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This paper is devoted to studying the Cauchy problem for a fifth-order equation.We prove that it is locally well-posed for the initial
data in the Sobolev space 𝐻

𝑠

(R) with 𝑠 ≥ 1/4. We also establish the ill-posedness for the initial data in 𝐻
𝑠

(R) with 𝑠 < 1/4. Thus,
the regularity requirement for the fifth-order dispersive equations 𝑠 ≥ 1/4 is sharp.

1. Introduction

In this paper, we consider the Cauchy problem and existence
of solitary waves of the following fifth-order dispersive
equation:
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𝑢 (𝑥, 0) = 𝜙. (2)

Obviously, (1) can be seen as the higher modification of the
following dispersive equation:
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where
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𝑝

, 𝑎 (𝑢) = 2𝑘𝑢 +
𝑝 + 2

2
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which has been studied in [1], is the generalized Camassa-
Holm equation. In fact, Hakkaev and Kirchev [1] studied the

local well-posedness and orbital stability and instability of
(4) with the aid of the pseudoparabolic regularization and
spectral analysis. Obviously, when 𝑝 = 2, (4) is the well-
known Camassa-Holm equation; when 𝑝 = 3 and 𝑘 = 0,
(4) becomes (3). Some people consider the Cauchy problem
for the higher modification of the nonlocal form of Camassa-
Holm equation; we refer the readers to [2–5].

By acting (1 − 𝜕
2
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)
−1 on both sides of (1), we obtain the

following equivalent form:
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Obviously, (6) is a modification of mKdV equation
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which has been intensively studied; we refer the readers to [6–
11]. In [8], the authors proved that (7) is locally well-posed
for the initial data in 𝐻

𝑠

(R) with 𝑠 ≥ 1/4. The regularity
requirement for the modified KdV equation 𝑠 ≥ 1/4 is sharp;
see [9]. In [11], by using the 𝐼-method which can be seen
in [11–14] and Mirua transformation which can be seen in
[15], the authors proved that the modified KdV equation is
globally well-posed for the initial data in𝐻

𝑠

(R) with 𝑠 > 1/4.
In [16], by using the dyadic bilinear estimates and resolution
spaceswhich can be seen in [17, 18], the author proved that the
modified KdV equation is globally well-posed for the initial
data in𝐻

𝑠

(R) with 𝑠 = 1/4.
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In this paper, by using the Fourier restriction norm
method introduced in [19], we prove that (1) and (2) are
locally well-posed for the initial data in 𝐻

𝑠

(R) with 𝑠 ≥ 1/4.
When 𝜙 ∈ 𝐻

𝑠

(R), 𝑠 ≥ 1, we prove that the Cauchy problem
for (1) is globally well-posed in 𝐻

𝑠

(R). By using the general
well-posedness principle proposed by [20], we establish the
ill-posedness for the initial data in𝐻

𝑠

(R) with 𝑠 < 1/4. Thus,
the requirement for regularity 𝑠 ≥ 1/4 is sharp.

Before stating the main results, we introduce some nota-
tions and definitions. We use 𝑋 ∼ 𝑌 when 𝐶
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The main results of this paper are as follows.

Theorem 1. The Cauchy problem for (1) is locally well-posed
for the initial data 𝜙 in 𝐻

𝑠

(R) with 𝑠 ≥ 1/4.

Theorem 2. Let 𝑠 < 1/4. Then (1) and (2) are ill-posed in
𝐻
𝑠

(R) in the sense that the solution map 𝑆
𝑡
of the Cauchy

problem for (1) is not Lipschitz continuous at zero. More
precisely, for any 𝑇 > 0, the solution map

𝑆
𝑡
: 𝜙 ∈ 𝐻

𝑠

(R) 󳨀→ 𝑢 ∈ 𝐶 ([0, 𝑇] ;𝐻
𝑠

(R)) (10)

is not Lipschitz continuous at zero.

The rest of this paper is arranged as follows. In Section 2,
we make some preliminaries. In Section 3, we establish two
crucial trilinear estimates. In Section 4, we prove Theorem 1.
In Section 5, we proveTheorem 2.

2. Preliminaries
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Interpolating (15)with (16) yields (14). Equations (11)–(13) can
be seen in [21, 22].
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Lemma 5 can be found in [11].

Lemma 6. Let 𝐼𝑠 denote the Riesz potential of order −𝑠 and
𝑏 > 1/2 ≥ 𝑠 ≥ 0, 𝑏̃ > 1/6 + 2𝑠/3. Then the following estimate
holds true:
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3. Trilinear Estimates

In this section, we will prove two crucial trilinear estimates.
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󵄨󵄨󵄨󵄨

3
} ,

Ω
6
= {

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨 ≥ 8,

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨 ∼

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨 ∼

󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

3
} .

