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State estimation problem is considered for a kind of wireless network control system with stochastic uncertainty and time delay. A
sliding mode observer is designed for the system under the situation that no missing measurement occurs and system uncertainty
happens in a stochastic way. The observer designed for the system can guarantee the system states will be driven onto the sliding
surface under control law, and the slidingmotion of system states on sliding surfacewill be stable. By constructing proper Lyapunov-
Krasovskii functional, sufficient conditions are acquired via linear matrix inequality. Finally, simulation result is employed to show
the effectiveness of the proposed method.

1. Introduction

During the past decades, state estimation problem is a hot
issue in academical field, and researchers made fruitful
research on both theoretical research and practical applica-
tions [1–4]. At the same time, research and applications in
wireless network control system (WiNCS) attracted much
interest from scholars [5–9]. Compared with wired network
control system, WiNCS is more convenient in integrated
wiring and could be arranged in hazardous area people
cannot easily reach. Sensor nodes are distributed in advance
to collect information and transmit signal back via signal
channel throughmultihop technology, until they reach users’
terminal applications. Because of its low cost, mobility char-
acter, and convenience for using, WiNCS is widely used in
hospital monitoring, military and urban affairs, and some
other important cases [10–13]. However, as the whole system
is becoming complicated and integrated, people want to keep
track of useful measured values, and a rich body of literature

has appeared on the topic of state estimation or observer-
based design; see [14–16] and the references therein.

As a special class of complex networks, WiNCS has its
own characteristics due mainly to large numbers of nodes
distributed over the region of interest. In this case, sensor
nodes may be in mobile motion, which is attributed to the
uncertainty in system state, and much effort has been made
on this issue [17–22]. For distributed state estimation prob-
lem, each sensor node in WiNCS estimates system state not
only from its ownmeasurement but also from its neighboring
nodes, so some unpredictable factors which happen in a
stochastic waywill enhance the complexity in state estimation
[23–25]. Reference [26] studied synchronization problem for
Markovian jump neural networks with time-varying delay
and variable samplings. Stochastic stability of the error system
was guaranteed by two criteria, and mode-independent con-
troller was designed based on the maximum sampling inter-
val. Reference [27] constructed proper Lyapunov-Krasovskii
functional and studied the adaptive fault estimation problems
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for stochastic Markovian jump systems (MJSs), combined
with time delays. Adaptive fault detection observer was
designed and the sufficient condition was proposed. Refer-
ence [28] concentrated on the proportional-integral control
problems of stochastic Markovian jump systems (MJSs) with
uncertain parameters. It transformed the controller design
problem to an output feedback control problem, and a
sufficient condition was proposed via LMI.

Nodes receive measurement information from other
nodes inWiNCSwhich is time consuming, so time delay can-
not be avoided in the research of WiNCS, and many scholars
devoted to this problem [29–33]. Reference [34] considered
the problem that both had discrete and distributed delays,
and the delay dependent passivity condition was acquired.
Reference [35] investigated the problem of sampled-data
extended dissipative control for uncertain Markov jump
systems. By proposing a new integral inequality, a novel
exponential stability criterion and an extended dissipativity
condition were established. In addition, a sufficient condition
for desired mode-independent sampled-data controller was
also obtained. Reference [36] dealt with the average consen-
sus problem in directed networks of agents with switching
topology and time delay. It proved that all the agents could
reach average consensus under a proper time delay if the
topology of agents was weakly connected and balanced.

Motivated by previous research stated above, our target
is to deal with state estimation problem in wireless network
control system, which contains stochastic uncertainty and
time delay. A sliding mode observer is designed in two steps;
by the use of Lyapunov stability theory, sufficient conditions
are proposed to make sure that system states can be driven
onto the sliding surface within finite time and make stable
sliding motion on sliding surface.

