
Research Article
Implicit Vector Integral Equations Associated with
Discontinuous Operators

Paolo Cubiotti1 and Jen-Chih Yao2,3

1 Department of Mathematics and Computer Science, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
2 Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
3Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Jen-Chih Yao; yaojc@cc.kmu.edu.tw

Received 19 February 2014; Accepted 25 March 2014; Published 14 April 2014

Academic Editor: Chong Li

Copyright © 2014 P. Cubiotti and J.-C. Yao. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Let 𝐼 := [0, 1]. We consider the vector integral equation ℎ(𝑢(𝑡)) = 𝑓 (𝑡, ∫
𝐼
𝑔(𝑡, 𝑧), 𝑢(𝑧), 𝑑𝑧) for a.e. 𝑡 ∈ 𝐼, where 𝑓 : 𝐼 × 𝐽 → R, 𝑔 :

𝐼 × 𝐼 → [0, +∞[, and ℎ : 𝑋 → R are given functions and𝑋, 𝐽 are suitable subsets of R𝑛. We prove an existence result for solutions
𝑢 ∈ 𝐿

𝑠
(𝐼,R𝑛), where the continuity of 𝑓 with respect to the second variable is not assumed. More precisely, 𝑓 is assumed to be a.e.

equal (with respect to second variable) to a function 𝑓∗ : 𝐼 × 𝐽 → R which is almost everywhere continuous, where the involved
null-measure sets should have a suitable geometry. It is easily seen that such a function 𝑓 can be discontinuous at each point 𝑥 ∈ 𝐽.
Our result, based on a very recent selection theorem, extends a previous result, valid for scalar case 𝑛 = 1.

1. Introduction

Let 𝐼 := [0, 1]. Recently, in the paper [1], the following integral
equation was studied: given 𝜆 > 0, 𝑓 : 𝐼 × [0, 𝜆] → R,
𝑔 : 𝐼 × 𝐼 → [0, +∞[, ℎ :]0, +∞[→ R, and 𝑠 > 1; find
𝑢 ∈ 𝐿
𝑠
(𝐼) such that

ℎ (𝑢 (𝑡)) = 𝑓(𝑡, ∫
𝐼

𝑔 (𝑡, 𝑧) 𝑢 (𝑧) 𝑑𝑧) for a.e. 𝑡 ∈ 𝐼. (1)

In [1], the following existence result was proved, where, unlike
other results in the field (see, for instance, the papers [2–5]
and references therein, to which we also refer for motivations
for studying (1)), the continuity of 𝑓 with respect to the
second variable was not assumed.

Theorem 1 (Theorem 1 of [1]). Let 𝜆 > 0, 𝐴 ⊆ ]0, +∞[

a closed interval, ℎ : 𝐴 → R a continuous function, 𝑓 :

𝐼×[0, 𝜆] → R, and 𝑔 : 𝐼×𝐼 → [0, +∞[ two given functions.
Let 𝑠 ∈ ]1, +∞], 𝜙

0
∈ 𝐿
𝑗
(𝐼), with 𝑗 > 1 and 𝑗 ≥ 𝑠

 (the
conjugate exponent of 𝑠), 𝜙

1
∈ 𝐿
𝑠


(𝐼), and 𝛽 ∈ 𝐿
𝑠
(𝐼). Assume

that

(i) there exists a function 𝑓
∗
: 𝐼 × [0, 𝜆] → R, two

negligible sets 𝐸
1
, 𝐸
2
⊆ [0, 𝜆], with 𝐸

2
closed, and a

countable dense subset 𝐷 of [0, 𝜆], such that for all
𝑥 ∈ 𝐷 the function 𝑓∗(⋅, 𝑥) is measurable, and for a.e.
𝑡 ∈ 𝐼 one has

{𝑥 ∈ [0, 𝜆] : 𝑓 (𝑡, 𝑥) ̸= 𝑓
∗
(𝑡, 𝑥)} ⊆ 𝐸1,

{𝑥 ∈ [0, 𝜆] : 𝑓
∗
(𝑡, ⋅) 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥} ⊆ 𝐸2;

(2)

(ii) for all 𝑧 ∈ int(ℎ(𝐴)) (the interior of ℎ(𝐴)), one has
int ℎ−1(𝑧) = 0;

(iii) if one puts, for all 𝑡 ∈ 𝐼,

V (𝑡) := ess inf
𝑥∈[0,𝜆]

𝑓 (𝑡, 𝑥) , 𝑧 (𝑡) := ess sup
𝑥∈[0,𝜆]

𝑓 (𝑡, 𝑥) , (3)

then for a.e. 𝑡 ∈ 𝐼 one has

[V (𝑡) , 𝑧 (𝑡)] ⊆ ℎ (𝐴) , sup ℎ−1 ([V (𝑡) , 𝑧 (𝑡)]) ≤ 𝛽 (𝑡) ;
(4)
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(iv) one has

0 <
𝜙0

𝐿𝑠


(𝐼)
≤

𝜆

𝛽
𝐿𝑠(𝐼)

; (5)

(v) for all 𝑡 ∈ 𝐼, the function 𝑔(𝑡, ⋅) is measurable;
(vi) for a.e. 𝑧 ∈ 𝐼, the function 𝑔(⋅, 𝑧) is continuous in 𝐼,

differentiable in ]0, 1[ and

𝑔 (𝑡, 𝑧) ≤ 𝜙0 (𝑧) , 0 <
𝜕𝑔

𝜕𝑡
(𝑡, 𝑧) ≤ 𝜙1 (𝑧) ∀𝑡 ∈ ]0, 1[ .

