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The main purpose of this paper is using the estimate for trigonometric sums and the properties of the congruence equations to
study the computational problem of one kind sixth power mean value of the generalized three-term exponential sums and give an
exact computational formula for it.

1. Introduction

Let 𝑞 ≥ 3 be a positive integer and let 𝜒 be any Dirichlet
character mod 𝑞. For any integers 𝑚 and 𝑛, the generalized
three-term exponential sum 𝐶(𝑚, 𝑛, 𝑘, 𝜒; 𝑞) is defined as
follows:

𝐶 (𝑚, 𝑛, 𝑘, 𝜒; 𝑞) =

𝑞−1

∑

𝑎=1

𝜒 (𝑎) 𝑒 (
𝑎
𝑘
+ 𝑚𝑎
2
+ 𝑛𝑎

𝑞
) , (1)

where 𝑘 ≥ 3 is a fixed integer and 𝑒(𝑦) = 𝑒2𝜋𝑖𝑦.
Many authors have studied this and related exponential

sums and obtained a series of results; some related contents
can be found in [1–9]. For example, Du and Han [5] proved
that, for any integer 𝑘 ≥ 3, we have the identity

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎
𝑘
+ 𝑛𝑎
2
+ 𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

= 2𝑝
4
− 3𝑝
3
− 𝑝
2
⋅ 𝐶 (𝑘, 𝑝) ,

(2)

where the constant 𝐶(𝑘, 𝑝) is defined as follows:

𝐶 (𝑘, 𝑝) =

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑐=1

𝑎𝑘+𝑏𝑘≡𝑐𝑘+1 mod 𝑝
𝑎2+𝑏2≡𝑐2+1 mod 𝑝

1.

(3)

In particular, if 𝑘 = 6, then we have the identity

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝑒 (
𝑚𝑎
6
+ 𝑛𝑎
2
+ 𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

= {
2𝑝
4
− 11𝑝

3
+ 16𝑝

2
, if 𝑝 ≡ 3 mod 4,

2𝑝
4
− 15𝑝

3
+ 36𝑝

2
, if 𝑝 ≡ 1 mod 4.

(4)

It seems that no one has studied the sixth power mean of
the generalized three-term exponential sums

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

∑

𝜒 mod 𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝜒(𝑎)𝑒 (
𝑎
𝑘
+ 𝑚𝑎
2
+ 𝑛𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6

,

(5)

where 𝜒 mod 𝑝 denotes the summation over all characters
𝜒 mod 𝑝. The problem is interesting, because it can reflect
more or less the upper bound estimates of 𝐶(𝑚, 𝑛, 𝑘, 𝜒; 𝑝).
It is easy to see that mean value (2) is the best possible.
So, we have reason to believe that (5) and (2) have similar
asymptotic properties. In fact, we can use the analyticmethod
and the properties of the congruence equation to give an
exact computational formula for (5). That is, we will prove
the following.
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Theorem 1. Let 𝑝 > 3 be a prime. Then, for any integer 𝑘 ≥ 3
with (𝑘, 𝑝 − 1) = 1, we have the identity

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

∑

𝜒 mod 𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝜒(𝑎)𝑒 (
𝑎
𝑘
+ 𝑚𝑎
2
+ 𝑛𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6

= 𝑝
2
⋅ (𝑝 − 1)

2
⋅ (6𝑝
2
− 21𝑝 + 19) .

(6)

It is very strange that the mean value in our theorem
is independent of the size of 𝑘; it depends only on whether
(𝑘, 𝑝 − 1) = 1 or (𝑘, 𝑝 − 1) > 1. For any Dirichlet character
𝜒 mod 𝑝, whether there exists a computational formula for the
sixth power mean value

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝜒(𝑎)𝑒 (
𝑎
𝑘
+ 𝑚𝑎
2
+ 𝑛𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6

(7)

or 2ℎ-th (ℎ ≥ 4) power mean value

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

∑

𝜒 mod 𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝜒(𝑎)𝑒 (
𝑎
𝑘
+ 𝑚𝑎
2
+ 𝑛𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2ℎ

(8)

is two open problems, which we will further study.

