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The convergence of the split-step backward Euler (SSBE) method applied to stochastic differential equation with variable delay is
proven in 𝐿

𝑝-sense. Almost sure convergence is derived from the 𝐿𝑝 convergence by Chebyshev’s inequality and the Borel-Cantelli
lemma; meanwhile, the convergence rate is obtained.

1. Introduction

In probability theory, there are several types of convergence
of sequences of random variables such as convergence in
𝑝th mean (𝐿𝑝 sense), almost sure, in probability, and in
distribution. As we know, the almost sure (a.s.) convergence
and the convergence in 𝐿

𝑝 sense each imply the convergence
in probability, and the convergence in probability implies the
convergence in distribution. Among them, the almost sure
convergence, also known as convergence with probability
one, is the convergence concept most closely related to
that of nonrandom sequences. The mean-square conver-
gence analysis of numerical schemes for solving stochastic
delay differential equation (SDDE) has gained considerable
research attention, and we refer here to the papers of Baker
and Buckwar [1], Buckwar [2], Hu et al. [3], Liu et al. [4],
and Mao and Sabanis [5] just to mention a few of them.
In particular, a type of split-step method for stochastic
differential equation (SDE) was first introduced by Higham
et al. [6] and, subsequently, themethod was extended to solve
a linear SDDE with constant delay (see [7]) and to solve an
SDDE with variable delay (see [8]). However, the almost sure
and 𝐿

𝑝 convergence of a numerical method for an SDDE are
rarely investigated in the literature. Until recently, Gyöngy
and Sabanis [9] proved the almost sure convergence of Euler
approximations for a class of SDDE under local Lipschitz and
monotonicity conditions.

In this paper we study the following nonlinear SDDE:
d𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝑡

+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡))) d𝑊(𝑡) , 𝑡 ≥ 0
(1)

with initial data 𝑥(𝑡) = 𝜓(𝑡) for 𝑡 ∈ [−𝜏, 0]. Here the time
delay 𝜏(𝑡) is a real-valued function satisfying 𝜏(𝑡) ≥ 𝜏min >

0 and −𝜏 := inf{𝑡 − 𝜏(𝑡) : 𝑡 ≥ 0}. Unlike the delay in [9],
however, the function 𝜏(𝑡)will not be limited to an increasing
function of 𝑡. The drift function 𝑓 and diffusion function 𝑔

are all continuous, and 𝑓, 𝑔 : R × R → R. The SDDE (1) is
driven by a scalar Wiener process𝑊(𝑡).

We can write (1) in the following integral form:

𝑥 (𝑡) = 𝑥 (0) + ∫

𝑡

0

𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠))) d𝑠

+ ∫

𝑡

0

𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠))) d𝑊(𝑠) .

(2)

Here we focus mainly on the SSBE method proposed by
Wang and Gan [8]. Although the convergence rate in mean-
square (𝐿2) sense has been obtained, the convergence analysis
in 𝐿

𝑝 sense is more difficult; for example, Jensen’s inequality
cannot be used directly. The aim of this paper is to obtain the
almost sure convergence rate together with 𝐿

𝑝 convergence
rate of the SSBE method for SDDE (1). In the next section,
we recall the SSBE method and give some assumptions. The
main convergence results are given in Section 3.
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2. The SSBE Method

First, let us state the numerical method. In the following, we
consider a uniform mesh I𝑁 = {𝑡0, 𝑡1, . . . , 𝑡𝑁}, where the
positive integer𝑁 is given, the time step size ℎ𝑁 = 𝑇/𝑁, and
𝑡𝑛 = nℎ𝑁 for 0 ≤ 𝑛 ≤ 𝑁.The numerical approximation of 𝑥(𝑡)
at time 𝑡𝑛 is denoted by 𝑌𝑛. The SSBE method [8] for SDDE
(1) can be written as

𝑌
∗

𝑛
= 𝑌𝑛 + ℎ𝑁𝑓 (𝑌

∗

𝑛
, 𝑍𝑛) ,

𝑌𝑛+1 = 𝑌
∗

𝑛
+ 𝑔 (𝑌

∗

𝑛
, 𝑍𝑛) Δ𝑤𝑛,

(3)

where Δ𝑤𝑛 := 𝑤(𝑡𝑛+1) − 𝑤(𝑡𝑛) and

𝑍𝑛 =

{{{{

{{{{

{

𝜓(𝑡𝑛 − 𝜏 (𝑡𝑛)) ,

𝑡𝑛 − 𝜏 (𝑡𝑛) < 0,

𝜇𝑌𝑛−𝑞
𝑛
+1 + (1 − 𝜇) 𝑌𝑛−𝑞

𝑛

,

0 ≤ 𝑡𝑛 − 𝜏 (𝑡𝑛) ∈ [𝑡𝑛−𝑞
𝑛

, 𝑡𝑛−𝑞
𝑛
+1) ,

(4)

for 0 ≤ 𝜇 < 1 and positive integer 𝑞𝑛 ≥ 1.
To prove the almost sure convergence of the SSBEmethod