(27)

In this lemma, integrals over the subregion Ω
𝑘
’s are, respec-

tively, denoted as 𝐽
𝑘
(1 ≤ 𝑘 ≤ 6, 𝑘 ∈ Z). Consider

F𝑓
𝑗
=

𝐹
𝑗

⟨𝜎
𝑗
⟩
𝑏

(𝑗 = 1, 2, 3) , F𝑓 =
𝐹

⟨𝜎⟩
−𝑏
󸀠
. (28)

(1) Subregion {8 ≥ |𝜉
1
| ≥ |𝜉
2
| ≥ |𝜉
3
|}. In this subregion, since

𝑠 ≥ 1/4 and |𝜉| ≤ 3, we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤

𝐶

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

. (29)

By using Cauchy Schwartz’s inequality and Plancherel’s iden-
tity as well as Hölder’s inequality, (11), 2𝑏/3 < 𝑏 and 2𝑏/3 <

−𝑏
󸀠, we derive

𝐽
1
≤ 𝐶∫

R2
∫
𝜉=𝜉
1
+𝜉
2
+𝜉
3

𝜏=𝜏
1
+𝜏
2
+𝜏
3

𝐹∏
3

𝑗=1
𝐹
𝑗

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

𝑑𝜉
1
𝑑𝜏
1
𝑑𝜉
2
𝑑𝜏
2
𝑑𝜉 𝑑𝜏

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿4
𝑥𝑡

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿4
𝑥𝑡

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑋
0,2𝑏/3

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋
0,2𝑏/3

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

.

(30)

(2) Subregion {|𝜉
1
| ≥ 8, |𝜉

1
| ≫ |𝜉

2
| ≥ |𝜉
3
|}. In this subregion,

|𝜉| ∼ |𝜉
1
| and |𝜉

1
| ≫ |𝜉

2
|, since 𝑠 ≥ 1/4, we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝜉
2

1
− 𝜉
2

2

󵄨󵄨󵄨󵄨󵄨

1/2

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

.

(31)

By using Cauchy-Schwartz’s inequality and Plancherel’s iden-
tity, (22) of Lemma 6, (11), 2𝑏/3 < 𝑏, and 2𝑏/3 < −𝑏

󸀠, since
𝑠 ≥ 1/4, we obtain

𝐽
2
≤ 𝐶∫

R2
∫
𝜉=𝜉
1
+𝜉
2
+𝜉
3

𝜏=𝜏
1
+𝜏
2
+𝜏
3

󵄨󵄨󵄨󵄨󵄨
𝜉
2

1
− 𝜉
2

2

󵄨󵄨󵄨󵄨󵄨

1/2

𝐹∏
3

𝑗=1
𝐹
𝑗

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

𝑑𝜉
1
𝑑𝜏
1
𝑑𝜉
2
𝑑𝜏
2
𝑑𝜉 𝑑𝜏

≤ 𝐶
󵄩󵄩󵄩󵄩𝐼 (𝑓1,2)

󵄩󵄩󵄩󵄩𝐿2
𝑥𝑡

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿4
𝑥𝑡

󵄩󵄩󵄩󵄩𝑓3
󵄩󵄩󵄩󵄩𝐿4
𝑥𝑡

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑋
0,2𝑏/3

󵄩󵄩󵄩󵄩𝑓3
󵄩󵄩󵄩󵄩𝑋
0,2𝑏/3

2

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋
0,𝑏

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

.

(32)
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(3) Subregion {|𝜉
1
| ≥ 8, |𝜉

1
| ∼ |𝜉

2
| ≫ |𝜉

3
|, |𝜉
3
| ≤ 8}. In this

subregion, since 𝑠 ≥ 1/4 and |𝜉| ≤ 𝐶|𝜉
2
|, we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

1−𝑠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝜉
2

2
− 𝜉
2

3

󵄨󵄨󵄨󵄨󵄨

1/2

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

.

(33)

This case can be treated similarly to 𝐽
2
.

(4) Subregion {|𝜉
1
| ≥ 8, |𝜉

1
| ∼ |𝜉

2
| ≫ |𝜉

3
| ≥ 8}. In this

subregion |𝜉
1
| ∼ |𝜉
2
| and |𝜉| ≤ 𝐶|𝜉

1
|.