2. Proof of Theorem 1

In this section, we will give the proof of our theorem directly.
Hereinafter, we will use many properties of trigonometric
sums and congruence equation, all of which can be found in
[6, 10], so they will not be repeated here. Note that (𝑘, 𝑝−1) =
1, from the trigonometric identity

𝑝−1

∑

𝑎=0

𝑒 (
𝑛𝑎

𝑝
) = {

𝑝, if (𝑛, 𝑝) = 𝑝,
0, if (𝑛, 𝑝) = 1.

(9)

Regarding the properties of reduced residue system mod
𝑝 and the orthogonality relation for characters mod 𝑝, we
have

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

∑

𝜒 mod 𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝜒(𝑎)𝑒 (
𝑎
𝑘
+ 𝑚𝑎
2
+ 𝑛𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6

=

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑐=1

𝑝−1

∑

𝑑=1

𝑝−1

∑

𝑒=1

𝑝−1

∑

𝑓=1

∑

𝜒 mod 𝑝
𝜒 (𝑎𝑏𝑐𝑑𝑒𝑓) 𝑒(

𝑎
𝑘
+ 𝑏
𝑘
+ 𝑐
𝑘
− 𝑑
𝑘
− 𝑒
𝑘
− 𝑓
𝑘

𝑝
)

×

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

𝑒(
𝑚(𝑎
2
+ 𝑏
2
+ 𝑐
2
− 𝑑
2
− 𝑒
2
− 𝑓
2
) + 𝑛 (𝑎 + 𝑏 + 𝑐 − 𝑑 − 𝑒 − 𝑓)

𝑝
)

=

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑐=1

𝑝−1

∑

𝑑=1

𝑝−1

∑

𝑒=1

𝑝−1

∑

𝑓=1

∑

𝜒 mod 𝑝
𝜒 (𝑎𝑏𝑐𝑑𝑒) 𝑒(

𝑓
𝑘
(𝑎
𝑘
+ 𝑏
𝑘
+ 𝑐
𝑘
− 𝑑
𝑘
− 𝑒
𝑘
− 1)

𝑝
)

×

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

𝑒(
𝑚𝑓
2
(𝑎
2
+ 𝑏
2
+ 𝑐
2
− 𝑑
2
− 𝑒
2
− 1) + 𝑛𝑓 (𝑎 + 𝑏 + 𝑐 − 𝑑 − 𝑒 − 1)

𝑝
)

= 𝑝
2

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑐=1

𝑝−1

∑

𝑑=1

𝑝−1

∑

𝑒=1

𝑎+𝑏+𝑐≡𝑑+𝑒+1 mod 𝑝
𝑎2+𝑏2+𝑐2≡𝑑2+𝑒2+1 mod 𝑝

∑

𝜒 mod 𝑝
𝜒 (𝑎𝑏𝑐𝑑𝑒)

𝑝−1

∑

𝑓=1

𝑒(
𝑓 (𝑎
𝑘
+ 𝑏
𝑘
+ 𝑐
𝑘
− 𝑑
𝑘
− 𝑒
𝑘
− 1)

𝑝
)

= 𝑝
3
(𝑝 − 1)

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑐=1

𝑝−1

∑

𝑑=1

𝑝−1

∑

𝑒=1

𝑎+𝑏+𝑐≡𝑑+𝑒+1 mod 𝑝
𝑎2+𝑏2+𝑐2≡𝑑2+𝑒2+1 mod 𝑝
𝑎𝑘+𝑏𝑘+𝑐𝑘≡𝑑𝑘+𝑒𝑘+1 mod 𝑝
𝑎𝑏𝑐≡𝑑𝑒 mod 𝑝

1 − 𝑝
2
(𝑝 − 1)

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑐=1

𝑝−1

∑

𝑑=1

𝑝−1

∑

𝑒=1

𝑎+𝑏+𝑐≡𝑑+𝑒+1 mod 𝑝
𝑎2+𝑏2+𝑐2≡𝑑2+𝑒2+1 mod 𝑝
𝑎𝑏𝑐≡𝑑𝑒 mod 𝑝

1 ≡ 𝑝
3
(𝑝 − 1)𝑈 − 𝑝

2
(𝑝 − 1)𝑉.