(3), we need to define its continuous extension. Let us
introduce two step processes as follows:

𝑦
∗
(𝑠) :=

∞

∑

𝑘=0

1{𝑡
𝑘
≤𝑠<𝑡
𝑘+1

}𝑌
∗

𝑘
,

𝑧 (𝑠) :=

∞

∑

𝑘=0

1{𝑡
𝑘
≤𝑠<𝑡
𝑘+1

}𝑍𝑘,

(5)

where 1𝑆 is the indicator function of set 𝑆.
The continuous SSBE approximate solution is then

defined by

𝑦 (𝑡) :=

{{{{{

{{{{{

{

𝜓 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

𝜓 (0) + ∫

𝑡

0

𝑓 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) d𝑠

+∫

𝑡

0

𝑔 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) d𝑊(𝑠) , 𝑡 ∈ [0, 𝑇] .

(6)

It is not difficult to see that 𝑦(𝑡𝑘) = 𝑌𝑘 for every 𝑘 ≥ 0.
At various points in this paper, we will assume subsets of

the following set of conditions [8].

(A1) The SDDE (1) has a unique solution 𝑥(𝑡) on [−𝜏, 𝑇].
The functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are both locally
Lipschitz continuous in 𝑥 and 𝑦; that is, there exists
a constant 𝐿𝐷 such that

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ∨

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑦) − 𝑔 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

≤ 𝐿𝐷 (|𝑥 − 𝑥| +
󵄨󵄨󵄨󵄨𝑦 − 𝑦

󵄨󵄨󵄨󵄨) ,

(7)

for all 𝑡 ≥ 0 and those 𝑥, 𝑦, 𝑥, 𝑦 ∈ R with |𝑥| ∨ |𝑦| ∨

|𝑥| ∨ |𝑦| ≤ 𝐷. Here, ∨ is the maximal operator.
(A2) The function values 𝑓(0, 0) and 𝑔(0, 0) are bounded.

The exact solution 𝑥(𝑡) and its continuous-time appr-
oximation solution 𝑦(𝑡) have 𝑝th moment bounds;

that is, there exist constants 𝐿𝐴 > 0 and integer 𝑝 > 2

such that

E[ sup
0≤𝑡≤𝑇

|𝑥 (𝑡)|
𝑝
] ∨ E[ sup

0≤𝑡≤𝑇

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝑝
] ≤ 𝐿𝐴. (8)

(A3) (The Hölder continuity of the initial data)There exist
constants 𝐾1 > 0 and 𝐾2 > 0 such that for all −𝜏 ≤

𝑠 < 𝑡 ≤ 0 and positive integer 𝑝,

E󵄨󵄨󵄨󵄨𝜓 (𝑡) − 𝜓 (𝑠)
󵄨󵄨󵄨󵄨
2𝑝

≤ 𝐾1|𝑡 − 𝑠|
𝑝
, (9)

and 𝜏(𝑡) is a continuous function satisfying

|𝜏 (𝑡) − 𝜏 (𝑠)| ≤ 𝐾2 |𝑡 − 𝑠| . (10)

3. The Convergence Analysis

In this section, we first give some lemmas for deriving the
main theorem. We define three stopping times [8] as follows:

𝜌𝐷 = inf {𝑡 ≥ 0 : |𝑥 (𝑡)| ≥ 𝐷} ,

𝜃𝐷 = inf {𝑡 ≥ 0 :
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 ≥ 𝐷 or 󵄨󵄨󵄨󵄨𝑦
∗
(𝑡)

󵄨󵄨󵄨󵄨 ≥ 𝐷} ,

(11)

and 𝜎𝐷 = 𝜌𝐷 ∧ 𝜃𝐷, where ∧ is the minimal operator. Further,
the infimum of the empty set is set as∞.

In what follows, constant𝐾 is generic, which depends on
𝑓, 𝑔, the initial data 𝜓, the interval of integration [0, 𝑇], and
𝐷, but it is independent of the discretization parameters 𝑛 and
ℎ𝑁.

Lemma 1. Let 𝑦(𝑡) be the solution of (6). Under assumptions
(𝐴1) and (𝐴2), one has

E [1{𝑡≤𝜃
𝐷
}

󵄨󵄨󵄨󵄨𝑦
∗
(𝑡) − 𝑦 (𝑡𝑘)

󵄨󵄨󵄨󵄨
𝑝
] ≤ 𝐾ℎ

𝑝

𝑁
, (12)

E [1{𝑡≤𝜃
𝐷
}

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦 (𝑡𝑘)
󵄨󵄨󵄨󵄨
𝑝
] ≤ 𝐾ℎ

𝑝/2

𝑁
(13)

for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] with 𝑘 = 0, 1, . . . , 𝑁 − 1, and integer 𝑝 > 2.