When 𝑠 ≥ 1, since |𝜉
2
| ≫ |𝜉

3
| and |𝜉| ≤ 𝐶|𝜉

2
|, we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨 ⟨𝜉⟩
𝑠

⟨𝜎⟩
−𝑏
󸀠

(1 + 𝜉2)∏
3

𝑗=1
⟨𝜉
𝑗
⟩
𝑠

⟨𝜎
𝑗
⟩
𝑏

≤
𝐶

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

.

(34)

This case can be treated similarly to 𝐽
1
.

When 1/4 ≤ 𝑠 ≤ 1, we consider the case |𝜉
1
+ 𝜉
2
| ≤ |𝜉
3
|/3

and the case |𝜉
1
+ 𝜉
2
| ≥ |𝜉
3
|/3.

When |𝜉
1
+ 𝜉
2
| ≤ |𝜉
3
|/3, since 1/4 ≤ 𝑠 ≤ 1, we have

𝐾
1
(𝜉
1
, 𝜉
2
, 𝜉, 𝜏
1
, 𝜏
2
, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

2−2𝑠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

3/2

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

.

(35)

This case can be treated similarly to 𝐽
2
.

When |𝜉
1
+ 𝜉
2
| ≥ |𝜉
3
|/3, From Lemma 5, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎 − (

3

∑

𝑗=1

𝜎
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝜉
3

− 𝜉
3

1
− 𝜉
3

2
− 𝜉
3

3

󵄨󵄨󵄨󵄨󵄨

= 3
󵄨󵄨󵄨󵄨(𝜉1 + 𝜉

2
) (𝜉
1
+ 𝜉
3
) (𝜉
2
+ 𝜉
3
)
󵄨󵄨󵄨󵄨 ≥ 𝐶

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨 ,

(36)

which yields max{|𝜎|, |𝜎
1
|, |𝜎
2
|, |𝜎
3
|} ≥ 𝐶|𝜉

1
|
2

|𝜉
3
|; thus one of

the following four cases must occur:

|𝜎| = max {|𝜎| , 󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎3

󵄨󵄨󵄨󵄨} ≥ 𝐶
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨 ,

(37)

󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 = max {|𝜎| , 󵄨󵄨󵄨󵄨𝜎1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎3

󵄨󵄨󵄨󵄨} ≥ 𝐶
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨 ,

(38)

󵄨󵄨󵄨󵄨𝜎2
󵄨󵄨󵄨󵄨 = max {|𝜎| , 󵄨󵄨󵄨󵄨𝜎1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎3

󵄨󵄨󵄨󵄨} ≥ 𝐶
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨 ,

(39)

󵄨󵄨󵄨󵄨𝜎3
󵄨󵄨󵄨󵄨 = max {|𝜎| , 󵄨󵄨󵄨󵄨𝜎1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎3

󵄨󵄨󵄨󵄨} ≥ 𝐶
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨 .

(40)

When (37) is valid, since
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ⟨𝜉⟩
𝑠

1 + 𝜉2
≤ 1, (41)

we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜉
𝑗
⟩
𝑠

⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

1−2𝑠󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

1−𝑠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

1−2𝑠+2𝑏
󸀠

󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

1−𝑠+𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

;

(42)

when 1 − 𝑠 + 𝑏
󸀠

≤ 0, since 1/4 ≤ 𝑠 ≤ 1 and 𝑏
󸀠

= −1/2 + 3𝜖, we
have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

1−2𝑠+2𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤
𝐶

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

; (43)

when 1 − 𝑠 + 𝑏
󸀠

≥ 0, since 1/4 ≤ 𝑠 ≤ 1 and 𝑏
󸀠

= −1/2 + 3𝜖, we
have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

2−3𝑠+3𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤
𝐶

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

. (44)

By using Cauchy-Schwartz’s inequality and Plancherel’s iden-
tity, (11), 8𝑏/9 < 𝑏, we obtain

𝐽
4
≤ 𝐶∫

R2
∫
𝜉=𝜉
1
+𝜉
2
+𝜉
3

𝜏=𝜏
1
+𝜏
2
+𝜏
3

𝐹∏
3

𝑗=1
𝐹
𝑗

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

𝑑𝜉
1
𝑑𝜏
1
𝑑𝜉
2
𝑑𝜏
2
𝑑𝜉 𝑑𝜏

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿6
𝑥𝑡

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋
0,8𝑏/9

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

.

