
𝑡
) (𝜙 (𝐵) 𝑦

𝑡−𝑘
)

= ∑

𝑡

(∑

𝑖

∑

𝑗

𝑖=𝑘+𝑗

𝜙
𝑖
𝜙
𝑗
𝑦
𝑡−𝑖

𝑦
𝑡−𝑘−𝑗

+ ∑

𝑖

∑

𝑗

𝑖 ̸= 𝑘+𝑗

𝜙
𝑖
𝜙
𝑗
𝑦
𝑡−𝑖

𝑦
𝑡−𝑘−𝑗

),

(17)

thus

̂
𝜆
𝑗𝑘

= −

∑
𝑡
𝑦
2

𝑡

∑
𝑡
𝜀
2

𝑡

∑

𝑖

(𝑟
𝑘−𝑖+𝑗

(𝑦) + 𝑟
𝑘+𝑖−𝑗

(𝑦))

= −

∑
𝑖
𝑝
̂
ℎ𝑖
𝑖
(𝑟
𝑘−𝑖+𝑗

(𝑦) + 𝑟
𝑘+𝑖−𝑗

(𝑦))

∑
𝑖
∑
𝑗
̂
𝜙
𝑖
̂
𝜙
𝑗
𝑟
𝑖−𝑗

(𝑦)

,

(18)

where

𝑟
𝑘
(𝑦) =

∑𝑦
𝑡
𝑦
𝑡−𝑘

∑𝑦
2

𝑡

. (19)
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Using Bartlett’s formula, we can write

𝑟
𝑘
(𝑦) = 𝜌

𝑘
+ 𝑂
𝑝
(𝑛
−1/2

) . (20)

Using ̂
𝜙
𝑗
= 𝜙
𝑗
+ 𝑂
𝑝
(𝑛
−1/2

) and the above results

̂
𝜆
𝑗𝑘

= 𝜆
𝑗𝑘

+ 𝑂
𝑝
(𝑛
−1/2

) . (21)

Consider the AR(𝑝) process

𝜙 (𝐵) 𝑦
𝑡
= 𝜀
𝑡
,

(1 − 𝜙
1
𝐵 − 𝜙
2
𝐵
2
− ⋅ ⋅ ⋅ − 𝜙

𝑝
𝐵
𝑝
) 𝑦
𝑡
= 𝜀
𝑡
,

𝑦
𝑡
− 𝜙
1
𝑦
𝑡−1

− 𝜙
2
𝑦
𝑡−2

− ⋅ ⋅ ⋅ − 𝜙
𝑝
𝑦
𝑡−𝑝

= 𝜀
𝑡
.

(22)

Multiplying both sides by 𝑦
𝑡−𝑘

and on taking expectation,
we get 𝐸(𝑦

𝑡
𝑦
𝑡−𝑘

) − 𝜙
1
𝐸(𝑦
𝑡−1

𝑦
𝑡−𝑘

) − 𝜙
2
𝐸(𝑦
𝑡−2

𝑦
𝑡−𝑘

) − ⋅ ⋅ ⋅ −

𝜙
𝑝
𝐸(𝑦
𝑡−𝑝

𝑦
𝑡−𝑘

) = 𝐸(𝜀
𝑡
𝑦
𝑡−𝑘

). Without loss of generality, we can
assume 𝐸(𝑦

𝑡
) = 0; moreover it is considered a stationary

process; therefore 𝐸(𝑦
2

𝑡
) = var(𝑦

𝑡
) = 𝑐

0
and 𝐸(𝑦

𝑡
𝑦
𝑡−𝑘

) =

cov(𝑦
𝑡
, 𝑦𝑡 − 𝑘) = 𝑐

𝑘
. Moreover, 𝐸(𝜀

𝑡
𝑦
𝑡−𝑘

) = 0 for 𝑘 ≥ 1. Thus

𝑐
𝑘
− 𝜙
1
𝑐
𝑘−1

− 𝜙
2
𝑐
𝑘−2

− ⋅ ⋅ ⋅ − 𝜙
𝑝
𝑐
𝑘−𝑝

= 0. (23)

Divide both sides by 𝑐
0
and using 𝑟

𝑘
= 𝑐
𝑘
/𝑐
0
, we get

𝑟
𝑘
− 𝜙
1
𝑟
𝑘−1

− 𝜙
2
𝑟
𝑘−2

− ⋅ ⋅ ⋅ − 𝜙
𝑝
𝑟
𝑘−𝑝

= 0,

𝜙 (𝐵) 𝑟
𝑘
= 0.