The rest of the paper is organized as follows. In Section 2,
the state estimation problem of WiNCS is formulated and
some useful lemmas are introduced. In Section 3, we make
our designing process in two steps. Besides, the gain of
observer is acquired by LMI. An illustrated example is given
in Section 4 to demonstrate the effectiveness of the proposed
method. Finally, we give our conclusions in Section 5.

2. Problem Formulation

In this paper, we consider the following discrete stochastic
and time delay model:

𝑥 (𝑘 + 1) = (𝐴 + 𝛼𝑘Δ𝐴) 𝑥 (𝑘) + 𝐴𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖) + 𝐵𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the system state vector, 𝑦(𝑘) ∈ R𝑛

is the measured output, Δ𝐴 is internal perturbation arising
from uncertain factors, 𝑢(𝑘) is system input, 𝐴, 𝐴𝑑, 𝐵, and 𝐶

are constant matrices with appropriate dimensions, and 𝛼𝑘 is
Bernoulli distributed white sequences governed by

Prob {𝛼𝑘 = 1} = E {𝛼𝑘} = 𝛼,

Prob {𝛼𝑘 = 0} = 1 − E {𝛼𝑘} = 1 − 𝛼,

(2)

where 𝛼 ∈ [0, 1] is a known constant.

Remark 1. Most nodes inWiNCSmay be in dynamicmotion;
they collect information from areas of interest. However,
they may be affected by external environment, such as
temperature, humidity, and topography, or linkage status
inside the system, so system uncertainty may happen in a
stochastic way, which increases the complexity of the system.

Wemake the following assumptions for systemmodel (1).

Assumption 2. The perturbation parameter of the system
satisfies

Δ𝐴 = 𝐺𝐷 (𝑘)𝐻. (3)

Respectively, 𝐺 and 𝐻 are known constant matrix, 𝐷(𝑘)

is time-delay uncertainmatrix, yet Lebesgue-measurable, and
𝐷
𝑘
(𝑡)𝐷(𝑘) ≤ 𝐼.

Assumption 3. 𝐶
𝑇
𝐶 is full rank.

Assumption 4. All the states of the system can be measured
and no missing measurement occurs.

We construct the following sliding mode observer:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

+ 𝐵𝑢 (𝑘) + 𝐿 [𝑦 (𝑘) − 𝑦 (𝑘)] + 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(4)

where 𝐿 is the gain of observer to be designed and 𝑤(𝑘) is
nonlinear item in observer.

So the state error 𝑒𝑥(𝑘) and output error 𝑒𝑦(𝑘) of the
system are as follows:

𝑒𝑥 (𝑘) = 𝑥 (𝑘) − 𝑥 (𝑘) ,

𝑒𝑦 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) .

(5)

In this case, the system error model is

𝑒𝑥 (𝑘 + 1) = (𝐴 − 𝐾𝐶) 𝑒𝑥 (𝑘) + (𝛼𝑘 − 𝛼)Δ𝐴𝑥 (𝑘)

+ 𝛼Δ𝐴𝑥 (𝑘) + 𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤 (𝑘) ,

𝑒𝑦 (𝑘 + 1) = 𝐶𝑒𝑥 (𝑘) .

(6)

We define the sliding surface 𝑠(𝑘) as

𝑠 (𝑘) = 𝑒𝑦 (𝑘) . (7)
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Our target in this paper is to find the gain of observer 𝐿

and the nonlinear input𝑤(𝑘) that can drive system state onto
the sliding surface within finite time and, in addition, make
sure that sliding motion of system states on sliding surface
is stable. Two conditions should be satisfied when designing
sliding mode observer [37]:

(1) system error model is asymptotically stable when
𝑠(𝑘 + 1) = 𝑠(𝑘) = 0;

(2) sliding mode manifold satisfies ‖𝑠(𝑘 + 1)‖ < ‖𝑠(𝑘)‖.

Remark 5. We set system output error as sliding surface; the
benefit is, condition (1) guarantees that sliding motion on
sliding surface is stable, and condition (2) ensures that system
state can be driven onto sliding surface within finite time.
In this case, we convert state estimation problem into sliding
mode observer design problem.