(45)

When (38) is valid, since
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ⟨𝜉⟩
𝑠

1 + 𝜉2
≤ 1, (46)

we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜉
𝑗
⟩
𝑠

⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

1−2𝑠󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

1−𝑠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

1−2𝑠+2𝑏
󸀠

󵄨󵄨󵄨󵄨𝜉3
󵄨󵄨󵄨󵄨

1−𝑠+𝑏
󸀠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

;

(47)
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when 1 − 𝑠 + 𝑏
󸀠

≤ 0, we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

1−2𝑠+2𝑏
󸀠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

≤
𝐶

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

;

(48)

when 1 − 𝑠 + 𝑏
󸀠

≥ 0, since 1/4 ≤ 𝑠 ≤ 1 and 𝑏
󸀠

= −1/2 + 3𝜖, we
have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨

2−3𝑠+3𝑏
󸀠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

≤
𝐶

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

.

(49)

By using Cauchy-Schwartz’s inequality and Plancherel’s iden-
tity, (11), 8𝑏/9 < 𝑏, and 8𝑏/9 < −𝑏

󸀠, we obtain

𝐽
4
≤ 𝐶∫

R2
∫
𝜉=𝜉
1
+𝜉
2
+𝜉
3

𝜏=𝜏
1
+𝜏
2
+𝜏
3

𝐹∏
3

𝑗=1
𝐹
𝑗

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

𝑑𝜉
1
𝑑𝜏
1
𝑑𝜉
2
𝑑𝜏
2
𝑑𝜉 𝑑𝜏

≤ 𝐶
󵄩󵄩󵄩󵄩𝐹1

󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿6
𝑥𝑡

3

∏

𝑗=2

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿6
𝑥𝑡

≤ 𝐶
󵄩󵄩󵄩󵄩𝐹1

󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋
0,8𝑏/9

3

∏

𝑗=2

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋
0,8𝑏/9

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

.

(50)

Cases (39) and (40) can be treated similarly to case (38).

(5) Subregion {|𝜉
1
| ≥ 1, |𝜉

1
| ∼ |𝜉

2
| ∼ |𝜉

3
|, |𝜉
1
| ≥ |𝜉

2
| ≥

|𝜉
3
|, |𝜉| ≥ |𝜉

3
|/3}. In this subregion, since 𝑠 ≥ 1/4, |𝜉

1
| ∼ |𝜉| ∼

|𝜉
2
| ∼ |𝜉
3
| which yields

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

1−2𝑠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

1/2

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

.

(51)

Thus, applying Cauchy-Schwartz’s inequality and Plancherel’s
identity, (12) and (13), we have

𝐽
5
≤ 𝐶∫

R2
∫
𝜉=𝜉
1
+𝜉
2
+𝜉
3

𝜏=𝜏
1
+𝜏
2
+𝜏
3

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

1/2

𝐹∏
3

𝑗=1
𝐹
𝑗

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

𝑑𝜉
1
𝑑𝜏
1
𝑑𝜉
2
𝑑𝜏
2
𝑑𝜉 𝑑𝜏

≤ 𝐶
󵄩󵄩󵄩󵄩𝐷𝑥𝑓1

󵄩󵄩󵄩󵄩𝐿∞
𝑥
𝐿
2

𝑡

󵄩󵄩󵄩󵄩󵄩
𝐷
−1/4

𝑥
𝑓
2

󵄩󵄩󵄩󵄩󵄩𝐿4
𝑥
𝐿
∞

𝑡

󵄩󵄩󵄩󵄩󵄩
𝐷
−1/4

𝑥
𝑓
3

󵄩󵄩󵄩󵄩󵄩𝐿4
𝑥
𝐿
∞

𝑡

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2
𝑥𝑡

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋
0,𝑏

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

.

(52)

(6) Subregion {|𝜉
1
| ≥ 1, |𝜉

1
| ∼ |𝜉

2
| ∼ |𝜉

3
|, |𝜉
1
| ≥ |𝜉

2
| ≥

|𝜉
3
|, |𝜉| ≤ |𝜉

3
|/3}. In this subregion, since |𝜉

1
| ≥ |𝜉
2
| ≥ |𝜉
3
| ≥

3|𝜉|, we have (2/3)|𝜉
3
| ≤ |𝜉
1
+ 𝜉
2
| ≤ (4/3)|𝜉

3
| and (2/3)|𝜉

2
| ≤

|𝜉
1
+𝜉
3
| ≤ (4/3)|𝜉

2
| and (2/3)|𝜉

1
| ≤ |𝜉
2
+𝜉
3
| ≤ (4/3)|𝜉

1
|. From

Lemma 5, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎 − (

3

∑

𝑗=1

𝜎
𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝜉
3

− 𝜉
3

1
− 𝜉
3

2
− 𝜉
3

3

󵄨󵄨󵄨󵄨󵄨

= 3
󵄨󵄨󵄨󵄨(𝜉1 + 𝜉

2
) (𝜉
1
+ 𝜉
3
) (𝜉
2
+ 𝜉
3
)
󵄨󵄨󵄨󵄨 ∼

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

3

∼
󵄨󵄨󵄨󵄨𝜉2

󵄨󵄨󵄨󵄨

3

∼
󵄨󵄨󵄨󵄨𝜉3

󵄨󵄨󵄨󵄨

3

(53)