(6)

Then, there exists a solution 𝑢 ∈ 𝐿𝑠(𝐼) to (1).

Of course, the main peculiarity of Theorem 1 resides in
the kind of discontinuity that is allowed for 𝑓. Indeed, it is
easy to construct examples of functions 𝑓, 𝑔, and ℎ satisfying
the assumptions of Theorem 1 and such that for all 𝑡 ∈ 𝐼 the
function 𝑓(𝑡, ⋅) is discontinuous at all points 𝑥 ∈ [0, 𝜆].

Theorem 1 extends a previous result (Theorem 1 of [6]),
valid for the case where 𝑓 does not depend on 𝑡 explicitly.
At this point, it is natural to ask if Theorem 1 above can be
extended to the more general case where the function 𝑢 takes
its values in the space R𝑛. In this direction, we note that some
results exist for the vector explicit equation

𝑢 (𝑡) = 𝑓(𝑡, ∫
𝐼

𝑔 (𝑡, 𝑧) 𝑢 (𝑧) 𝑑𝑧) (7)

(see [7, 8]), while for the implicit equation (1) the problem is
still unsolved.

The aim of this note is exactly to provide such an
extension. In the following, if 𝑛 ∈ N and 𝑖 ∈ {1, . . . , 𝑛}, we
will denote by 𝑃

𝑖
: R𝑛 → R the projection over the 𝑖th axis.

Moreover, we will denote by𝑚
𝑛
the 𝑛-dimensional Lebesgue

measure over R𝑛. If 𝜆 := (𝜆
1
, . . . , 𝜆

𝑛
) ∈ R𝑛, with 𝜆

𝑖
> 0 for all

𝑖 = 1, . . . , 𝑛, we will put 𝐽
𝜆
:= ∏
𝑛

𝑖=1
[0, 𝜆
𝑖
] . Finally, if 𝑛 and 𝜆

are as above, we will denote by F
𝑛,𝜆

the family of all subsets
𝐹 ⊆ 𝐽

𝜆
such that there exist sets 𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑛
⊆ R𝑛, with

𝑚
1
(𝑃
𝑖
(𝐹
𝑖
)) = 0 for all 𝑖 = 1 . . . , 𝑛, such that 𝐹 := ⋃𝑛

𝑖=1
𝐹
𝑖
. The

following is our main result (where R+
𝑛
denotes the positive

open orthant of R𝑛, and int
𝐴
(𝐵) is the interior of 𝐵 in 𝐴).

Theorem 2. Let 𝜆 = (𝜆
1
, . . . , 𝜆

𝑛
) ∈ R𝑛

+
, and let 𝑋 ⊆ R𝑛

+
be

a nonempty, closed, connected, and locally connected subset of
R𝑛, with inf 𝑃

𝑖
(𝑋) > 0 for all 𝑖 = 1, . . . , 𝑛. Let ℎ : 𝑋 → R be

a continuous function and 𝑓 : 𝐼 × 𝐽
𝜆
→ R and 𝑔 : 𝐼 × 𝐼 →

[0, +∞[ two given functions. Let 𝑠 ∈ ]1, +∞], 𝜙
0
∈ 𝐿
𝑗
(𝐼), with

𝑗 > 1 and 𝑗 ≥ 𝑠, 𝜙
1
∈ 𝐿
𝑠


(𝐼), and 𝛽 ∈ 𝐿𝑠(𝐼,R𝑛). Finally, let 𝐷
be a countable dense subset of 𝐽

𝜆
.

Assume that there exists a function 𝑓∗ : 𝐼 × 𝐽
𝜆
→ R and

two sets 𝐸, 𝐹 ∈ F
𝑛,𝜆
, with 𝐹 closed, such that

(i) for all 𝑥 ∈ 𝐷 the function 𝑓∗(⋅, 𝑥) is measurable;
(ii) for a.e. 𝑡 ∈ 𝐼 one has

{𝑥 ∈ 𝐽
𝜆
: 𝑓 (𝑡, 𝑥) ̸= 𝑓

∗
(𝑡, 𝑥)} ⊆ 𝐸,

{𝑥 ∈ 𝐽
𝜆
: 𝑓
∗
(𝑡, ⋅) 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥} ⊆ 𝐹.