Proof. We note that for |𝑥| ∨ |𝑦| ≤ 𝐷,

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
2
≤ 2

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦) − 𝑓 (0, 0)
󵄨󵄨󵄨󵄨
2
+ 2

󵄨󵄨󵄨󵄨𝑓 (0, 0)
󵄨󵄨󵄨󵄨
2

≤ 𝐾(1 + |𝑥|
2
+
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
2
) .

(14)

Combining (3), (5), (6), and (14), we obtain

E [1{𝑡≤𝜃
𝐷
}

󵄨󵄨󵄨󵄨𝑦
∗
(𝑡) − 𝑦 (𝑡𝑘)

󵄨󵄨󵄨󵄨
𝑝
] ≤ E󵄨󵄨󵄨󵄨ℎ𝑁𝑓 (𝑌

∗

𝑘
, 𝑍𝑘)

󵄨󵄨󵄨󵄨
𝑝

≤ 𝐾ℎ
𝑝

𝑁

(15)

under assumptions (A1) and (A2).
Now we prove (13). From (6), we have

𝑦 (𝑡) = 𝑦 (𝑡𝑘) + ∫

𝑡

𝑡
𝑘

𝑓 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) d𝑠

+ ∫

𝑡

𝑡
𝑘

𝑔 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) d𝑊(𝑠) ,

(16)
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for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1]. To estimate E|𝑦(𝑡) − 𝑦(𝑡𝑘)|
𝑝, we will first

apply the elementary inequality, which states that, for every
𝑟 > 0, it follows that

|𝑎 + 𝑏|
𝑟
≤ (2

𝑟−1
∨ 1) (|𝑎|

𝑟
+ |𝑏|

𝑟
) . (17)

Then, for 𝑝 > 2 and 𝑡𝑘 < 𝜃𝐷,

E [1{𝑡≤𝜃
𝐷
}

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦 (𝑡𝑘)
󵄨󵄨󵄨󵄨
𝑝
]

≤ 2
𝑝−1E[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡∧𝜃
𝐷

𝑡
𝑘

𝑓 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) d𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡∧𝜃
𝐷

𝑡
𝑘

𝑔 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) d𝑊(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

] .

(18)

ApplyingHölder’s inequality to the first integral of (18), as
well as Burkholder-Davis-Gundy inequality to the Itô integral
of (18), we obtain

E [1{𝑡≤𝜃
𝐷
}

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦 (𝑡𝑘)
󵄨󵄨󵄨󵄨
𝑝
]

≤ 2
𝑝−1

[
[
[

[

(𝑡 − 𝑡𝑘)
𝑝−1

∫

𝑡

𝑡
𝑘

E󵄨󵄨󵄨󵄨𝑓 (𝑦
∗
(𝑠 ∧ 𝜃𝐷) , 𝑧 (𝑠 ∧ 𝜃𝐷))

󵄨󵄨󵄨󵄨
𝑝d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽
1

+ 𝐾(𝑡 − 𝑡𝑘)
𝑝/2−1

×∫

𝑡

𝑡
𝑘

E󵄨󵄨󵄨󵄨𝑔 (𝑦
∗
(𝑠 ∧ 𝜃𝐷) , 𝑧 (𝑠 ∧ 𝜃𝐷))

󵄨󵄨󵄨󵄨
𝑝d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽
2

]
]
]

]

.

(19)

We then have

𝐽1 = ∫

𝑡

𝑡
𝑘

E(󵄨󵄨󵄨󵄨𝑓 (𝑦
∗
(𝑠 ∧ 𝜃𝐷) , 𝑧 (𝑠 ∧ 𝜃𝐷))

󵄨󵄨󵄨󵄨
2
)
𝑝/2

d𝑠

≤ ∫

𝑡

𝑡
𝑘

E[𝐾𝐷 (1 +
󵄨󵄨󵄨󵄨𝑦

∗
(𝑠 ∧ 𝜃𝐷)

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝑧 (𝑠 ∧ 𝜃𝐷)

󵄨󵄨󵄨󵄨
2
)]

𝑝/2

d𝑠

≤ 2
𝑝/2−1

𝐾
𝑝/2

𝐷

× ∫

𝑡

𝑡
𝑘

E [1 + 2
𝑝/2−1

(
󵄨󵄨󵄨󵄨𝑦

∗
(𝑠 ∧ 𝜃𝐷)

󵄨󵄨󵄨󵄨
𝑝
+
󵄨󵄨󵄨󵄨𝑧 (𝑠 ∧ 𝜃𝐷)

󵄨󵄨󵄨󵄨
𝑝
)] d𝑠

≤ 2
𝑝/2−1

𝐾
𝑝/2

𝐷

× [1 + 2
𝑝/2−1E󵄨󵄨󵄨󵄨𝑦

∗
(𝑠 ∧ 𝜃𝐷)

󵄨󵄨󵄨󵄨
𝑝
+ 2

𝑝/2−1E󵄨󵄨󵄨󵄨𝑧 (𝑠 ∧ 𝜃𝐷)
󵄨󵄨󵄨󵄨
𝑝
]

× (𝑡 − 𝑡𝑘)

= 𝐾 (𝑡 − 𝑡𝑘)

(20)

under the assumption (A2).
Similarly, replacing 𝑓 by 𝑔 and repeating the previous

procedure, we obtain 𝐽2 ≤ 𝐾(𝑡−𝑡𝑘).Therefore, by substituting
this result and (20) into (19), the proof is complete.