which yields max{|𝜎|, |𝜎
1
|, |𝜎
2
|, |𝜎
3
|} ≥ 𝐶|𝜉

1
|
3; thus one of the

following four cases must occur:

|𝜎| = max {|𝜎| , 󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎3

󵄨󵄨󵄨󵄨} ≥ 𝐶
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

3

, (54)

󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 = max {|𝜎| , 󵄨󵄨󵄨󵄨𝜎1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎3

󵄨󵄨󵄨󵄨} ≥ 𝐶
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

3

, (55)

󵄨󵄨󵄨󵄨𝜎2
󵄨󵄨󵄨󵄨 = max {|𝜎| , 󵄨󵄨󵄨󵄨𝜎1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎3

󵄨󵄨󵄨󵄨} ≥ 𝐶
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

3

, (56)

󵄨󵄨󵄨󵄨𝜎3
󵄨󵄨󵄨󵄨 = max {|𝜎| , 󵄨󵄨󵄨󵄨𝜎1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜎3

󵄨󵄨󵄨󵄨} ≥ 𝐶
󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

3

. (57)

When 𝑠 ≥ 1, we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜏
2
, 𝜉
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

2−2𝑠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤
𝐶

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

;

(58)

this case can be handled similarly to 𝐽
1
.

When 1/4 ≤ 𝑠 ≤ 1, we consider (54), (55), (56), and (57),
respectively.

When (37) is valid, since |𝜉
1
| ∼ |𝜉
2
| ∼ |𝜉
3
|, |𝜉| ≤ |𝜉

3
| and

𝑏
󸀠

= −1/2 + 3𝜖 as well as 1/4 ≤ 𝑠 ≤ 1, we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ⟨𝜉⟩
𝑠󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

2−3𝑠

(1 + 𝜉2) ⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

2−3𝑠+3𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

9𝜖−(1/4)

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤
𝐶

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

.

(59)
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By using Cauchy-Schwartz’s inequality and Plancherel’s iden-
tity, (11), 8𝑏/9 < 𝑏, we obtain

𝐽
6
≤ 𝐶∫

R2
∫
𝜉=𝜉
1
+𝜉
2
+𝜉
3

𝜏=𝜏
1
+𝜏
2
+𝜏
3

𝐹∏
3

𝑗=1
𝐹
𝑗

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

𝑑𝜉
1
d𝜏
1
𝑑𝜉
2
𝑑𝜏
2
𝑑𝜉 𝑑𝜏

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿6
𝑥𝑡

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋
0,8𝑏/9

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

.

(60)

When (55) holds, since |𝜉
1
| ∼ |𝜉

2
| ∼ |𝜉

3
|, |𝜉| ≤ |𝜉

3
| and 𝑏

󸀠

=

−1/2 + 3𝜖 as well as 1/4 ≤ 𝑠 ≤ 1, we have

𝐾
1
(𝜉
1
, 𝜏
1
, 𝜉
2
, 𝜏
2
, 𝜉, 𝜏) ≤ 𝐶

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ⟨𝜉⟩
𝑠󵄨󵄨󵄨󵄨𝜉1

󵄨󵄨󵄨󵄨

2−3𝑠

(1 + 𝜉2) ⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=1
⟨𝜎
𝑗
⟩
𝑏

≤

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

2−3𝑠+3𝑏
󸀠

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

≤ 𝐶

󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

9𝜖−(1/4)

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

≤
𝐶

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

.

(61)

By using Cauchy-Schwartz’s inequality and Plancherel’s iden-
tity, (11), 8𝑏/9 < 𝑏, and 8𝑏/9 < −𝑏

󸀠, we obtain

𝐽
6
≤ 𝐶∫

R2
∫
𝜉=𝜉
1
+𝜉
2
+𝜉
3

𝜏=𝜏
1
+𝜏
2
+𝜏
3

𝐹∏
3

𝑗=1
𝐹
𝑗

⟨𝜎⟩
−𝑏
󸀠

∏
3

𝑗=2
⟨𝜎
𝑗
⟩
𝑏

𝑑𝜉
1
𝑑𝜏
1
𝑑𝜉
2
𝑑𝜏
2
𝑑𝜉 𝑑𝜏

≤ 𝐶
󵄩󵄩󵄩󵄩𝐹1

󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿6
𝑥𝑡

3

∏

𝑗=2

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿6
𝑥𝑡

≤ 𝐶
󵄩󵄩󵄩󵄩𝐹1

󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋
0,8𝑏/9

3

∏

𝑗=2

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋
0,8𝑏/9

≤ 𝐶‖𝐹‖
𝐿
2

𝜉𝜏

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿2
𝜉𝜏

.