(24)

Using this result and the structure of AR(𝑝) process, it implies

𝜆
𝑗𝑘

=

∑
𝑖
𝜙
𝑖
𝜙
𝑘−𝑗+𝑖

∑
𝑖
𝜙
𝑖
𝜌
𝑖

. (25)

The AR(𝑝) process can be written in an equivalent moving
average representation, that is, MA(∞), given as

𝜙 (𝐵) 𝑦
𝑡
= 𝜀
𝑡
,

𝑦
𝑡
= 𝜓 (𝐵) 𝜀

𝑡
,

(26)

where

𝜓 (𝐵) =

1

𝜙 (𝐵)

=

∞

∑

𝑖=0

𝜓
𝑖
𝐵
𝑖
. (27)

Using Box and Pierce [3, page. 1514] and the above results, we
can write

𝜆
𝑗𝑘

= 𝜓
𝑘−𝑗

, (28)

where 𝑘 = 1, 2, . . . , 𝑚, and thus using (8), we get

𝑟
𝑘
= 𝑟
𝑘
+ ∑

𝑖

(𝜙
𝑖
−

̂
𝜙
𝑖
) 𝜓
𝑘−𝑖

+ 𝑂
𝑝
(

1

𝑛

) . (29)

UsingMcLeod [10,Theorem 1], the asymptotic distribution of
r̂ = (𝑟

1
, . . . , 𝑟

𝑚
), where𝑚 ≥ 𝑝 + 𝑞 is normal with mean 0 and

covariance matrix (1 − XI−1X𝑇)/𝑛; that is,

r̂ ∼ 𝑁(0,
(I − XI−1X𝑇)

𝑛

) , (30)

where for an ARMA(𝑝, 𝑞) process

X =

[

[

[

[

[

[

[

1 0 . . . 0

𝜓
1

1 . . . 0

𝜓
2

𝜓
1

. . . 0

...
...

...
𝜓
𝑚−1

𝜓
𝑚−2

. . . 𝜓
𝑚−𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1 0 . . . 0

𝜋
1

1 . . . 0

𝜋
2

𝜋
1

. . . 0

...
...

...
𝜋
𝑚−1

𝜋
𝑚−2

. . . 𝜋
𝑚−𝑝

]

]

]

]

]

]

]

.

(31)

The elements𝜓
𝑗
and𝜋
𝑗
are the coefficients of𝐵𝑗 in the infinite

expansion of inverse of AR and MA polynomials. For an
AR(𝑝) process, the above matrix reduces to

X =

[

[

[

[

[

[

[

1 0 . . . 0

𝜓
1

1 . . . 0

𝜓
2

𝜓
1

. . . 0

...
...

...
𝜓
𝑚−1

𝜓
𝑚−2

. . . 𝜓
𝑚−𝑝

]

]

]

]

]

]

]

. (32)

Let𝜔
𝑘
be the partial autocorrelation at lag 𝑘; then usingMonti

[6, page 777, equation (4)], we have

𝜔̂ = r̂ + 𝑂
𝑝
(

1

𝑛

) . (33)

According toMonti [6], the r̂ can be obtained using a singular
linear transformation of the noise autocorrelations, that is, r,
given as

r̂ = (I − X(X𝑇X)

−1

X) r + 𝑂
𝑝
(

1

𝑛

) . (34)

Using (30), we can write

𝜔̂ ∼ 𝑁(0,
(I − XI−1X𝑇)

𝑛

) . (35)

Ljung and Box [4], using (30), suggested a portmanteau test
for diagnostic testing of the fitted ARMA(𝑝, 𝑞) model given
as

𝑄
∗

𝑚
(𝑟) = 𝑛 (𝑛 + 2)

𝑚

∑

𝑘=1

𝑟
2

𝑘

𝑛 − 𝑘

∼ 𝜒
2

𝑚−𝑝−𝑞
. (36)

Following the same lines and using the result in (35), Monti
[6] suggested the following portmanteau test:

𝑄
∗

𝑚
(𝜔̂) = 𝑛 (𝑛 + 2)

𝑚

∑

𝑘=1

𝜔̂
2

𝑘

𝑛 − 𝑘

∼ 𝜒
2

𝑚−𝑝−𝑞
. (37)

4. New Test

We suggest a new test 𝑄†
𝑚
(𝑟, 𝜔̂) = 𝑄

∗

𝑚
(𝑟) + 𝑄

∗

𝑚
(𝜔̂), that is, the

sum of Ljung and Box [4] and Monti [6], given as

𝑄
∗

𝑚
(𝑟, 𝜔̂) = 𝑛 (𝑛 + 2)

𝑚

∑

𝑘=1

(𝑟
2

𝑘
+ 𝜔̂
2

𝑘
)

𝑛 − 𝑘

. (38)
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Table 1: Monte Carlo estimates of 𝜌
𝑚
.