Lemma 2. Let 𝑦(𝑡) be the solution of (6). Under assumptions
(𝐴1), (𝐴2), and (𝐴3), one has

E [1{𝑡≤𝜃
𝐷
}

󵄨󵄨󵄨󵄨𝑦 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡)
󵄨󵄨󵄨󵄨
𝑝
] ≤ 𝐾ℎ

𝑝/2

𝑁
(21)

for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] with 𝑛 = 0, 1, . . . , 𝑁 − 1, and integer 𝑝 > 2.

Proof. To show the desired result, let us consider the follow-
ing four possible cases:

(1) 𝑡𝑛 − 𝜏(𝑡𝑛) ≥ 0, 𝑡 − 𝜏(𝑡) ≥ 0,
(2) 𝑡𝑛 − 𝜏(𝑡𝑛) ≥ 0, 𝑡 − 𝜏(𝑡) < 0,
(3) 𝑡𝑛 − 𝜏(𝑡𝑛) < 0, 𝑡 − 𝜏(𝑡) ≥ 0,
(4) 𝑡𝑛 − 𝜏(𝑡𝑛) < 0, 𝑡 − 𝜏(𝑡) < 0.

In case (1), without loss of generality, we assume
𝑡 − 𝜏(𝑡) ∈ [𝑡𝑖, 𝑡𝑖+1), 𝑡𝑛 − 𝜏(𝑡𝑛) = (1 − 𝜇)𝑡𝑗 + 𝜇𝑡𝑗+1 ∈ [𝑡𝑗, 𝑡𝑗+1),
𝑖 > 𝑗 ≥ 0. Thus, from (4), (5), and (6), we have

𝑦 (𝑡 − 𝜏 (𝑡)) − 𝑧 (𝑡)

= [𝑡 − 𝜏 (𝑡) − 𝑡𝑖] 𝑓 (𝑌
∗

𝑖
, 𝑍𝑖) + 𝑔 (𝑌

∗

𝑖
, 𝑍𝑖) Δ𝑤𝑖

− (1 − 𝜇)

𝑖−1

∑

𝑘=𝑗

[ℎ𝑁𝑓 (𝑌
∗

𝑘+1
, 𝑍𝑘+1) + 𝑔 (𝑌

∗

𝑘
, 𝑍𝑘) Δ𝑤𝑘]

− 𝜇

𝑖−1

∑

𝑘=𝑗+1

1{𝑖>𝑗+1} [ℎ𝑁𝑓 (𝑌
∗

𝑘+1
, 𝑍𝑘+1) + 𝑔 (𝑌

∗

𝑘
, 𝑍𝑘) Δ𝑤𝑘] .

(22)

We note that

E󵄨󵄨󵄨󵄨Δ𝑤𝑙

󵄨󵄨󵄨󵄨
𝑝
=

Γ ((𝑝 + 1) /2)

√𝜋
(2ℎ𝑁)

𝑝/2 (23)

with 𝑙 = 0, 1, 2, . . . , 𝑁 − 1. Therefore, under assumptions (A1)
and (A2), applying (17) and (23), we can derive (21) from (22).
Under assumptions (A1)–(A3), the proof of the three other
cases follows in a similar manner that of Lemma 2.5 in [8].
Then combining these results gives the required result.

Lemma 3. Let 𝑥(𝑡) be the solution of SDDE (1) and let 𝑦(𝑡) be
the solution of (6). Under assumptions (𝐴1), (𝐴2), and (𝐴3),
one obtains

sup
𝑡∈[0,𝑇]

E󵄨󵄨󵄨󵄨𝑦 (𝑡 ∧ 𝜎𝐷) − 𝑥 (𝑡 ∧ 𝜎𝐷)
󵄨󵄨󵄨󵄨
𝑝
≤ 𝐾ℎ

𝑝/2

𝑁 (24)

for integer 𝑝 > 2.