(8)

Moreover, assume that

(iii) int
𝑋
(ℎ
−1
(𝑡)) = 0, for all 𝑡 ∈ intR(ℎ(𝑋));

(iv) if one puts, for all 𝑡 ∈ 𝐼;

V (𝑡) := ess inf
𝑥∈𝐽
𝜆

𝑓 (𝑡, 𝑥) , 𝑧 (𝑡) := ess sup
x∈J
𝜆

𝑓 (𝑡, 𝑥) , (9)

then for a.e. 𝑡 ∈ 𝐼 and all 𝑖 = 1, . . . , 𝑛 one has

[V (𝑡) , 𝑧 (𝑡)] ⊆ ℎ (𝑋) ,

sup𝑃
𝑖
(ℎ
−1
([V (𝑡) , 𝑧 (𝑡)])) ≤ 𝛽𝑖 (𝑡) ,

(10)

(where 𝛽
𝑖
: 𝐼 → R denotes the 𝑖th component of the

function 𝛽);
(v) one has

0 <
𝜙0

𝐿𝑠


(𝐼)
≤ min
1≤𝑖≤𝑛

𝜆
𝑖

𝛽𝑖
𝐿𝑠(𝐼)

; (11)

(vi) for all 𝑡 ∈ 𝐼, the function 𝑔(𝑡, ⋅) is measurable;
(vii) for a.e. 𝑧 ∈ 𝐼, the function 𝑔(⋅, 𝑧) is continuous in 𝐼,

differentiable in ]0, 1[ and

𝑔 (𝑡, 𝑧) ≤ 𝜙0 (𝑧) , 0 <
𝜕𝑔

𝜕𝑡
(𝑡, 𝑧) ≤ 𝜙1 (𝑧) ∀𝑡 ∈ ]0, 1[ .

(12)

Then, there exists 𝑢 ∈ 𝐿𝑠(𝐼,R𝑛) such that

ℎ (𝑢 (𝑡)) = 𝑓(𝑡, ∫
𝐼

𝑔 (𝑡, 𝑧) 𝑢 (𝑧) 𝑑𝑧) 𝑓𝑜𝑟 𝑎.𝑒. 𝑡 ∈ 𝐼. (13)

Theorem 2 will be proved as an application of the follow-
ing selection theorem, recently proved in [9], which we now
state for the reader’s convenience (in the following, if 𝑆 is a
topological space, we will denote byB(𝑆) the Borel family of
𝑆).

Theorem 3 (Theorem 2.2 of [9]). Let 𝑇 and 𝑋
1
, 𝑋
2
, . . . 𝑋

𝑘
be

complete separable metric spaces, with 𝑘 ∈ N, and let 𝑋 :=

∏
𝑘

𝑗=1
𝑋
𝑗
(endowedwith the product topology). Let 𝜇, 𝜓

1
, . . . , 𝜓

𝑘

be positive regular Borel measures over 𝑇,𝑋
1
, 𝑋
2
, . . . 𝑋

𝑘
,

respectively, with 𝜇 finite and 𝜓
1
, . . . , 𝜓

𝑘
𝜎-finite.

Let 𝑆 be a separable metric space, and let 𝐹 : 𝑇 × 𝑋 → 2
𝑆

be a multifunction with nonempty complete values. Finally, let
𝐸 ⊆ 𝑋 be a given set, and, for each 𝑖 ∈ {1, . . . , 𝑘}, let𝑃

∗,𝑖
: 𝑋 →

𝑋
𝑖
be the projection over𝑋

𝑖
. Assume that

(i) the multifunction 𝐹 is T
𝜇
⊗ B(𝑋

1
) ⊗ ⋅ ⋅ ⋅ ⊗ B(𝑋

𝑘
)-

measurable (where T
𝜇
denotes the completion of the

Borel 𝜎-algebraB(𝑇) of 𝑇 with respect to the measure
𝜇);

(ii) for a.e. 𝑡 ∈ 𝑇, one has

{𝑥 := (𝑥
1
, . . . , 𝑥

𝑘
) ∈ 𝑋 : 𝐹 (𝑡, ⋅)

𝑖𝑠 𝑛𝑜𝑡 𝑙𝑜𝑤𝑒𝑟 𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥} ⊆ 𝐸.

(14)



Abstract and Applied Analysis 3

Then, there exist sets 𝑄
1
, . . . , 𝑄

𝑘
, with 𝑄

𝑖
∈ B(𝑋

𝑖
) and

𝜓
𝑖
(𝑄
𝑖
) = 0 for all 𝑖 = 1, . . . , 𝑘, and a function 𝜙 : 𝑇×𝑋 → 𝑆

such that

(a) 𝜙(𝑡, 𝑥) ∈ 𝐹(𝑡, 𝑥) for all (𝑡, 𝑥) ∈ 𝑇 × 𝑋;

(b) for all 𝑥 := (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) ∈ 𝑋 \ [(⋃

𝑘

𝑖=1
𝑃
−1

∗,𝑖
(𝑄
𝑖
)) ∪𝐸],

the function 𝜙(⋅, 𝑥) isT
𝜇
-measurable over 𝑇;

(c) for a.e. 𝑡 ∈ 𝑇, one has

{𝑥 := (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) ∈ 𝑋 : 𝜙 (𝑡, ⋅)

𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑥} ⊆ 𝐸 ∪ [

𝑘

⋃

𝑖=1

𝑃
−1

∗,𝑖
(𝑄
𝑖
)] .

