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We consider the perturbed nonlinear elliptic system −𝜀
2
Δ𝑢 + 𝑉(𝑥)𝑢 = 𝐾(𝑥)|𝑢|

2
∗

−2
𝑢 + 𝐻

𝑢
(𝑢, V), 𝑥 ∈ R𝑁, −𝜀2ΔV + 𝑉(𝑥)V =

𝐾(𝑥)|V|2
∗

−2V + 𝐻V(𝑢, V), 𝑥 ∈ R𝑁, where 𝑁 ≥ 3, 2
∗

= 2𝑁/(𝑁 − 2) is the Sobolev critical exponent. Under proper conditions
on 𝑉, 𝐻, and 𝐾, the existence result and multiplicity of the system are obtained by using variational method provided 𝜀 is small
enough.

1. Introduction and Main Results

In this paper, we are concerned with the existence and
multiplicity of nontrivial solutions for the following class of
elliptic system:

−𝜀
2
Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝐾 (𝑥) |𝑢|

2
∗

−2
𝑢 + 𝐻

𝑢
(𝑢, V) , 𝑥 ∈ R

𝑁
,

−𝜀
2
ΔV + 𝑉 (𝑥) V = 𝐾 (𝑥) |V|2

∗

−2V + 𝐻V (𝑢, V) , 𝑥 ∈ R
𝑁
,

𝑢 (𝑥) , V (𝑥) 󳨀→ 0 as |𝑥| 󳨀→ ∞,

(1)

where 𝑁 ≥ 3, 2∗ = 2𝑁/(𝑁 − 2) denotes the Sobolev critical
exponent, 𝑉(𝑥) is a nonnegative potential, 𝐾(𝑥) is bounded
positive functions, and 𝐻

𝑢
(𝑢, V) and 𝐻V(𝑢, V) are superlinear

but subcritical functions.
In the recent years, many papers have considerd the scalar

equation

−𝜀
2
Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝑔 (𝑥, 𝑢) , 𝑥 ∈ R

𝑁
, (2)

which arises in different models; for example, they are
related to the existence of standing waves of the nonlinear
Schrödinger equation

𝑖ℎ
𝜕𝜑

𝜕𝑡
= −ℎ

2
Δ𝜑 + (𝑉 (𝑥) + 𝐸) 𝜑 − 𝑓 (𝜑) ∀𝑥 ∈ R

𝑁
. (3)

A standing wave of (3) is a solution of the form 𝜑(𝑥, 𝑡) =

𝑢(𝑥) exp(−𝑖𝐸𝑡/ℎ). We would like to cite the works of Floer
and Weinstein [1], Del Pino and Felmer [2, 3], Oh [4], Wang
[5], Cingolani and Nolasco [6], Cingolani and Lazzo [7],
Ambrosetti et al. [8, 9], Alves and Souto [10, 11], Ding and
Lin [12], Liang and Zhang [13], and references therein.

For elliptic systems, we cite the papers of Alves and Soares
[14, 15], Alves et al. [16], and Ávila and Yang [17].

Motivated by some results found in [12], a natural
question arises whether existence of nontrivial solutions
continues to hold for the system (1). We study the existence
and multiplicity of the nontrivial solutions for the system (1).
Our work completes the results obtained in [12], in the sense
that we are working with elliptic systems. To prove our main
result, we follow some ideas explored in [12] and also use
arguments developed in [13, 18].

In this work, we assume the following assumptions:

(𝑉
0
) 𝑉 ∈ 𝐶(R𝑁

,R), 𝑉(0) = inf
𝑥∈R𝑁𝑉(𝑥) = 0, and there

is a constant 𝑏 > 0 such that the set ]𝑏 = {𝑥 ∈ R𝑁
:

𝑉(𝑥) < 𝑏} has finite Lebesgue measure;

(𝐾
0
) 𝐾(𝑥) ∈ 𝐶(R𝑁

,R+
), 0 < inf 𝐾 ≤ sup𝐾 < ∞;

(𝐻
1
) 𝐻 ∈ 𝐶

1
(R+

× R+
,R),𝐻

𝑠
(𝑠, 𝑡),𝐻

𝑡
(𝑠, 𝑡) = 𝑜(1) as

(𝑠, 𝑡) → (0, 0);
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(𝐻
2
) there exist 2 < 𝑞 < 2

∗ and 𝑐 > 0 such that
󵄨󵄨󵄨󵄨𝐻𝑠

(𝑠, 𝑡)
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝐻𝑡
(𝑠, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑐 (1 + |𝑠|
𝑞−1

+ |𝑡|
𝑞−1

) ; (4)

(𝐻
3
) there exist 𝑎

0
> 0, 𝛼, 𝛽 > 2, 𝜃 ∈ (2, 2

∗
) such that

𝐻(𝑠, 𝑡) ≥ 𝑎
0
(|𝑠|

𝛼
+ |𝑡|

𝛽
) ,

0 < 𝜃𝐻 (𝑠, 𝑡) ≤ 𝑠𝐻
𝑠
(𝑠, 𝑡) + 𝑡𝐻

𝑡
(𝑠, 𝑡) ∀𝑠 > 0, 𝑡 > 0.