Proof. Suppose that 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] and 𝑡𝑘 ≤ 𝜎𝐷. From (2) and
(6), we have

𝑦 (𝑡) − 𝑥 (𝑡) = 𝑦 (𝑡𝑘) − 𝑥 (𝑡𝑘)

+ ∫

𝑡

𝑡
𝑘

[𝑓 (𝑦
∗
(𝑠) , 𝑧 (𝑠))

−𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))] d𝑠
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+ ∫

𝑡

𝑡
𝑘

[𝑔 (𝑦
∗
(𝑠) , 𝑧 (𝑠))

−𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))] d𝑊𝑠.

(25)

Let 𝜙(𝑡) denote the difference 𝑦(𝑡) − 𝑥(𝑡), by using Itô’s
formula to the function 𝑢(𝜙) = |𝜙|

𝑝 [10] and then, by taking
expectation, we get

E󵄨󵄨󵄨󵄨𝑦(𝑡 ∧ 𝜎𝐷) − 𝑥 (𝑡 ∧ 𝜎𝐷)
󵄨󵄨󵄨󵄨
𝑝
≤ E󵄨󵄨󵄨󵄨𝑦 (𝑡𝑘) − 𝑥 (𝑡𝑘)

󵄨󵄨󵄨󵄨
𝑝
+ 𝑝E∫

𝑡∧𝜎
𝐷

𝑡
𝑘

󵄨󵄨󵄨󵄨𝑓 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) − 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜙 (𝑠)

󵄨󵄨󵄨󵄨
𝑝−1d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
1
(𝑡)

+
𝑝 (𝑝 − 1)

2
E∫

𝑡∧𝜎
𝐷

𝑡
𝑘

󵄨󵄨󵄨󵄨𝑔 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) − 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))

󵄨󵄨󵄨󵄨
2󵄨󵄨󵄨󵄨𝜙 (𝑠)

󵄨󵄨󵄨󵄨
𝑝−2d𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
2
(𝑡)

+ 𝑝E∫

𝑡∧𝜎
𝐷

𝑡
𝑘

󵄨󵄨󵄨󵄨𝑔 (𝑦
∗
(𝑠) , 𝑧 (𝑠)) − 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜙 (𝑠)

󵄨󵄨󵄨󵄨
𝑝−1d𝑊(𝑠)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
.

𝐼
3
(𝑡)

(26)

Let 𝑉(𝑡) denote the left side of (26); that is,

𝑉 (𝑡) := E󵄨󵄨󵄨󵄨𝑦 (𝑡 ∧ 𝜎𝐷) − 𝑥 (𝑡 ∧ 𝜎𝐷)
󵄨󵄨󵄨󵄨
𝑝
. (27)

As we know, if 󰜚 is a stopping time and if 𝑀𝑡 is a martingale,
then𝑀𝑡∧󰜚 is amartingale too.Therefore, the expectation 𝐼3(𝑡)

vanishes because ofmartingale property for Itô integral; then,
the inequality (26) implies that

𝑉 (𝑡) ≤ 𝑉 (𝑡𝑘) + 𝑝𝐼1 (𝑡) +
𝑝 (𝑝 − 1)

2
𝐼2 (𝑡)

(28)

for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1] with 𝑘 = 0, 1, . . . , 𝑁 − 1.
By applying the local Lipschitz condition and the elemen-

tary Young inequality, we obtain

𝐼1 (𝑡) ≤ E∫

𝑡∧𝜎
𝐷

𝑡
𝑘

𝐿𝐷 [
󵄨󵄨󵄨󵄨𝑦

∗
(𝑠) − 𝑥 (𝑠)

󵄨󵄨󵄨󵄨 + |𝑧 (𝑠) − 𝑥 (𝑠 − 𝜏 (𝑠))|]

×
󵄨󵄨󵄨󵄨𝜙 (𝑠)

󵄨󵄨󵄨󵄨
𝑝−1d𝑠

≤ 𝐿𝐷E∫

𝑡∧𝜎
𝐷

𝑡
𝑘

[
󵄨󵄨󵄨󵄨𝑦

∗
(𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦 (𝑠) − 𝑥 (𝑠)

󵄨󵄨󵄨󵄨]

+ [
󵄨󵄨󵄨󵄨𝑧 (𝑠) − 𝑦 (𝑠 − 𝜏 (𝑠))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑦 (𝑠 − 𝜏 (𝑠)) − 𝑥 (𝑠 − 𝜏 (𝑠))

󵄨󵄨󵄨󵄨]

×
󵄨󵄨󵄨󵄨𝜙 (𝑠)

󵄨󵄨󵄨󵄨
𝑝−1d𝑠

≤ 𝐿𝐷E∫

𝑡∧𝜎
𝐷

𝑡
𝑘

[
󵄨󵄨󵄨󵄨𝑦

∗
(𝑠) − 𝑦 (𝑡𝑘)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦 (𝑡𝑘) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑦 (𝑠) − 𝑥 (𝑠)

󵄨󵄨󵄨󵄨]