Besides, some useful and important lemmas that will be
used in deriving out results are introduced below.

Lemma 6. Let𝑌 = 𝑌
𝑇,𝐷,𝐸, and 𝐹(𝑡) be real matrix of proper

dimensions, and 𝐹
𝑇
(𝑡)𝐹(𝑡) ≤ 𝐼; then inequality 𝑌 + 𝐷𝐹𝐸 +

(𝐷𝐹𝐸)
𝑇
< 0 holds if there exists a constant 𝜀, which makes the

following equation hold:

𝑌 + 𝜀𝐷𝐷
𝑇
+ 𝜀
−1
𝐸
𝑇
𝐸 < 0. (8)

Lemma 7 (Schur complement). Given a symmetric matrix
𝑆 = [
𝑆
11
𝑆
12

𝑆
21
𝑆
22

], where 𝑆11 is 𝑟×𝑟 dimensional, the following three
conditions are equivalent:

(1) 𝑆 < 0;

(2) 𝑆11 < 0, 𝑆22 − 𝑆
𝑇

12
𝑆
−1

11
𝑆12 < 0;

(3) 𝑆22 < 0, 𝑆11 − 𝑆12𝑆
−1

22
𝑆
𝑇

12
< 0.

Lemma 8. For any 𝑥, 𝑦 ∈ 𝑅
𝑛, 𝜇 > 0, the following equation

holds:

2𝑥
𝑇
𝑦 ≤ 𝜇𝑥

𝑇
𝑥 +

1

𝜇

𝑦
𝑇
𝑦. (9)

3. Main Results

In this section, two theorems will be given. The first one
ensures that system states can reach the sliding surface within
finite time.

Theorem 9. For system error model (6) which meets Assump-
tions 2, 3, and 4, and 𝑤(𝑘) = 𝑤1(𝑘) + 𝑤2(𝑘), where 𝑤1(𝑘) =

𝐴𝑑∑
𝑁

𝑖=1
𝑒𝑥(𝑘−𝑖),𝑤2(𝑘) = 𝐺𝐻𝑥(𝑘), system states will be driven

onto the sliding surfacewithin finite time if there exists a general
matrix 𝐿 ∈ 𝑅

𝑛
𝑥
×𝑛
𝑦 making (10) hold:

[
−𝐶
𝑇
𝐶 √3 + 𝛼(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇

∗ −𝐼

] < 0. (10)

Proof. Considering 𝑠(𝑘 + 1) = 𝑒𝑦(𝑘 + 1) = 𝐶𝑒𝑥(𝑘 + 1) and
‖𝑠(𝑘 + 1)‖ < ‖𝑠(𝑘)‖, we have

E {𝑠
𝑇
(𝑘 + 1) 𝑠 (𝑘 + 1) − 𝑠

𝑇
(𝑘) 𝑠 (𝑘)}

= E {𝑒
𝑇

𝑦
(𝑘 + 1) 𝑒𝑦 (𝑘 + 1) − 𝑒

𝑇

𝑦
(𝑘) 𝑒𝑦 (𝑘)}

= 𝑒
𝑇

𝑥
(𝑘) [(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒𝑥 (𝑘)

+ 2𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘)

+ 2𝑒
𝑇

𝑥
(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

+ 2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶𝑤 (𝑘)

+ 2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝑤 (𝑘)

+ 2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶𝑤 (𝑘) + 𝛼𝑥

𝑇
(𝑘)Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶

𝑁

∑

𝑖=1

𝑒𝑥(𝑘 − 𝑖) + 𝑤
𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤 (𝑘) .

(11)

According to Lemma 8, we have

2𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘)

≤ 𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) 𝑒𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘) ,

(12)

2𝑒𝑥(𝑘)
𝑇
(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘) (𝑘 − 𝑖)

≤ 𝑒𝑥(𝑘)
𝑇
(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) 𝑒𝑥 (𝑘)

+

𝑁

∑

𝑖=1

𝑒𝑥(𝑘)
𝑇
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘) (𝑘 − 𝑖) ,

(13)

2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

≤ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘)

+ 𝛼

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) ,

(14)
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2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶𝑤 (𝑘)

≤ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) 𝑒𝑥 (𝑘)

+ 𝑤
𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤 (𝑘) ,

(15)

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝑤 (𝑘)

≤

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥(𝑘 − 𝑖) + 𝑤
𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤(𝑘) ,

(16)

2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶𝑤 (𝑘)

≤ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴𝑥 (𝑘) + 𝛼𝑤

𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤 (𝑘) .

(17)

Substituting (12) to (17) into (11), we have

E {𝑠
𝑇
(𝑘 + 1) 𝑠 (𝑘 + 1) − 𝑠

𝑇
(𝑘) 𝑠 (𝑘)}

≤ 𝑒
𝑇

𝑥
(𝑘)[(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒𝑥(𝑘)

+ 𝑥
𝑇
(𝑘) [(3 + 𝛼) Δ𝐴

𝑇
𝐶
𝑇
𝐶Δ𝐴] 𝑥 (𝑘)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) [(3 + 𝛼)𝐴

𝑇

𝑑
𝐶
𝑇
𝐶𝐴
𝑇

𝑑
]

×

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) + (3 + 𝛼)𝑤
𝑇
(𝑘) 𝐶
𝑇
𝐶𝑤 (𝑘)

= 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒𝑥 (𝑘)

+ [Δ𝐴𝑥 (𝑘) − 𝑤2 (𝑘)]
𝑇
(3 + 𝛼) 𝐶

𝑇
𝐶 [Δ𝐴𝑥 (𝑘) − 𝑤2 (𝑘)]

+ [𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤1 (𝑘)]

𝑇

× (3 + 𝛼)𝐶
𝑇
𝐶[𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤1 (𝑘)]

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇

× 𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒𝑥 (𝑘)

+ [𝐺𝐻𝑥 (𝑘) − 𝑤2 (𝑘)]
𝑇
(3 + 𝛼) 𝐶

𝑇
𝐶 [𝐺𝐻𝑥 (𝑘) − 𝑤2 (𝑘)]

+ [𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤1 (𝑘)]

𝑇

× (3 + 𝛼)𝐶
𝑇
𝐶[𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤1 (𝑘)] .

(18)

We make 𝑤1(𝑘) = 𝐴𝑑∑
𝑁

𝑖=1
𝑒𝑥(𝑘 − 𝑖), 𝑤2(𝑘) = 𝐺𝐻𝑥(𝑘), so

we have

E {𝑠
𝑇
(𝑘 + 1) 𝑠 (𝑘 + 1) − 𝑠

𝑇
(𝑘) 𝑠 (𝑘)}

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇
𝐶 (𝐴 − 𝐿𝐶) − 𝐶

𝑇
𝐶] 𝑒𝑥 (𝑘)

≤ 0.

(19)

By Schur complement, inequality (19) is equivalent to

[
−𝐶
𝑇
𝐶 √3 + 𝛼(𝐴 − 𝐿𝐶)

𝑇
𝐶
𝑇

∗ −𝐼

] < 0. (20)

The proof of Theorem 9 is complete.

Next, we will prove that sliding motion on sliding surface
is stable.

Theorem 10. For system errormodel (6)whichmeets Assump-
tions 2, 3, and 4, and 𝑤(𝑘) = 𝑤1(𝑘) + 𝑤2(𝑘), where 𝑤1(𝑘) =

𝐴𝑑∑
𝑁

𝑖=1
𝑒𝑥(𝑘 − 𝑖), 𝑤2(𝑘) = 𝐺𝐻𝑥(𝑘), sliding motion of system

states on sliding surface will be stable if there exists a general
matrix 𝐿 ∈ 𝑅

𝑛
𝑥
×𝑛
𝑦 and 𝑃 ∈ 𝑅

𝑛
𝑥
×𝑛
𝑥 making (21) hold:

[
−𝑃 √3 + 𝛼(𝐴 − 𝐿𝐶)

𝑇
𝑃

∗ −𝑃

] < 0. (21)

Proof. We construct the following Lyapunov-Krasovskii
functional:

𝑉 (𝑘) = 𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒𝑥 (𝑘) .