(15)

The proof of Theorem 2 will be given in Section 2.
Further, we will point out some counterexamples to possible
improvements of Theorem 2.

2. Proof of Theorem 2

Before giving the proof of Theorem 2, we fix some notations.
If 𝑛 ∈ N, the space R𝑛 will be considered with its Euclidean
norm ‖ ⋅ ‖

𝑛
. Moreover, if 𝑥 ∈ R𝑛 and 𝑟 > 0, we put

𝐵 (𝑥, 𝑟) := {V ∈ R𝑛 : ‖V − 𝑥‖𝑛 < 𝑟} ,

𝐵 (𝑥, 𝑟) := {V ∈ R𝑛 : ‖V − 𝑥‖𝑛 ≤ 𝑟} .
(16)

If 𝑝 ∈ [1, +∞], the space 𝐿𝑝(𝐼,R𝑛) will be considered with
the usual norm

‖𝑢‖𝐿𝑝(𝐼,R𝑛) := (∫
𝐼

‖𝑢 (𝑡)‖
𝑝

𝑛
𝑑𝑡)

1/𝑝

if 𝑝 < +∞,

‖𝑢‖𝐿∞(𝐼,R𝑛) := ess sup
𝑡∈𝐼

‖𝑢 (𝑡)‖𝑛 if 𝑝 = +∞.

(17)

As usual, we put 𝐿𝑝(𝐼) := 𝐿
𝑝
(𝐼,R). For the basic definitions

and facts about multifunctions, we refer to [10].

Proof of Theorem 2. Without loss of generality, we can
assume that (8) and (10) hold for all 𝑡 ∈ 𝐼. Moreover, we can
suppose that 𝑗 < +∞. Firstly, we prove that the functions V
and 𝑧 are measurable. Observe that, by assumption (ii), for
all 𝑡 ∈ 𝐼, one has

V (𝑡) = inf
𝑥∈𝐽
𝜆
\𝐹

𝑓
∗
(𝑡, 𝑥) , 𝑧 (𝑡) = sup

𝑥∈𝐽
𝜆
\𝐹

𝑓
∗
(𝑡, 𝑥) . (18)

To see this, fix 𝑡 ∈ 𝐼, and let 𝜓(𝑡) := sup
𝑥∈𝐽
𝜆
\𝐹
𝑓
∗
(𝑡, 𝑥). Since

𝑚
𝑛
(𝐸 ∪ 𝐹) = 0 we get

𝑧 (𝑡) ≤ sup
𝑥∈𝐽
𝜆
\(𝐸∪𝐹)

𝑓 (𝑡, 𝑥) = sup
𝑥∈𝐽
𝜆
\(𝐸∪𝐹)

𝑓
∗
(𝑡, 𝑥) ≤ 𝜓 (𝑡) . (19)

Now, assume that 𝑧(𝑡) < 𝜓(𝑡). Hence, there is 𝑥∗ ∈ 𝐽
𝜆
\𝐹 such

that𝑓∗(𝑡, 𝑥∗) > 𝑧(𝑡). Since the function𝑓∗(𝑡, ⋅) is continuous
at 𝑥∗, there exist 𝛿, 𝜀 > 0 such that

𝑓
∗
(𝑡, 𝑥) > 𝑧 (𝑡) + 𝜀 ∀𝑥 ∈ 𝐽

𝜆
∩ 𝐵 (𝑥

∗
, 𝛿) . (20)

Since𝑚
𝑛
(𝐽
𝜆
∩ 𝐵(𝑥

∗
, 𝛿)) > 0, we get

𝑧 (𝑡) := ess sup
𝑥∈𝐽
𝜆

𝑓 (𝑡, 𝑥) = ess sup
𝑥∈𝐽
𝜆

𝑓
∗
(𝑡, 𝑥) ≥ 𝑧 (𝑡) + 𝜀, (21)

which is absurd. Therefore, the second equality in (18) is
proved. The first one can be checked in analogous way.

Since 𝐹 is closed, it can be easily checked that the set
𝐷 ∩ (𝐽

𝜆
\ 𝐹) is nonempty, countable, and dense in (𝐽

𝜆
\ 𝐹).

Consequently, by Lemma at page 198 of [11], the function
𝑓
∗
|
𝐼×(𝐽
𝜆
\𝐹)

is L(𝐼) ⊗ B(𝐽
𝜆
\ 𝐹)-measurable (where L(𝐼)

denotes the family of all Lebesgue-measurable subsets of 𝐼).
By (18) and Lemma III.39 of [12], it follows that the functions
V and 𝑧 are measurable over 𝐼, as claimed.