(5)

Our main results are as follows.

Theorem 1. Assume that (𝑉
0
)(𝐾

0
) and (𝐻

1
)–(𝐻

3
) hold.Then,

for any𝜎 > 0, there exists 𝜀
𝜎
> 0 such that 𝜀 ≤ 𝜀

𝜎
; the perturbed

elliptic system (1) has one least energy solution (𝑢
𝜀
, V
𝜀
) which

satisfies

𝜃 − 2

2𝜃
∫
R𝑁

𝜀
2
(
󵄨󵄨󵄨󵄨∇𝑢

𝜀

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝜀

󵄨󵄨󵄨󵄨

2

) + 𝑉 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝜀

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨V𝜀

󵄨󵄨󵄨󵄨

2

) ≤ 𝜎𝜀
𝑁
.

(6)

Theorem 2. Let (𝑉
0
)(𝐾

0
) and (𝐻

1
)–(𝐻

3
) be satisfied. More-

over, assume that𝐻(𝑢, V) is even in (𝑢, V); then, for any𝑚 ∈ N

and 𝜎 > 0, there is 𝜀
𝑚𝜎

> 0 such that 𝜀 ≤ 𝜀
𝑚𝜎

; the system (1) has
at least 𝑚 pairs of solutions (𝑢

𝜀
, V
𝜀
) which satisfy the estimate

(6).

The main difficulty in this paper is the lack of compact-
ness of the energy functional associated to the system (1).
To overcome this difficulty, we carefully make estimates and
prove that there is a Palais-Smale sequence that has a strongly
convergent subsequence. The main results in the present
paper can be seen as a complement of studies developed in
[12].

This paper is organized as follows. In Section 2, we
describe some notations and preliminaries. Section 3 is
devoted to the behavior of (PS) sequence and the mountain
pass level of 𝐽

𝜀
. Finally, in Section 4, we give the proofs of

Theorem 1 andTheorem 2.

2. Preliminaries

Let 𝜆 = 𝜀
−2. The system (1) reads then as

−Δ𝑢 + 𝜆𝑉 (𝑥) 𝑢 = 𝜆𝐾 (𝑥) |𝑢|
2
∗

−2
𝑢 + 𝜆𝐻

𝑢
(𝑢, V) , 𝑥 ∈ R

𝑁
,

−ΔV + 𝜆𝑉 (𝑥) V = 𝜆𝐾 (𝑥) |V|2
∗

−2V + 𝜆𝐻V (𝑢, V) , 𝑥 ∈ R
𝑁
,

𝑢 (𝑥) , V (𝑥) 󳨀→ 0 as |𝑥| 󳨀→ ∞.

(7)

We will prove the following result.

Theorem 3. Assume that (𝑉
0
)(𝐾

0
) and (𝐻

1
)–(𝐻

3
) hold.Then,

for 𝜎 > 0, there exists Λ
𝜎
> 0 such that if 𝜆 ≥ Λ

𝜎
, the elliptic

system (7) has one positive solution of least energy (𝑢
𝜆
, V
𝜆
)

which satisfies

𝜃 − 2

2𝜃
∫
R𝑁

(
󵄨󵄨󵄨󵄨∇𝑢

𝜆

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝜆

󵄨󵄨󵄨󵄨

2

+ 𝜆𝑉 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝜆

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨V𝜆

󵄨󵄨󵄨󵄨

2

))

≤ 𝜎𝜆
1−𝑁/2

.

(8)

Theorem 4. Assume that (𝑉
0
)(𝐾

0
) and (𝐻

1
)–(𝐻

3
) are satis-

fied. Moreover, assume that 𝐻(𝑢, V) is even in (𝑢, V); then, for
any 𝑚 ∈ N and 𝜎 > 0, there exists Λ

𝜎,𝑚
> 0 such that

if 𝜆 ≥ Λ
𝜎,𝑚

, the system (7) has at least 𝑚 pairs of solutions
(𝑢
𝜆
, V
𝜆
) satisfying the estimate (8).

For the convenience, we quote the necessary notations.
The space

𝐸
𝜆
:= {𝑢 ∈ 𝐻

1
(R

𝑁
) : ∫

R𝑁
𝜆𝑉 (𝑥) 𝑢

2
< ∞, 𝜆 > 0} (9)

is a Hilbert space equipped with the inner product

(𝑢, V)
𝜆
:= ∫

R𝑁
(∇𝑢∇V + 𝜆𝑉 (𝑥) 𝑢V) (10)

and the associated norm ‖𝑢‖
2

𝜆
= (𝑢, 𝑢)

𝜆
. From the assumption

(𝑉
0
), we conclude that 𝐸

1
embeds continuously in 𝐻

1
(R𝑁

).
Moreover, observe that the norm ‖ ⋅ ‖ is equivalent to the one
‖ ⋅ ‖

𝜆
for each 𝜆 > 0. It is obvious that, for each 𝑝 ∈ [2, 2

∗
],

there exists 𝑐
𝑝
> 0 such that if 𝜆 ≥ 1

‖𝑢‖𝐿𝑝 ≤ 𝑐
𝑝‖𝑢‖1 ≤ 𝑐

𝑝‖𝑢‖𝜆 ∀𝑢 ∈ 𝐸
1
. (11)

Set 𝐸 = 𝐸
𝜆
× 𝐸

𝜆
and ‖(𝑢, V)‖2

𝐸
= ‖𝑢‖

2

𝜆
+ ‖V‖2

𝜆
for (𝑢, V) ∈ 𝐸.