𝑛

𝑚

2 3 5 10 15 20 25 30
8 0.799 — — — — — — —
12 0.882 0.872 — — — — — —
20 0.932 0.909 0.851 — — — — —
40 0.962 0.947 0.910 0.829 — — — —
60 0.974 0.968 0.934 0.876 0.828 — — —
80 0.982 0.974 0.951 0.898 0.859 0.825 — —
100 0.986 0.979 0.958 0.923 0.881 0.851 0.826 —
125 0.989 0.983 0.968 0.936 0.902 0.873 0.851 0.829
150 0.990 0.983 0.972 0.941 0.920 0.887 0.875 0.854
200 0.993 0.988 0.979 0.956 0.934 0.915 0.900 0.874

Table 2: Empirical size at 1% nominal size for an AR(1) process: 𝑦
𝑡
= 𝜙𝑦
𝑡−1

+ 𝜀
𝑡
.

𝑚 𝑇

𝜙

0.1 0.4 0.7 0.8 0.9

5
𝑄
∗

𝑚
(𝑟) 0.021 0.020 0.027 0.024 0.027

𝑄
∗

𝑚
(𝜔̂) 0.012 0.011 0.010 0.005 0.015

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.014 0.015 0.016 0.007 0.020

10
𝑄
∗

𝑚
(𝑟) 0.008 0.015 0.016 0.017 0.022

𝑄
∗

𝑚
(𝜔̂) 0.007 0.012 0.006 0.009 0.018

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.006 0.011 0.008 0.010 0.017

15
𝑄
∗

𝑚
(𝑟) 0.013 0.025 0.020 0.018 0.025

𝑄
∗

𝑚
(𝜔̂) 0.006 0.010 0.007 0.010 0.015

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.007 0.013 0.010 0.010 0.015

20
𝑄
∗

𝑚
(𝑟) 0.024 0.022 0.022 0.022 0.034

𝑄
∗

𝑚
(𝜔̂) 0.011 0.011 0.011 0.012 0.009

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.011 0.015 0.018 0.014 0.019

25
𝑄
∗

𝑚
(𝑟) 0.021 0.020 0.027 0.024 0.027

𝑄
∗

𝑚
(𝜔̂) 0.012 0.011 0.010 0.005 0.015

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.014 0.015 0.016 0.007 0.018

Table 3: Empirical size at 5% nominal size for an AR(1) process: 𝑦
𝑡
= 𝜙𝑦
𝑡−1

+ 𝜀
𝑡
.

𝑚 𝑇

𝜙

0.1 0.4 0.7 0.8 0.9

5
𝑄
∗

𝑚
(𝑟) 0.077 0.063 0.078 0.072 0.085

𝑄
∗

𝑚
(𝜔̂) 0.050 0.051 0.053 0.047 0.055

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.056 0.049 0.055 0.049 0.052

10
𝑄
∗

𝑚
(𝑟) 0.041 0.053 0.057 0.059 0.077

𝑄
∗

𝑚
(𝜔̂) 0.044 0.053 0.059 0.056 0.07

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.036 0.046 0.045 0.049 0.061

15
𝑄
∗

𝑚
(𝑟) 0.06 0.069 0.072 0.074 0.089

𝑄
∗

𝑚
(𝜔̂) 0.052 0.065 0.055 0.057 0.068

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.053 0.061 0.051 0.049 0.055

20
𝑄
∗

𝑚
(𝑟) 0.065 0.07 0.059 0.087 0.085

𝑄
∗

𝑚
(𝜔̂) 0.051 0.054 0.056 0.064 0.061

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.053 0.051 0.049 0.065 0.072

25
𝑄
∗

𝑚
(𝑟) 0.077 0.063 0.078 0.072 0.085

𝑄
∗

𝑚
(𝜔̂) 0.050 0.051 0.053 0.047 0.055

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.056 0.049 0.055 0.049 0.062
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Step 1. Obtain 𝑇
∗ using Algorithm 1, for each of the 𝐵 bootstrap samples,

reject null model if 𝑇∗ ≥ 𝑇, otherwise accept it.
Step 2. Determine the proportion of 𝐵 bootstrap samples, say 𝑝