(62)

Cases (56) and (57) can be treated similarly to case (55).
Putting the estimates of 𝐽

𝑘
(1 ≤ 𝑘 ≤ 6, 𝑘 ∈ Z) together, we

have (25).
Thus, we complete the proof of Lemma 7.

Lemma8. Let 𝑠 ≥ 1/4, 𝑏 = 1/2+2𝜖, 𝑏󸀠 = −1/2+3𝜖, 0 < 𝜖 ≪ 1.
Then

󵄩󵄩󵄩󵄩𝜕𝑥 (𝑢1𝑢2𝑢3)
󵄩󵄩󵄩󵄩𝑋
𝑠,𝑏
󸀠

≤ 𝐶

3

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋
𝑠,𝑏

. (63)

Lemma 8 can be proved similarly to Lemma 7.

4. The Proof of Theorem 1

In order to prove Theorem 1, firstly, for 𝜙 ∈ 𝐻
𝑠

(R) and 𝛿 ∈

(0, 1], 𝑢 ∈ 𝑋
𝑠,𝑏
(R2), we define 𝐺

𝜙
(𝑢) by

𝐺
𝜙
(V) = 𝜓 (𝑡)𝑊 (𝑡) 𝜙 − 𝜓

𝛿
∫

𝑡

0

𝑊(𝑡 − 𝑡
󸀠

) 𝑔 (𝑢, 𝜕
𝑥
𝑢) 𝑑𝑡
󸀠

,

(64)

where

𝑔 (𝑢, 𝜕
𝑥
𝑢) =

1

3
𝜕
𝑥
(𝑢
3

) + (1 − 𝜕
2

𝑥
)
−1

𝜕
𝑥
[
5

3
𝑢
3

+ 𝑢(𝜕
𝑥
𝑢)
2

] .

(65)

By using Lemmas 4, 7, and 8, we have
󵄩󵄩󵄩󵄩󵄩
𝐺
𝜙
(𝑢)

󵄩󵄩󵄩󵄩󵄩𝑋
𝑠,𝑏
(R2) ≤ 𝐶

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐻𝑠(R) + 𝐶𝛿

𝑏
󸀠

+1−𝑏

‖𝑢‖
3

𝑋
𝑠,𝑏(R2)

, (66)

where 𝑠, 𝑏, 𝑏󸀠 of (66) concord with 𝑠, 𝑏, and 𝑏
󸀠 of Lemmas 7

and 8. Let

𝛿 = (
1

16𝐶3 (
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐻
𝑠
(R) + 2)

)

1/(𝑏
󸀠

+1−𝑏)

,

𝑟 = 2𝐶
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐻𝑠(R),

(67)

where 0 < 𝛿 < 1. From (66) and (67), we know that 𝐺
𝜙

is a mapping from the closed ball 𝐵(0, 𝑟) = {𝑢 ∈ 𝑋
𝑠,𝑏
(R2),

‖𝑢‖
𝑋
𝑠,𝑏(R2)

≤ 𝑟} into itself. Similarly, we have

󵄩󵄩󵄩󵄩󵄩
𝐺
𝜙
(V) − 𝐺

𝜙
(𝑢)

󵄩󵄩󵄩󵄩󵄩𝑋
𝑠,𝑏
(R2)

≤ 2𝐶𝛿
𝑏
󸀠

+1−𝑏

‖V − 𝑢‖
𝑋
𝑠,𝑏
(R2) (‖𝑢‖

2

𝑋
𝑠,𝑏(R2)

+ ‖V‖2
𝑋
𝑠,𝑏(R2)

)

≤
1

2
‖V − 𝑢‖

𝑋
𝑠,𝑏
(R2);

(68)

thus, 𝐺
𝜙
is a contraction mapping from the closed ball

𝐵(0, 𝑟) = {𝑢 ∈ 𝑋
𝑠,𝑏
(R2), ‖𝑢‖

𝑋
𝑠,𝑏
(R2) ≤ 𝑟} into itself; by using

Banach fixed point Theorem, we have 𝐺
𝜙
(𝑢) = 𝑢.