(22)

Making difference of 𝑉(𝑘), we have

E {𝑒
𝑇

𝑥
(𝑘 + 1) 𝑃𝑒𝑥 (𝑘 + 1) − 𝑒

𝑇

𝑥
(𝑘) 𝑃𝑒𝑥 (𝑘)}

= 𝑒
𝑇

𝑥
(𝑘) [(𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒𝑥 (𝑘)

+ 2𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃Δ𝐴𝑥 (𝑘)

+ 2𝑒
𝑇

𝑥
(𝐴 − 𝐿𝐶)

𝑇
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

+ 2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

+ 2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃𝑤 (𝑘)

+ 2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝑤 (𝑘) + 2𝛼𝑥

𝑇
(𝑘) Δ𝐴

𝑇
𝑃𝑤 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃Δ𝐴𝑥 (𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) + 𝑤
𝑇
(𝑘) 𝑃𝑤 (𝑘) .

(23)
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According to Lemma 8, we have

2𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃Δ𝐴𝑥 (𝑘)

≤ 𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) 𝑒𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃Δ𝐴𝑥 (𝑘) ,

(24)

2𝑒𝑥(𝑘)
𝑇
(𝐴 − 𝐿𝐶)

𝑇
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘) (𝑘 − 𝑖)

≤ 𝑒𝑥(𝑘)
𝑇
(𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) 𝑒𝑥 (𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) ,

(25)

2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

≤ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃Δ𝐴𝑥 (𝑘)

+ 𝛼

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) ,

(26)

2𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃𝑤 (𝑘)

≤ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) 𝑒𝑥 (𝑘) + 𝑤

𝑇
(𝑘) 𝑃𝑤 (𝑘) ,

(27)

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝑤 (𝑘)

≤

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑑

×

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) + 𝑤
𝑇
(𝑘) 𝑃𝑤 (𝑘) ,

(28)

2𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃𝑤 (𝑘)

≤ 𝛼𝑥
𝑇
(𝑘) Δ𝐴

𝑇
𝑃Δ𝐴𝑥 (𝑘) + 𝛼𝑤

𝑇
(𝑘) 𝑃𝑤 (𝑘) .

(29)

Substituting (24) to (29) into (23), we have

E {𝑒
𝑇

𝑥
(𝑘 + 1) 𝑃𝑒𝑥 (𝑘 + 1) − 𝑒

𝑇

𝑥
(𝑘) 𝑃𝑒𝑥 (𝑘)}

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒𝑥 (𝑘)

+ 𝑥
𝑇
(𝑘) [(3 + 𝛼) Δ𝐴

𝑇
𝑃Δ𝐴] 𝑥 (𝑘)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) [(3 + 𝛼)𝐴

𝑇

𝑑
𝑃𝐴
𝑇

𝑑
]

×

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) + (3 + 𝛼)𝑤
𝑇
(𝑘) 𝑃𝑤 (𝑘)

= 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒𝑥 (𝑘)

+ [Δ𝐴𝑥 (𝑘) − 𝑤2 (𝑘)]
𝑇
(3 + 𝛼) 𝑃 [Δ𝐴𝑥 (𝑘) − 𝑤2 (𝑘)]

+ [𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤1 (𝑘)]

𝑇

× (3 + 𝛼) 𝑃[𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤1 (𝑘)]

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒𝑥 (𝑘)

+ [𝐺𝐻𝑥 (𝑘) − 𝑤2 (𝑘)]
𝑇
(3 + 𝛼) 𝑃 [𝐺𝐻𝑥 (𝑘) − 𝑤2 (𝑘)]

+ [𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤1 (𝑘)]

𝑇

× (3 + 𝛼) 𝑃[𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) − 𝑤1 (𝑘)] .