By assumption (iii) and Theorem 2.4 di [13], there exists
a set 𝑌 ⊆ 𝑋 such that ℎ(𝑌) = ℎ(𝑋) and the function ℎ|

𝑌

is open (it carries open subsets of 𝑌 onto open subsets of
ℎ(𝑋) = ℎ(𝑌)). Consequently, the multifunction 𝑇 : ℎ(𝑋) →

2
𝑌 defined by putting, for each 𝑠 ∈ ℎ(𝑋),

𝑇 (𝑠) := ℎ
−1
(𝑠) ∩ 𝑌, (22)

is lower semicontinuous in ℎ(𝑋) with nonempty values. Let
𝑓
0
: 𝐼 × 𝐽

𝜆
→ R be defined by putting, for all (𝑡, 𝑥) ∈ 𝐼 × 𝐽

𝜆
,

𝑓
0 (𝑡, 𝑥) = {

𝑓
∗
(𝑡, 𝑥) if 𝑥 ∉ 𝐹

𝑧 (𝑡) if 𝑥 ∈ 𝐹.
(23)

Clearly, the function 𝑓
0
isL(𝐼) ⊗B(𝐽

𝜆
)-measurable and, by

(18), one has

V (𝑡) ≤ 𝑓0 (𝑡, 𝑥) ≤ 𝑧 (𝑡) ∀ (𝑡, 𝑥) ∈ 𝐼 × 𝐽𝜆. (24)

Moreover, assumption (ii) and the closedness of 𝐹 imply that
for all 𝑡 ∈ 𝐼 one has

{𝑥 ∈ 𝐽
𝜆
: 𝑓
0 (𝑡, ⋅) is discontinuous at 𝑥} ⊆ 𝐹. (25)

Let 𝐺 : 𝐼 × 𝐽
𝜆
→ 2
𝑌 be the multifunction defined by setting,

for each (𝑡, 𝑥) ∈ 𝐼 × 𝐽
𝜆
,

𝐺 (𝑡, 𝑥) := 𝑇 (𝑓0 (𝑡, 𝑥)) = ℎ
−1
(𝑓
0 (𝑡, 𝑥)) ∩ 𝑌. (26)

Observe that 𝐺 is well-defined since for all (𝑡, 𝑥) ∈ 𝐼 × 𝐽
𝜆
one

has

𝑓
0 (𝑡, 𝑥) ∈ [V (𝑡) , 𝑧 (𝑡)] ⊆ ℎ (𝑋) . (27)

Moreover, by the lower semicontinuity of 𝑇 and by (25), for
all 𝑡 ∈ 𝐼, we get

{𝑥 ∈ 𝐽
𝜆
: 𝐺 (𝑡, ⋅) is not lower semicontinuous at 𝑥} ⊆ 𝐹.

(28)

Let Ψ : 𝐼 × 𝐽
𝜆
→ 2

R𝑛 (more precisely, Ψ : 𝐼 × 𝐽
𝜆
→ 2
𝑌) be

the multifunction defined by putting, for each (𝑡, 𝑥) ∈ 𝐼 × 𝐽
𝜆
,

Ψ(𝑡, 𝑥) := 𝐺(𝑡, 𝑥). By (28), for all 𝑡 ∈ [0, 1], we get

{𝑥 ∈ 𝐽
𝜆
: Ψ (𝑡, ⋅) is not lower semicontinuous at 𝑥} ⊆ 𝐹.

(29)

Moreover, the values of Ψ are closed (in R𝑛) subsets of𝑋.
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Since𝑓
0
isL(𝐼)⊗B(𝐽

𝜆
)-measurable and𝑇 is lower semi-

continuous, by Proposition 13.2.1 of [10] the multifunction
𝐺 is L(𝐼) ⊗ B(𝐽

𝜆
)-weakly measurable. That is, for each set

Ω ⊆ 𝑌, withΩ open in the relative topology of 𝑌, the set

𝐺
−
(Ω) := {(𝑡, 𝑥) ∈ 𝐼 × 𝐽𝜆 : 𝐺 (𝑡, 𝑥) ∩ Ω ̸= 0} (30)

belongs toL(𝐼)⊗B(𝐽
𝜆
). By Proposition 2.6 andTheorem 3.5

of [14], the multifunction Ψ isL(𝐼) ⊗B(𝐽
𝜆
)-measurable.

Since 𝐹 ∈ F
𝑛,𝜆
, there exist sets 𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑛
⊆ R𝑛 such

that 𝐹 = ⋃
𝑛

𝑖=1
𝐹
𝑖
and 𝑚

1
(𝑃
𝑖
(𝐹
𝑖
)) = 0 for all 𝑖 = 1 . . . , 𝑛. By

Theorem 3, there exist sets 𝑄
1
, 𝑄
2
, . . . , 𝑄

𝑛
⊆ R, with 𝑄

𝑖
∈

B([0, 𝜆
𝑖
]) and 𝑚

1
(𝑄
𝑖
) = 0 for all 𝑖 = 1, . . . , 𝑛, and a function

𝜓 : [0, 1] × 𝐽
𝜆
→ R𝑛 such that

(a) for all (𝑡, 𝑥) ∈ 𝐼 × 𝐽
𝜆
one has 𝜓(𝑡, 𝑥) ∈ Ψ(𝑡, 𝑥);