+ [
󵄨󵄨󵄨󵄨𝑧 (𝑠) − 𝑦 (𝑠 − 𝜏 (𝑠))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑦 (𝑠 − 𝜏 (𝑠)) − 𝑥 (𝑠 − 𝜏 (𝑠))

󵄨󵄨󵄨󵄨]

×
󵄨󵄨󵄨󵄨𝜙 (𝑠)

󵄨󵄨󵄨󵄨
𝑝−1d𝑠

≤ 𝐿𝐷 {(1 +
4𝑝

𝑝 − 1
)∫

𝑡

𝑡
𝑘

𝑉 (𝑠) d𝑠 + 1

𝑝
∫

𝑡

𝑡
𝑘

𝑉 (𝑠 − 𝜏 (𝑠)) d𝑠

+
1

𝑝
∫

𝑡

𝑡
𝑘

E󵄨󵄨󵄨󵄨𝑦
∗
(𝑠 ∧ 𝜎𝐷) − 𝑦(𝑡𝑘)

󵄨󵄨󵄨󵄨
𝑝d𝑠

+
1

𝑝
∫

𝑡

𝑡
𝑘

E 󵄨󵄨󵄨󵄨𝑦 (𝑠 ∧ 𝜎𝐷) − 𝑦 (𝑡𝑘)
󵄨󵄨󵄨󵄨
𝑝d𝑠

+
1

𝑝
∫

𝑡

𝑡
𝑘

E 󵄨󵄨󵄨󵄨𝑦 (𝑠 ∧ 𝜎𝐷 − 𝜏 (𝑠 ∧ 𝜎𝐷))

−𝑧 (𝑠 ∧ 𝜎𝐷)
󵄨󵄨󵄨󵄨
𝑝 d𝑠} ,

(29)
which implies that

𝐼1 (𝑡) ≤ 𝐿𝐷 (1 +
4𝑝

𝑝 − 1
)∫

𝑡

𝑡
𝑘

𝑉 (𝑠) d𝑠

+
𝐿𝐷

𝑝
∫

𝑡

𝑡
𝑘

𝑉 (𝑠 − 𝜏 (𝑠)) d𝑠 + 𝐾ℎ
𝑝/2+1

𝑁

(30)

by Lemmas 1 and 2.
A similar result can be derived for 𝐼2(𝑡) so that

𝑉 (𝑡) ≤ 𝑉 (𝑡𝑘) + 𝐾ℎ
𝑝/2+1

𝑁

+ 𝛼∫

𝑡

𝑡
𝑘

𝑉 (𝑠) d𝑠 + 𝛽∫

𝑡

𝑡
𝑘

𝑉 (𝑠 − 𝜏 (𝑠)) d𝑠
(31)

from (28), where 𝛼 and 𝛽 are generic constants independent
of ℎ𝑁.

Now we will proceed by using an induction argument
over consecutive intervals of length 𝜏min up to the end of the
interval [0, 𝑇].

Step 1. Given 𝑡 ∈ [0, 𝜏min], it is easy to show that 𝑠 − 𝜏(𝑠) ≤

𝑡 − 𝜏min ≤ 0 for 𝑠 ≤ 𝑡, so

∫

𝑡

𝑡
𝑘

𝑉 (𝑠 − 𝜏 (𝑠)) d𝑠

= E∫

𝑡∧𝜎
𝐷

𝑡
𝑘

󵄨󵄨󵄨󵄨𝜓 (𝑠 − 𝜏 (𝑠)) − 𝜓 (𝑠 − 𝜏 (𝑠))
󵄨󵄨󵄨󵄨
𝑝d𝑠 = 0.

(32)
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Inserting this into (31) gives

𝑉 (𝑡) ≤ 𝑉 (𝑡𝑘) + 𝐾ℎ
𝑝/2+1

𝑁
+ ∫

𝑡

𝑡
𝑘

𝛼𝑉 (𝑠) d𝑠

≤ (𝑉 (𝑡𝑘) + 𝐾ℎ
𝑝/2+1

𝑁
) 𝑒

𝛼(𝑡−𝑡
𝑘
)

(33)

by applying the Gronwall inequality [11].
Further, from (33), we have

𝑉 (𝑡𝑘) ≤ 𝑉 (𝑡𝑘−1) 𝑒
𝛼ℎ
𝑁 + 𝐾ℎ

𝑝/2+1

𝑁
𝑒
𝛼ℎ
𝑁

≤ 𝑉 (𝑡0) (𝑒
𝛼ℎ
𝑁)

𝑘

+ 𝐾ℎ
𝑝/2+1

𝑁

𝑘

∑

𝑗=1

(𝑒
𝛼ℎ
𝑁)

𝑗

≤ 𝐾ℎ
𝑝/2

𝑁
.

(34)

Combining (33) and (34) gives 𝑉(𝑡) ≤ 𝐾ℎ
𝑝/2

𝑁
for 𝑡 ∈ [0, 𝜏min].