The rest of local well-posedness of Theorem 1 follows
from a standard proof.

5. The Proof of Theorem 2

In this section, we prove Theorem 2.
By contradiction, we assume that the solution map of (1)

and (2)

𝑆
𝑡
: 𝑢
0
∈ 𝐻
𝑠

(R) 󳨀→ 𝑢 ∈ 𝐶 ([0, 𝑇] ;𝐻
𝑠

(R)) (69)
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is Lipschitz continuous at zero with 𝑠 < 1/4. From the general
well-posedness principle of [20], we must have

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝐵3 (𝑢0)
󵄩󵄩󵄩󵄩𝐻𝑠

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

3

𝐻
𝑠 , ∀𝑢

0
∈ 𝐻
𝑠

(R) , (70)

where

𝐵
3
(𝑢
0
) (𝑥, 𝑡)

= ∫

𝑡

0

𝑊(𝑡 − 𝜏) 𝜕
𝑥
(𝐵
1
(𝑢
0
) 𝐵
1
(𝑢
0
) 𝐵
1
(𝑢
0
)) (𝜏) 𝑑𝜏,

𝐵
1
(𝑢
0
) (𝑥, 𝑡) = 𝑊 (𝑡) 𝑢

0
.

(71)

We consider the initial data

𝑢
0
(𝑥) = 𝑟

−1/2

𝑁
−𝑠

{𝑒
−𝑖𝑁𝑥

(∫

𝑟

0

𝑒
𝑖𝑥𝜉

𝑑𝜉) + 𝑒
𝑖𝑁𝑥

(∫

2𝑟

𝑟

𝑒
𝑖𝑥𝜉

𝑑𝜉)} ,

(72)

where 𝑟
2

𝑁 = 𝑂(1) and𝑁 ≫ 1. Thus, we have

F
𝑥
𝑢
0
(𝜉) = 𝐶𝑟

−1/2

𝑁
−𝑠

{𝜒
[−𝑁,−𝑁+𝑟]

(𝜉) + 𝜒
[𝑁+𝑟,𝑁+2𝑟]

(𝜉)} ,

(73)

which can be seen in [24], where 𝜒
𝐼
denotes the characteristic

function of a set 𝐼 ⊂ R. It is easy to check that ‖𝑢
0
‖
𝐻
𝑠 ∼ 1. Let

𝐼
1
= [−𝑁, −𝑁 + 𝑟] and 𝐼

2
= [𝑁 + 𝑟,𝑁 + 2𝑟] and 𝐼

1
∪ 𝐼
2
= Ω.

We have

F
𝑥
𝐵
1
(𝑢
0
) (𝜉) = 𝐶𝑒

𝑖𝑡𝜙(𝜉)

F
𝑥
𝑢
0
(𝜉) (74)

and thus

𝐵
1
(𝑢
0
) (𝑥, 𝑡) = 𝐶𝑟

−1/2

𝑁
−𝑠

∫
𝜉∈Ω

𝑒
𝑖𝑥𝜉

𝑒
𝑖𝑡𝜙(𝜉)

𝑑𝜉,

𝐵
3
(𝑢
0
) (𝑥, 𝑡) = 𝐶𝑓,

(75)

where

𝑓 = 𝑟
−3/2

𝑁
−3𝑠

∫
𝜉
1
∈Ω

∫
𝜉
2
∈Ω

∫
𝜉
3
∈Ω

𝜉

3 (1 + 𝜉2)

× (𝜉
2

+ 6 − 3𝜉
1
𝜉
2
)

× 𝑒
𝑖𝑥(𝜉
1
+𝜉
2
+𝜉
3
)

𝑄𝑑𝜉
1
𝑑𝜉
2
𝑑𝜉
3
,

(76)

where

𝑄 =
𝑒
𝑖𝑡(𝜙(𝜉

1
)+𝜙(𝜉

2
)+𝜙(𝜉

3
))

− 𝑒
𝑖𝑡𝜙(𝜉
1
+𝜉
2
+𝜉
3
)

𝜙 (𝜉
1
) + 𝜙 (𝜉

2
) + 𝜙 (𝜉

3
) − 𝜙 (𝜉

1
+ 𝜉
2
+ 𝜉
3
)
. (77)

Since 𝜙(𝜉) = −𝜉
3, we define

𝜃 := 𝜙 (𝜉
1
) + 𝜙 (𝜉

2
) + 𝜙 (𝜉

3
) − 𝜙 (𝜉

1
+ 𝜉
2
+ 𝜉
3
)

= 3 (𝜉
1
+ 𝜉
2
) (𝜉
1
+ 𝜉
3
) (𝜉
2
+ 𝜉
3
)

(78)

resulting from Lemma 5 and 𝜉 = 𝜉
1
+ 𝜉
2
+ 𝜉
3
. To estimate

‖𝑓‖
𝐻
𝑠 , we consider the following three cases.