(b) for all𝑥 ∈ 𝐽
𝜆
\[⋃
𝑛

𝑖=1
(𝑃
−1

𝑖
(𝑄
𝑖
)∪𝐹
𝑖
)], the function𝜓(⋅, 𝑥)

isL(𝐼)-measurable;
(c) for a.e. 𝑡 ∈ 𝐼, one has

{𝑥 ∈ 𝐽
𝜆
: 𝜓 (𝑡, ⋅) is discontinuous at 𝑥}

⊆ [

𝑛

⋃

𝑖=1

(𝑃
−1

𝑖
(𝑄
𝑖
) ∪ 𝐹
𝑖
)] ∩ 𝐽

𝜆
.

(31)

Since 𝑋 is closed and ℎ is continuous, for all (𝑡, 𝑥) ∈ 𝐼 ×
𝐽
𝜆
, the set ℎ−1(𝑓

0
(𝑡, 𝑥)) is closed in R𝑛. Consequently, for all

(𝑡, 𝑥) ∈ 𝐼 × 𝐽
𝜆
, we get

𝜓 (𝑡, 𝑥) ∈ Ψ (𝑡, 𝑥) = ℎ
−1 (𝑓
0 (𝑡, 𝑥)) ∩ 𝑌 ⊆ ℎ−1 (𝑓

0 (𝑡, 𝑥))

= ℎ
−1
(𝑓
0 (𝑡, 𝑥)) .

(32)

Now, let

𝛼 := min
1≤𝑖≤𝑛

inf 𝑃
𝑖 (𝑋) > 0. (33)

By (27), (32), and assumption (iv) we get

𝜓 (𝑡, 𝑥) ∈

𝑛

∏

𝑖=1

[𝛼, 𝛽
𝑖 (𝑡)] ∀ (𝑡, 𝑥) ∈ 𝐼 × 𝐽𝜆. (34)

Let 𝜓
1
: 𝐼 × R𝑛 → R𝑛 be defined by putting

𝜓
1 (𝑡, 𝑥) = {

𝜓 (𝑡, 𝑥) if 𝑥 ∈ 𝐽
𝜆

𝛽 (𝑡) if 𝑥 ∈ R𝑛 \ 𝐽
𝜆
.

(35)

By (34) and (35) we easily get

𝜓
1 (𝑡, 𝑥) ∈

𝑛

∏

𝑖=1

[𝛼, 𝛽
𝑖 (𝑡)] ∀ (𝑡, 𝑥) ∈ 𝐼 × R𝑛. (36)

Let

Λ := [

𝑛

⋃

𝑖=1

(𝑃
−1

𝑖
(𝑄
𝑖
) ∪ 𝐹
𝑖
)] ∩ 𝐽

𝜆
, (37)

and let 𝐷
0
be any countable dense subset of 𝐽

𝜆
\ Λ. Since

𝑚
𝑛
(Λ) = 0, it is easily seen that𝐷

0
is dense in 𝐽

𝜆
. Let𝐷

1
be any

countable dense subset ofR𝑛 \𝐽
𝜆
.Then, the set𝐷

2
:= 𝐷
0
∪𝐷
1

is countable and dense in R𝑛, and for all 𝑥 ∈ 𝐷
2
the function

𝜓
1
(⋅, 𝑥) is measurable by the above construction. Moreover,

taking into account (31), for all 𝑡 ∈ 𝐼, one has

{𝑥 ∈ R𝑛 : 𝜓
1 (𝑡, ⋅) is discontinuous at 𝑥}

⊆ [

𝑛

⋃

𝑖=1

(𝑃
−1

𝑖
(𝑄
𝑖
) ∪ 𝑃
−1

𝑖
({0, 𝜆
𝑖
}) ∪ 𝐹

𝑖
)] ∩ 𝐽

𝜆
.

(38)

Let𝐻 : [0, 1]×R𝑛 → 2
R𝑛 be defined by putting, for all (𝑡, 𝑥) ∈

[0, 1] × R𝑛,

𝐻(𝑡, 𝑥) = ⋂

𝑚∈N
conv( ⋃

𝑦∈𝐷
2

‖𝑥−𝑦‖𝑛≤1/𝑚

{𝜓
1
(𝑡, 𝑦)}), (39)

where “conv” stands for “closed convex hull.” By Proposition
2 of [8], taking into account (36) and (38), we have that

(a) 𝐻 has nonempty closed convex values;
(b) for all𝑥 ∈ R𝑛, themultifunction𝐻(⋅, 𝑥) ismeasurable;
(c) for all 𝑡 ∈ 𝐼, the multifunction 𝐻(𝑡, ⋅) has closed

graph;
(d) for all 𝑡 ∈ 𝐼, one has

𝐻(𝑡, 𝑥) = {𝜓1 (𝑡, 𝑥)}

∀𝑥 ∈ R𝑛 \ ([
𝑛

⋃

𝑖=1

(𝑃
−1

𝑖
(𝑄
𝑖
) ∪𝑃
−1

𝑖
({0, 𝜆

𝑖
})

∪𝐹
𝑖
) ] ∩ 𝐽

𝜆
) .