(10)

Now, we compute the values of 𝑈 and 𝑉 in (10), respectively.
It is clear that the value of 𝑉 is equal to the number of the
solutions of the system of the congruence equations:

𝑎 + 𝑏 + 𝑐 ≡ 𝑑 + 𝑒 + 1 mod 𝑝,

𝑎
2
+ 𝑏
2
+ 𝑐
2
≡ 𝑑
2
+ 𝑒
2
+ 1 mod 𝑝,

𝑎𝑏𝑐 ≡ 𝑑𝑒 mod 𝑝,
(11)

where 1 ≤ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ≤ 𝑝 − 1.
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The system of congruence equation (11) is equivalent to
the system of the congruence equations:

𝑎 + 𝑏 + 𝑐 ≡ 𝑑 + 𝑒 + 1 mod 𝑝,

𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≡ 𝑑𝑒 + 𝑑 + 𝑒 mod 𝑝,

𝑎
2
+ 𝑏
2
+ 𝑐
2
≡ 𝑑
2
+ 𝑒
2
+ 1 mod 𝑝,

𝑎𝑏𝑐 ≡ 𝑑𝑒 mod 𝑝.

(12)

That is equivalent to the system of the congruence equations
as follows:

𝑎𝑏𝑐 + 𝑎 + 𝑏 + 𝑐 − 1 ≡ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 mod 𝑝,

𝑎 + 𝑏 + 𝑐 ≡ 𝑑 + 𝑒 + 1 mod 𝑝,

𝑎
2
+ 𝑏
2
+ 𝑐
2
≡ 𝑑
2
+ 𝑒
2
+ 1 mod 𝑝,

(13)

(𝑎 − 1) (𝑏 − 1) (𝑐 − 1) ≡ 0 mod 𝑝,

𝑎 + 𝑏 + 𝑐 ≡ 𝑑 + 𝑒 + 1 mod 𝑝,

𝑎
2
+ 𝑏
2
+ 𝑐
2
≡ 𝑑
2
+ 𝑒
2
+ 1 mod 𝑝.

(14)

For all integers 1 ≤ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ≤ 𝑝 − 1, we compute the
number of the solutions of (14). We separate the solutions of
(14) into three cases as follows:

(A) 𝑎 = 1, 2 ≤ 𝑏, 𝑐 ≤ 𝑝 − 1; 𝑏 = 1, 2 ≤ 𝑎, 𝑐 ≤ 𝑝 − 1; 𝑐 = 1,
2 ≤ 𝑎, 𝑏 ≤ 𝑝 − 1,

(B) 𝑎 = 𝑏 = 1, 2 ≤ 𝑐 ≤ 𝑝 − 1; 𝑎 = 𝑐 = 1, 2 ≤ 𝑏 ≤ 𝑝 − 1;
𝑏 = 𝑐 = 1, 2 ≤ 𝑎 ≤ 𝑝 − 1,

(C) 𝑎 = 𝑏 = 𝑐 = 1.

In case (C), (14) becomes 𝑑 + 𝑒 ≡ 2 mod 𝑝 and 𝑑2 + 𝑒2 ≡
2 mod 𝑝, so 𝑑 = 𝑒 = 1. That is, in this case, (14) has only one
solution (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = (1, 1, 1, 1, 1).

In case (B), if 𝑎 = 𝑏 = 1 and 2 ≤ 𝑐 ≤ 𝑝 − 1, then (14)
becomes 2 ≤ 𝑐 ≤ 𝑝 − 1, 𝑑 + 𝑒 ≡ 𝑐 + 1 mod 𝑝, 𝑑2 + 𝑒2 ≡ 𝑐2 +
1 mod 𝑝, and 𝑑𝑒 ≡ 𝑐 mod 𝑝 or (𝑑 − 1)(𝑒 − 1) ≡ 0 mod 𝑝 and
(𝑑
2
− 1)(𝑒

2
− 1) ≡ 0 mod 𝑝, 𝑑𝑒 ≡ 𝑐 mod 𝑝 with 2 ≤ 𝑐 ≤ 𝑝− 1.