(30)

We make𝑤1(𝑘) = 𝐴𝑑∑
𝑁

𝑖=1
𝑒𝑥(𝑘 − 𝑖), 𝑤2(𝑘) = 𝐺𝐻𝑥(𝑘), so

we have

E {𝑒
𝑇

𝑥
(𝑘 + 1) 𝑃𝑒𝑥 (𝑘 + 1) − 𝑒

𝑇

𝑥
(𝑘) 𝑃𝑒𝑥 (𝑘)}

≤ 𝑒
𝑇

𝑥
(𝑘) [(3 + 𝛼) (𝐴 − 𝐿𝐶)

𝑇
𝑃 (𝐴 − 𝐿𝐶) − 𝑃] 𝑒𝑥 (𝑘)

≤ 0.

(31)

By Schur complement again, inequality (31) is equivalent
to

[
−𝑃 √3 + 𝛼(𝐴 − 𝐿𝐶)

𝑇
𝑃

∗ −𝑃

] < 0. (32)

The proof of Theorem 10 is complete.

4. Numerical Simulations

In this section, a numerical simulation is given for testing the
theorems developed in this paper. Consider the systemmodel
(1), where

𝐴 =
[

[

6.18 0 −3

5.64 1.005 3.15

2.97 0 3.3

]

]

,

𝐴𝑑 =
[

[

−3.38 0.15 0

−0.285 0.93 0.48

−0.555 1.17 2.235

]

]

,

𝐶 =
[

[

2.8800 1.1048 0.0150

1.3095 0.7680 0.0195

0.0930 0.0315 1.0800

]

]

, 𝐵 =
[

[

1.2

0.7

1

]

]

,
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Figure 1: Trajectories of system states and observed value.

𝐺 =
[

[

0.1 0.2 −0.1

0 0.23 −0.76

0.87 0.5 −0.32

]

]

,

𝐻 =
[

[

0.184 0.112 0.23

0.097 −0.16 −0.156

−0.277 −0.069 −0.152

]

]

,

𝐷 (𝑘) =
[

[

0.8 sin (0.7𝑘) 0 0

0 0.8 sin (0.7𝑘) 0

0 0 0.8 sin (0.7𝑘)

]

]

,

𝑢 (𝑘) = sin (0.3𝑘) , 𝛼 = 0.15.

(33)

The initial states are𝑥(𝑘) = [1.3 0.427−0.92]
𝑇; according

toTheorems 9 and 10, we have

𝐿 =
[

[

6.3100 −8.9663 −2.7035

3.8252 −4.3148 2.9414

2.8593 −4.2400 3.0924

]

]

,

𝑃 = 10
5
×
[

[

1.3987 0 0

0 1.3987 0

0 0 1.3987

]

]

.

(34)

Simulation results are shown in Figure 1; red line denotes
real states value and blue line denotes observed value.
From the figure, we can see that the estimated value tracks
the real value very well, which can fully demonstrate the
effectiveness of the proposed method. States error is shown
in Figure 2, which is much smaller than observer design
method proposed in [38], shown in Figure 3; this is because
slide mode control is insensitive to uncertainty and external
disturbance. However, we can see from Figure 2 that when
system states are at turning point, states error becomes larger;
this is because chattering is inevitable in slide mode control,
which is our future work.
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Figure 2: Trajectories of system states error.
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Figure 3: Trajectories of system states error by applying method
proposed in [38].

5. Conclusion

This paper considers state estimation problem in wireless
network control system with stochastic uncertainty and time
delay. System uncertainty is assumed to occur in a stochastic
way, which increases system complexity, and time delay
is also considered. A sliding mode observer is designed
in two steps; by constructing proper Lyapunov-Krasovskii
functional, sufficient condition is acquired via linear matrix
inequality. Finally, simulation result is employed to show the
effectiveness of the proposed method.
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