Step 2. Suppose 𝑡 ∈ [𝑚𝜏min, (𝑚 + 1)𝜏min] with 𝑚 = 1, 2, . . .,
which implies 𝑠 − 𝜏(𝑠) ≤ 𝑡 − 𝜏min ≤ 𝑚𝜏min for 𝑠 ≤ 𝑡; then we
can obtain

∫

𝑡

𝑡
𝑘

𝑉 (𝑠 − 𝜏 (𝑠)) d𝑠 ≤ 𝐾ℎ
𝑝/2+1

𝑁
(35)

from the previous recursive step. Hence, the inequality (31)
also gives

𝑉 (𝑡) ≤ 𝑉 (𝑡𝑘) + 𝐾ℎ
𝑝/2+1

𝑁
+ ∫

𝑡

𝑡
𝑘

𝛼𝑉 (𝑠) d𝑠. (36)

Finally, we can obtain the desired result using an approach
similar to Step 1.

The next lemma shows that the sequence of the approxi-
mate solutions 𝑦(𝑡) tends to the exact solution 𝑥(𝑡) as ℎ𝑁 ↓ 0

in the sense of 𝐿𝑝-norm under local condition.

Lemma 4. We assume that the conditions of Lemma 3 are
fulfilled. Then, for 𝑝 > 2, one has

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡 ∧ 𝜎𝐷) − 𝑦 (𝑡 ∧ 𝜎𝐷)
󵄨󵄨󵄨󵄨
𝑝
] ≤ 𝐾ℎ

𝑝/2

𝑁
, as ℎ𝑁 ↓ 0.

(37)

Proof. Using (2), (6), (17), the Burkholder-Davis-Gundy
inequality, and Hölder’s inequality, we have

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡 ∧ 𝜎𝐷) − 𝑦 (𝑡 ∧ 𝜎𝐷)
󵄨󵄨󵄨󵄨
𝑝
]

≤ 2
𝑝−1E[ sup

𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡∧𝜎
𝐷

0

(𝑓 (𝑦
∗
(𝑠) , 𝑧 (𝑠) )

− 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))) d𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

]

+ 2
𝑝−1E[ sup

𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡∧𝜎
𝐷

0

[𝑔 (𝑦
∗
(𝑠) , 𝑧 (𝑠) )

− 𝑔 (𝑥 (𝑠) ,

𝑥 (𝑠 − 𝜏 (𝑠)))] d𝑊(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

]

≤ 2
𝑝−1

(𝑇 ∨ 1)
𝑝−1

∫

𝑇

0

E 󵄨󵄨󵄨󵄨𝑓 (𝑦
∗
(𝑠) , 𝑧 (𝑠))

− 𝑓 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))
󵄨󵄨󵄨󵄨
𝑝d𝑠

+ 2
𝑝−1

(𝑇 ∨ 1)
𝑝/2−1

∫

𝑇

0

E 󵄨󵄨󵄨󵄨𝑔 (𝑦
∗
(𝑠) , 𝑧 (𝑠))

− 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏 (𝑠)))
󵄨󵄨󵄨󵄨
𝑝d𝑠.

(38)

Combining Lemmas 1, 2, and 3, we get

sup
𝑠∈[0,𝑇]

E󵄨󵄨󵄨󵄨𝑦
∗
(𝑠 ∧ 𝜎𝐷) − 𝑥 (𝑠 ∧ 𝜎𝐷)

󵄨󵄨󵄨󵄨
𝑝
≤ 𝐾ℎ

𝑝/2

𝑁
,

sup
𝑠∈[0,𝑇]

E󵄨󵄨󵄨󵄨𝑧 (𝑠 ∧ 𝜎𝐷) − 𝑥 (𝑠 ∧ 𝜎𝐷 − 𝜏 (𝑠 ∧ 𝜎𝐷))
󵄨󵄨󵄨󵄨
𝑝
≤ 𝐾ℎ

𝑝/2

𝑁

(39)

by first using Minkowski’s inequality.
Applying the local Lipschitz condition (7) to (38), the

relation (37) then follows from (39).

The following two theorems are the main results of this
paper. They give, respectively, the 𝐿

𝑝 error and almost sure
error of the SSBE method (3).

Theorem 5. One assumes that the conditions of Lemma 3
are fulfilled. Then, for 𝑝 > 2 and sufficiently large 𝐷, the
approximation (3) for SDDE (1) is convergent in 𝐿

𝑝 sense and

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝑝
] ≤ 𝐾ℎ

𝑝/2

𝑁
, as ℎ𝑁 ↓ 0. (40)

The result can be proved via a similar approach to that in [5,
Theorem 2.1] and [6, Theorem 2.2]; see the appendix.

Theorem 6. One assumes that the conditions of Lemma 3 are
fulfilled. Then,

sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 = O (ℎ

𝛾

𝑁
) (𝑎.𝑠.) (41)

for every positive number 𝛾 < 1/2 and sufficiently large 𝐷.