𝑐
, for which

the null hypothesis is rejected.
Step 3. Repeat Step 1-2 for each of the𝑁Monte Carlo runs.
Step 4. Empirical size, 𝛼̂, is determined as the proportion of Monte Carlo
runs for which the 𝑝

𝑐
≤ 𝛼, where 𝛼 is the level of significance,

𝛼̂ =

#(𝑝
𝑐
≤ 𝛼)

𝑁

.

Algorithm 2: Computation of empirical size.

Step 1. Calculate 100(1 − 𝛼)th percentile, say 𝑇
∗

1−𝛼
, of the bootstrap distribution of 𝑇∗

obtained using Algorithm 1.
Step 2. Reject null model if 𝑇 ≥ 𝑇

∗

1−𝛼
otherwise accept it.

Step 3. Repeat Step 1-2 for each of the𝑁Monte Carlo runs.
Step 4. Empirical power, 1 −

̂
𝛽, is determined as below,

1 −
̂
𝛽 =

#(𝑇 ≥ 𝑇
1−𝛼

)

𝑁

.

Algorithm 3: Computation of empirical power.

It is obvious that this new statistic 𝑄
∗

𝑚
is the sum of two

chi-square variables as discussed above in (36) and (37).
Moreover, it can be noticed that both of these random
variables will be positively correlated due to their structure
of using residual autocorrelation and partial autocorrelation.
We have discussed their correlational structure later in this
report.

Using the result of Joarder and Omar [16, Theorem 3.1],
we can write the probability density function of 𝑍 = 𝑄

∗

𝑚
=

𝑄
𝑚
(𝑟) + 𝑄

𝑚
(𝜔̂) as

𝑓
𝑍
(𝑧) =

(1 − 𝜌
2

𝑚
)

−𝑚/2

2
𝑚
Γ (𝑚)

𝑧
𝑚−1 exp(

−𝑧

2 − 2𝜌
2

𝑚

)

×
0
𝐹
1
(

𝑚 + 1

2

;

𝜌
2

𝑚
𝑧
2

(4 − 4𝜌
2

𝑚
)
2
) ;

0 ≤ 𝑧 < ∞,

(39)

where 𝜌
𝑚
is the correlation between 𝑄

∗

𝑚
(𝑟) and 𝑄

∗

𝑚
(𝜔̂):

𝑝
𝐹
𝑞
(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
; 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑞
; 𝑧) =

∞

∑

𝑖=0

∏
𝑝

𝑗=1
(𝑎
𝑗
)
{𝑖}
𝑧
𝑖

∏
𝑞

𝑗=1
(𝑏
𝑗
)
{𝑖}
𝑖!

,

𝑎
{𝑖}

= 𝑎 (𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 + 𝑖 − 1) .

(40)

Now the important issue is to estimate 𝜌
𝑚
which is discussed

in Section 4.1.

4.1. Estimation of 𝜌
𝑚
. We have used Monte Carlo simulation

to estimate 𝜌
𝑚
. We have considered various choices of sample

size and 𝑚 and obtained the following results. Empirical
results suggest that, for any 𝑛, we have

0.8 ≤ 𝜌
𝑚

≤ 1, (41)

where𝑚 ≤ 𝑛/4. Results are given in Table 1.

4.2. Empirical Size. The size of a test is helpful in assessing
how reasonable is our assumption of the null distribution.We
can compute the size when the sample is simulated under the
null model. This is the probability of rejecting the null model
when the null model is true model. The model under null
hypothesis is considered an AR(1) process 𝑦

𝑡
= 𝜙𝑦
𝑡−1

+ 𝜀
𝑡
. To

see the effect of stationarity and near to unit-root problem, we
have considered various choices of 𝜙. The value of 𝜙 near to
1, for example, 𝜙 = 0.9, is an example of near nonstationary
process.

It can be seen from the results shown inTables 2 and 3 that
our new suggested mixture test, that is, 𝑄∗

𝑚
(𝑟, 𝜔̂), have close

approximation of corresponding nominal sizes. These results
show the good approximation of asymptotic distribution of
our new suggested test.