(40)

Moreover, by (36), we have

𝐻(𝑡, 𝑥) ⊆

𝑛

∏

𝑖=1

[𝛼, 𝛽
𝑖 (𝑡)] ∀ (𝑡, 𝑥) ∈ 𝐼 × R𝑛. (41)

Now we want to applyTheorem 1 of [15], choosing 𝑇 = [0, 1],
𝑋 = 𝑌 = R𝑛, 𝑝 = 𝑠, 𝑞 = 𝑗

, 𝑉 = 𝐿
𝑠
(𝐼,R𝑛), Ψ(𝑢) = 𝑢, 𝑟 =

‖𝛽‖
𝐿
𝑠
(𝐼,R𝑛), 𝜑 ≡ +∞, 𝐹 = 𝐻, and

Φ (𝑢) (𝑡) = ∫
𝐼

𝑔 (𝑡, 𝑧) 𝑢 (𝑧) 𝑑𝑧. (42)

To this aim, we can argue as in [8]. In particular, observe the
following.

(a) Φ(𝐿𝑠(𝐼,R𝑛)) ⊆ 𝐶0(𝐼,R𝑛). This follows easily from our
assumptions (vi) and (vii) and the classical Lebesgue’s
dominated convergence theorem.

(b) If V ∈ 𝐿
𝑠
(𝐼,R𝑛) and {V𝑘} is a sequence in

𝐿
𝑠
(𝐼,R𝑛), weakly convergent to V in 𝐿𝑗



(𝐼,R𝑛), then
the sequence {Φ(V𝑘)} converges to Φ(V) strongly in
𝐿
1
(𝐼,R𝑛). This follows by Theorem 2 at page 359 of

[16], since𝑔 is 𝑗th power summable in 𝐼×𝐼 (note that𝑔
is measurable on 𝐼×𝐼 by the classical Scorza-Dragoni
theorem; see [17] or also [11]).
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(c) By (41), the function

ℎ
0
: 𝑡 ∈ 𝐼 → sup

𝑥∈R𝑛
inf
𝑦∈𝐻(𝑡,𝑥)

𝑦
𝑛 (43)

belongs to 𝐿𝑠(𝐼) and ‖ ℎ
0
‖
𝐿
𝑠
(𝐼)
≤ ‖𝛽‖

𝐿
𝑠
(𝐼,R𝑛).

Therefore, taking into account the above construction,
all the assumptions of Theorem 1 of [15] are satisfied. Con-
sequently, there exists a function 𝑢

∗
∈ 𝐿
𝑠
(𝐼,R𝑛) and a set

𝐾
1
⊆ 𝐼, with𝑚

1
(𝐾) = 0, such that

𝑢
∗
(𝑡) ∈ 𝐻 (𝑡, Φ (𝑢

∗
) (𝑡)) ⊆

𝑛

∏

𝑖=1

[𝛼, 𝛽
𝑖 (𝑡)] ∀𝑡 ∈ 𝐼 \ 𝐾

1
.

(44)

That is,

𝑢
∗
(𝑡) ∈ 𝐻(𝑡, ∫

𝐼

𝑔 (𝑡, 𝑧) 𝑢
∗
(𝑧) 𝑑𝑧) ⊆

𝑛

∏

𝑖=1

[𝛼, 𝛽
𝑖 (𝑡)]

∀𝑡 ∈ 𝐼 \ 𝐾
1
.

(45)

We now prove that the function 𝑢∗ satisfies our conclusion.
To this aim, observe that, since 𝐸 ∈ F

𝑛,𝜆
, there exist sets

𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
⊆ R𝑛, with 𝑚

1
(𝑃
𝑖
(𝐸
𝑖
)) = 0 for all 𝑖 = 1, . . . , 𝑛,

such that 𝐸 := ⋃𝑛
𝑖=1

𝐸
𝑖
.

Fix 𝑖 ∈ {1, . . . , 𝑛}. Let 𝛾
𝑖
: 𝐼 → R be the function

𝛾
𝑖 (𝑡) := 𝑃𝑖 (Φ (𝑢

∗
) (𝑡)) = ∫

𝐼

𝑔 (𝑡, 𝑧) 𝑢
∗

𝑖
(𝑧) 𝑑𝑧. (46)

By (45) we get

𝑢
∗

𝑖
(𝑡) ∈ [𝛼, 𝛽𝑖 (𝑡)] ∀𝑡 ∈ 𝐼 \ 𝐾

1
; (47)

hence for all 𝑡 ∈ 𝐼 we get the inequality

0 ≤ 𝛾
𝑖 (𝑡) ≤

𝜙0
𝐿𝑠


(𝐼)

𝑢
∗𝐿𝑠(𝐼)

≤
𝜆
𝑖

𝛽𝑖
𝐿𝑠(𝐼)