In this case, the number of the solutions of the congruence
equation is 2(𝑝−2). So, in case (B), the number of all solutions
of congruence equation (14) is 3 × 2(𝑝 − 2) = 6(𝑝 − 2).

It is clear that the number of the solutions of congruence
equation (14) in case (A) is three times the number of the
solutions of the congruence equation 𝑑 + 𝑒 ≡ 𝑏 + 𝑐 mod 𝑝,
𝑑
2
+𝑒
2
≡ 𝑏
2
+𝑐
2 mod 𝑝with 2 ≤ 𝑏, 𝑐 ≤ 𝑝−1 and 1 ≤ 𝑑, 𝑒 ≤ 𝑝−

1. While the number of the solutions of the latter congruence
equation is (𝑝−1)(2𝑝−3)−4(𝑝−2)−1. In fact, the congruence
equation 𝑑 + 𝑒 ≡ 𝑏 + 𝑐 mod 𝑝, 𝑑2 + 𝑒2 ≡ 𝑏2 + 𝑐2 mod 𝑝 with
1 ≤ 𝑏, 𝑐, 𝑑, 𝑒 ≤ 𝑝 − 1 is equivalent to congruence equation
𝑑𝑐 + 𝑒𝑐 ≡ 𝑏𝑐 + 𝑐 mod 𝑝, 𝑑2𝑐2 + 𝑒2𝑐2 ≡ 𝑏

2
𝑐
2
+ 𝑐
2 mod 𝑝,

1 ≤ 𝑏, 𝑐, 𝑑, 𝑒 ≤ 𝑝 − 1. So, from (B), we know that the number
of the solutions is (𝑝−1)(2𝑝−3). From (B) and (C), we know
that the number of the solutions of congruence equation (14)
in case (A) is 3 × [(𝑝 − 1)(2𝑝 − 3) − 4(𝑝 − 2) − 1].

Combining three cases (A), (B), and (C), we deduce that
the number of all solutions of (14) is

3 × [(𝑝 − 1) (2𝑝 − 3) − 4 (𝑝 − 2) − 1]

+ 6 (𝑝 − 2) + 1 = 6𝑝
2
− 21𝑝 + 19.

(15)

Note that for all integers 1 ≤ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ≤ 𝑝 − 1, the number
of all solutions of the congruence equation

𝑎 + 𝑏 + 𝑐 ≡ 𝑑 + 𝑒 + 1 mod 𝑝,

𝑎
2
+ 𝑏
2
+ 𝑐
2
≡ 𝑑
2
+ 𝑒
2
+ 1 mod 𝑝,

𝑎
𝑘
+ 𝑏
𝑘
+ 𝑐
𝑘
≡ 𝑑
𝑘
+ 𝑒
𝑘
+ 1 mod 𝑝,

𝑎𝑏𝑐 ≡ 𝑑𝑒 mod 𝑝

(16)

is also 6𝑝2 − 21𝑝 + 19. In fact, all solutions of (16) are the
solutions of (11). Thus, they are also the solutions of (14). On
the other hand, any solution in (14) must belong to case (A),
(B), or (C). From the computational process of the solutions
in these three cases, we can see that any solution must satisfy
(16). So, the number of the solutions of congruence equation
(16) is 6𝑝2 − 21𝑝 + 19.

Now, from (10), (11), (14), (15), and (16), we may immedi-
ately deduce the identity

𝑝

∑

𝑚=1

𝑝

∑

𝑛=1

∑

𝜒 mod 𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝−1

∑

𝑎=1

𝜒(𝑎)𝑒 (
𝑎
𝑘
+ 𝑚𝑎
2
+ 𝑛𝑎

𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6

= 𝑝
2
⋅ (𝑝 − 1)

2
⋅ (6𝑝
2
− 21𝑝 + 19) .

(17)

This completes the proof of our theorem.
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