4.3. Empirical Power. The power of a test is the probability
of rejecting a false null hypothesis. For empirical power,
as mentioned earlier, the sample is generated under the
alternative model. Algorithms 2 and 3 state the Monte Carlo
procedure we use to determine the empirical size and power
of test.

For power computation, we have simulated under an
ARMA(1, 1) process 𝑦

𝑡
= 𝜙𝑦

𝑡−1
+ 𝜀
𝑡
+ 0.8𝜀

𝑡−1
and 𝑦

𝑡
=

0.8𝑦
𝑡−1

+𝜀
𝑡
+𝜃𝜀
𝑡−1

as alternative models, while AR(1) process
𝑦
𝑡

= 𝜙𝑦
𝑡−1

+ 𝜀
𝑡
is the model specified in null hypothesis.

Results are provided in Tables 4 and 5.These results show that
our suggestedmixed portmanteau tests have empirical power
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Table 4: Empirical power by fitting an AR(1) process against an ARMA(1, 1) process: 𝑦
𝑡
= 𝜙𝑦
𝑡−1

+ 𝜀
𝑡
+ 0.8𝜀

𝑡−1
using 1000 Monte Carlo runs.

𝑚 𝑇

𝜙

0.1 0.4 0.7 0.8 0.9

5
𝑄
∗

𝑚
(𝑟) 0.955 0.991 1 1 1

𝑄
∗

𝑚
(𝜔̂) 0.992 0.997 1 1 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.997 0.999 1 1 1

10
𝑄
∗

𝑚
(𝑟) 0.819 0.941 0.983 0.986 0.995

𝑄
∗

𝑚
(𝜔̂) 0.980 1 1 1 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.985 1 1 1 1

15
𝑄
∗

𝑚
(𝑟) 0.748 0.871 0.940 0.957 0.976

𝑄
∗

𝑚
(𝜔̂) 0.958 0.990 1 1 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.953 0.970 0.995 0.997 1

20
𝑄
∗

𝑚
(𝑟) 0.680 0.828 0.900 0.940 0.948

𝑄
∗

𝑚
(𝜔̂) 0.926 0.989 0.995 0.999 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.943 0.957 0.987 0.998 0.999

25
𝑄
∗

𝑚
(𝑟) 0.614 0.810 0.872 0.910 0.934

𝑄
∗

𝑚
(𝜔̂) 0.864 0.974 0.990 0.999 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.927 0.940 0.975 0.995 0.998

Table 5: Empirical power by fitting an AR(1) process against an ARMA(1, 1) process: 𝑦
𝑡
= 0.8𝑦

𝑡−1
+ 𝜀
𝑡
+ 𝜃𝜀
𝑡−1

using 1000 Monte Carlo runs.

𝑚 𝑇

𝜃

0.1 0.4 0.7 0.8 0.9

5
𝑄
∗

𝑚
(𝑟) 0.103 0.703 1 1 1

𝑄
∗

𝑚
(𝜔̂) 0.081 0.771 1 1 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.208 0.846 1 1 1

10
𝑄
∗

𝑚
(𝑟) 0.092 0.520 0.917 1 0.978

𝑄
∗

𝑚
(𝜔̂) 0.115 0.601 1 1 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.228 0.784 1 1 1

15
𝑄
∗

𝑚
(𝑟) 0.063 0.554 0.941 0.963 0.955

𝑄
∗

𝑚
(𝜔̂) 0.051 0.552 1 1 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.196 0.747 1 1 1

20
𝑄
∗

𝑚
(𝑟) 0.094 0.441 0.832 0.964 0.907

𝑄
∗

𝑚
(𝜔̂) 0.063 0.491 1 1 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.187 0.698 1 1 1

25
𝑄
∗

𝑚
(𝑟) 0.020 0.475 0.801 0.896 0.858

𝑄
∗

𝑚
(𝜔̂) 0.053 0.571 0.982 1 1

𝑄
∗

𝑚
(𝑟, 𝜔̂) 0.176 0.669 0.994 1 1

comparable with other tests. It can be noticed that our new
test has shown power better than other considered tests when
moving average part is understated and the moving average
parameter is relatively small.

5. Conclusion

Portmanteau tests based on residuals autocorrelations and
partial autocorrelations have their individual good prop-
erties. Our suggested mixture portmanteau tests have a
good approximation of their asymptotic distribution. As it
is important to study both the residuals autocorrelation and
the partial autocorrelations formodel diagnostic checking, so

this new test is capable of doing it simultaneously instead of
running separate diagnostic tests.
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