Case 1: 𝜉
𝑗
(𝑗 = 1, 2, 3) ∈ 𝐼

1
.

Case 2: 𝜉
𝑗
(𝑗 = 1, 2, 3) ∈ 𝐼

2
.

Case 3: 𝜉
𝑗
(𝑗 = 1, 2) ∈ 𝐼

1
, 𝜉
3
∈ 𝐼
2
, or 𝜉
1
∈ 𝐼
1
, 𝜉
𝑗
(𝑗 =

2, 3) ∈ 𝐼
2
, or 𝜉
𝑗
(𝑗 = 1, 2) ∈ 𝐼

2
, 𝜉
3

∈ 𝐼
1
, or 𝜉
1

∈ 𝐼
2
,

𝜉
𝑗
(𝑗 = 2, 3) ∈ 𝐼

1
.

The integrals in (76) corresponding to Cases 1, 2, and 3 are
denoted as 𝑓

1
, 𝑓
2
, 𝑓
3
, respectively.

Case 1. In this case, from Lemma 6, we have |𝜃| ∼ 𝑁
3 and

|𝜉
2

+ 6 − 3𝜉
1
𝜉
2
| ∼ 𝑁

2. Since 𝑟
2

𝑁 = 𝑂(1), we have

󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩𝐻𝑠

≤ 𝐶𝑟
−3/2

𝑁
−3𝑠

𝑁
𝑠

𝑟
5/2

𝑁
−2

∼ 𝑁
−2𝑠−5/2

. (79)

Case 2. In this case, from Lemma 6, we have |𝜃| ∼ 𝑁
3 and

|𝜉
2

+ 6 − 3𝜉
1
𝜉
2
| ∼ 𝑁

2. Since 𝑟
2

𝑁 = 𝑂(1), we have

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩𝐻𝑠

≤ 𝐶𝑟
−3/2

𝑁
−3𝑠

𝑁
𝑠

𝑟
5/2

𝑁
−2

∼ 𝑁
−2𝑠−5/2

. (80)

Case 3. In this case |𝜃| ∼ 𝑟
2

𝑁 = 𝑂(1), |𝑄| ≥ Constant due to
Lemma 6, and |𝜉

2

+ 6 − 3𝜉
1
𝜉
2
| ∼ 𝑁

2. Since 𝑟
2

𝑁 = 𝑂(1), we
have

󵄩󵄩󵄩󵄩𝑓3
󵄩󵄩󵄩󵄩𝐻𝑠

≥ 𝐶𝑟
−3/2

𝑁
−3𝑠

𝑁
𝑠

𝑟
5/2

𝑁 ∼ 𝑁
−2𝑠+1/2

. (81)

From (70), we have

𝐶 ∼ 𝐶
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

3

𝐻
𝑠 ≥

󵄩󵄩󵄩󵄩𝑓1 + 𝑓
2
+ 𝑓
3

󵄩󵄩󵄩󵄩𝐻𝑠

≥
󵄩󵄩󵄩󵄩𝑓3 + 𝑓

2

󵄩󵄩󵄩󵄩𝐻𝑠
−
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻𝑠

≥
󵄩󵄩󵄩󵄩𝑓3

󵄩󵄩󵄩󵄩𝐻𝑠
−
󵄩󵄩󵄩󵄩𝑓2

󵄩󵄩󵄩󵄩𝐻𝑠
−
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻𝑠

≥ 𝐶 (𝑁
−2𝑠+1/2

− 𝑁
−2𝑠−5/2

)

(82)

which yields

𝑁
−2𝑠+1/2

≤ 𝐶 (1 + 𝑁
−2𝑠−5/2

) . (83)

When 𝑠 < −5/4, from (83), we have 𝑁
−2𝑠+1/2

≤ 𝐶𝑁
−2𝑠−5/2

which yields𝑁3 ≤ 𝐶; we obtain a contradiction since𝑁 ≫ 1.
When −5/4 ≤ 𝑠 < 1/4, from (83), we have 𝑁

−2𝑠+1/2

≤ 𝐶; we
obtain a contradiction since𝑁 ≫ 1.

The proof of Theorem 2 is completed.
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