Proof. FromTheorem 5, Chebyshev’s inequality [11] gives
∞

∑

𝑁=1

𝑃{ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≥ ℎ

𝛾

𝑁
}

≤

∞

∑

𝑁=1

ℎ
−𝑝𝛾

𝑁
E{ sup

𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝑝
}

≤ 𝐾

∞

∑

𝑁=1

(
𝑇

𝑁
)

𝑝/2−𝑝𝛾

(42)

for any 𝛾 > 0 and 𝑝 ≥ 3.
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The series∑∞

𝑁=1
(𝑇/𝑁)

𝑝/2−𝑝𝛾 is convergent for 𝑝/2−𝑝𝛾 >

1; that is, 𝛾 < 1/2−1/𝑝 < 1/2. Further, by applying the Borel-
Cantelli lemma [11], the inequality (42) implies that

𝑃{ lim
𝑁→∞

( sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 < ℎ

𝛾

𝑁
)} = 1. (43)

Thus, under assumptions (A1)–(A3), the approximate solu-
tion 𝑦(𝑡) converges (a.s.) to the exact solution 𝑥(𝑡) uniformly
on [0, 𝑇] as ℎ𝑁 → 0.

Appendix

Proof of Theorem 5. Obviously, we have

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝑝
]

= E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝑝1{𝜌
𝐷
>𝑇 and 𝜃

𝐷
>𝑇}]

+ E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝑝1{𝜌
𝐷
≤𝑇 or 𝜃

𝐷
≤𝑇}] .

(A.1)

By the improved Young inequality (see, e.g., [5, 6])

𝐴𝐵 ≤ 𝜂
𝐴
𝜇

𝜇
+

1

𝜂(]/𝜇)
𝐵
]

]
∀𝐴, 𝐵, 𝜂, 𝜇 > 0, (A.2)

when 𝜇
−1

+ ]−1 = 1, we obtain

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝑝1{𝜌
𝐷
≤𝑇 or 𝜃

𝐷
≤𝑇}]

≤ E[
𝜂

𝜇
sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝜇𝑝

]

+ E [
1

]𝜂(]/𝜇)
(1{𝜌
𝐷
≤𝑇 or 𝜃

𝐷
≤𝑇})

]
]

≤
𝜂

𝜇
E[ sup

𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝜇𝑝

]

+
1

]𝜂(]/𝜇)
𝑃 (𝜌𝐷 ≤ 𝑇 or 𝜃𝐷 ≤ 𝑇) .

(A.3)

Note

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝜇𝑝

]

≤ 2
𝜇𝑝−1E[ sup

𝑡∈[0,𝑇]

|𝑥 (𝑡)|
𝜇𝑝

+ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨
𝜇𝑝

]

≤ 2
𝜇𝑝

𝐿𝐴.

(A.4)

Furthermore,

𝑃 (𝜌𝐷 ≤ 𝑇) ≤ E[1{𝜌
𝐷
≤𝑇}

󵄨󵄨󵄨󵄨𝑥 (𝜌𝐷)
󵄨󵄨󵄨󵄨
𝑝

𝐷𝑝
] ≤

𝐿𝐴

𝐷𝑝
, (A.5)

and, similarly,

𝑃 (𝜃𝐷 ≤ 𝑇) ≤
𝐿𝐴

𝐷𝑝
. (A.6)

Therefore,

𝑃 (𝜌𝐷 ≤ 𝑇 or 𝜃𝐷 ≤ 𝑇) ≤ 𝑃 (𝜌𝐷 ≤ 𝑇) + 𝑃 (𝜃𝐷 ≤ 𝑇) ≤
2𝐿𝐴

𝐷𝑝
.

(A.7)

On the other side, Lemma 4 implies that

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦(𝑡)
󵄨󵄨󵄨󵄨
𝑝1{𝜌
𝐷
>𝑇 and 𝜃

𝐷
>𝑇}]

≤ E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥 (𝑡 ∧ 𝜎𝐷) − 𝑦 (𝑡 ∧ 𝜎𝐷)
󵄨󵄨󵄨󵄨
𝑝
]

≤ 𝐾ℎ
𝑝/2

𝑁
.

(A.8)

Combining (A.1) and the above inequalities gives

E[ sup
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝑥(𝑡) − 𝑦(𝑡)
󵄨󵄨󵄨󵄨
𝑝
]

≤ 𝐾ℎ
𝑝/2

𝑁
+

𝜂2
𝜇𝑝

𝐿𝐴

𝜇
+

2𝐿𝐴

]𝜂(]/𝜇)𝐷𝑝
.

(A.9)

Setting 𝜂 = ℎ
𝑝/2

𝑁
and choosing 𝐷 = ℎ

−(1/2)(1+(]/𝜇))
𝑁

, we obtain
(40) for sufficiently large𝐷.
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