⋅
𝛽𝑖
𝑠
= 𝜆
𝑖
,

(48)

hence 𝛾
𝑖
(𝐼) ⊆ [0, 𝜆

𝑖
]. By (vi), (vii), and (45) we have that 𝛾

𝑖

is strictly increasing. Moreover, by Lemma 2.2. at page 226 of
[18] we get

𝛾


𝑖
(𝑡) = ∫

𝐼

𝜕𝑔

𝜕𝑡
(𝑡, 𝑧) 𝑢

∗

𝑖
(𝑧) 𝑑𝑧 > 0 ∀𝑡 ∈ ]0, 1[ . (49)

Consequently, by Theorem 2 of [19], the function 𝛾
−1

𝑖
is

absolutely continuous. ByTheorem 18.25 of [20], the set

𝑊
𝑖
:= 𝛾
−1

𝑖
[(𝑃
𝑖
(𝐸
𝑖
∪ 𝐹
𝑖
) ∪ 𝑄
𝑖
∪ {0, 𝜆

𝑖
}) ∩ 𝛾
𝑖 (𝐼)] (50)

has null Lebesgue measure. Now, put

Ω := (

𝑛

⋃

𝑖=1

𝑊
𝑖
) ∪ 𝐾

1
. (51)

Of course, 𝑚
1
(Ω) = 0. Choose any point 𝑡∗ ∈ 𝐼 \ Ω. Since

𝑡
∗
∉ 𝐾
1
, by (45) we get

𝑢
∗
(𝑡
∗
) ∈ 𝐻 (𝑡

∗
, Φ (𝑢
∗
) (𝑡
∗
)) . (52)

For each 𝑖 ∈ {1, . . . , 𝑛}, since 𝑡∗ ∉ 𝑊
𝑖
, taking into account

(48), we have

𝛾
𝑖
(𝑡
∗
) ∈ [0, 𝜆

𝑖
] \ [𝑃
𝑖
(𝐸
𝑖
∪ 𝐹
𝑖
) ∪ {0, 𝜆

𝑖
} ∪ 𝑄
𝑖
] . (53)

Therefore, Φ(𝑢∗)(𝑡∗) ∈ 𝐽
𝜆
and for all 𝑖 ∈ {1, . . . , 𝑛} we have

Φ(𝑢
∗
) (𝑡
∗
) ∉ [(𝐸

𝑖
∪ 𝐹
𝑖
) ∪ 𝑃
−1

𝑖
({0, 𝜆

𝑖
}) ∪ 𝑃

−1

𝑖
(𝑄
𝑖
)] . (54)

Consequently, we get

Φ(𝑢
∗
) (𝑡
∗
)

∈ 𝐽
𝜆
\

𝑛

⋃

𝑖=1

[(𝐸
𝑖
∪ 𝐹
𝑖
) ∪ 𝑃
−1

𝑖
({0, 𝜆

𝑖
}) ∪ 𝑃

−1

𝑖
(𝑄
𝑖
)] .

(55)

By (40) we get

𝑢
∗
(𝑡
∗
) ∈ 𝐻 (𝑡

∗
, Φ (𝑢
∗
) (𝑡
∗
)) = {𝜓

1
(𝑡
∗
, Φ (𝑢
∗
) (𝑡
∗
))}

= {𝜓 (𝑡
∗
, Φ (𝑢
∗
) (𝑡
∗
))} .

(56)

By (32) and (56) we get

𝑢
∗
(𝑡
∗
) ∈ ℎ
−1
(𝑓
0
(𝑡
∗
, Φ (𝑢
∗
) (𝑡
∗
)) , (57)

hence

ℎ (𝑢
∗
(𝑡
∗
)) = 𝑓

0
(𝑡
∗
, Φ (𝑢
∗
) (𝑡
∗
)) . (58)

Since Φ(𝑢∗)(𝑡∗) ∉ 𝐸 ∪ 𝐹, we get

ℎ (𝑢
∗
(𝑡
∗
)) = 𝑓

∗
(𝑡
∗
, Φ (𝑢
∗
) (𝑡
∗
))

= 𝑓 (𝑡
∗
, Φ (𝑢
∗
) (𝑡
∗
))

= 𝑓(𝑡
∗
, ∫
𝑖

𝑔 (𝑡
∗
, 𝑧) 𝑢
∗
(𝑧) 𝑑𝑧) .

(59)

This completes the proof.

Remark 4. Of course, a function𝑓 satisfying the assumptions
of Theorem 2 can be discontinuous at each point 𝑥 ∈ 𝐽

𝜆
.

The Example at the end of [8] shows that, in the statement
of Theorem 2, none of the sets 𝐸 and 𝐹 can be assumed
to depend on 𝑡. Moreover, the Example at the end of [6]
shows that the second inequality in assumption (vii) cannot
be weakened by assuming that

0 ≤
𝜕𝑔

𝜕𝑡
(𝑡, 𝑧) ≤ 𝜙1 (𝑧) . (60)
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