The energy functional associated with (7) is defined by

𝐽
𝜆
(𝑢, V) =

1

2
∫
R𝑁

(|∇𝑢|
2
+ 𝜆𝑉 (𝑥) |𝑢|

2
+ |∇V|2 + 𝜆𝑉 (𝑥) |V|2)

− 𝜆∫
R𝑁

𝐾 (𝑥)

2∗
(|𝑢|

2
∗

+ |V|2
∗

) − 𝜆∫𝐻 (𝑢, V)

=
1

2
‖(𝑢, V)‖2

𝐸
− 𝜆∫

R𝑁
𝐺 (𝑥, 𝑢, V) for (𝑢, V) ∈ 𝐸,

(12)

where 𝐺(𝑥, 𝑢, V) = (𝐾(𝑥)/2
∗
)(|𝑢|

2
∗

+ |V|2
∗

) + 𝐻(𝑢, V).
Under the assumptions of Theorem 3, standard argu-

ments [18] show that 𝐽
𝜆

∈ 𝐶
1
(𝐸,R) and the critical points

of 𝐽
𝜆
are weak solutions of the elliptic system (7).

3. Technical Lemmas

Lemma 5. If {(𝑢
𝑛
, V
𝑛
)} is a (PS)

𝑐
sequence for 𝐽

𝜆
, then 𝑐 ≥ 0

and {(𝑢
𝑛
, V
𝑛
)} is bounded in 𝐸.

Proof. From (𝐾
0
) and (𝐻

3
), we get

𝐽
𝜆
(𝑢

𝑛
, V
𝑛
) −

1

𝜃
𝐽
󸀠

𝜆
(𝑢

𝑛
, V
𝑛
) (𝑢

𝑛
, V
𝑛
)

= (
1

2
−

1

𝜃
)
󵄩󵄩󵄩󵄩(𝑢𝑛, V𝑛)

󵄩󵄩󵄩󵄩

2

𝐸

+ (
1

𝜃
−

1

2∗
) 𝜆∫

R𝑁
𝐾 (𝑥) (

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
∗

+
󵄨󵄨󵄨󵄨V𝑛

󵄨󵄨󵄨󵄨

2
∗

)

+
𝜆

𝜃
∫
R𝑁

(𝑢
𝑛
𝐻
𝑢
(𝑢

𝑛
, V
𝑛
) + V

𝑛
𝐻V (𝑢𝑛, V𝑛) − 𝜃𝐻 (𝑢

𝑛
, V
𝑛
))

≥ (
1

2
−

1

𝜃
)
󵄩󵄩󵄩󵄩(𝑢𝑛, V𝑛)

󵄩󵄩󵄩󵄩

2

𝐸
≥ 0.

(13)
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Together with 𝐽
𝜆
(𝑢
𝑛
, V
𝑛
) → 𝑐 and 𝐽

󸀠

𝜆
(𝑢
𝑛
, V
𝑛
) → 0, we have

that {(𝑢
𝑛
, V
𝑛
)} is bounded in 𝐸 and 𝑐 ≥ 0.

Lemma 6. Let 𝑑 ∈ [2, 2
∗
). There exists a subsequence {(𝑢

𝑛
𝑖

,

V
𝑛
𝑖

)} such that, for any 𝜀 > 0, there exists 𝑟
𝜀
> 0 with

lim sup
𝑖→∞

∫
𝐵
𝑖
\𝐵
𝑟

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑑

+
󵄨󵄨󵄨󵄨󵄨
V
𝑛
𝑖

󵄨󵄨󵄨󵄨󵄨

𝑑

≤ 𝜀 ∀𝑟 ≥ 𝑟
𝜀
, (14)

where 𝐵
𝑟
:= {𝑥 ∈ R𝑁

: |𝑥| ≤ 𝑟}.

Proof. This proof is similar to the one of Lemma 3.2 [12], so
we omit it.

Let 𝜂 ∈ 𝐶
∞
(R+

) satisfying 0 ≤ 𝜂(𝑡) ≤ 1, 𝑡 ≥ 0. 𝜂(𝑡) = 1

if 𝑡 ≤ 1 and 𝜂(𝑡) = 0 if 𝑡 ≥ 2. Define 𝑢̃
𝑗
(𝑥) = 𝜂(2|𝑥|/𝑗)𝑢(𝑥),

Ṽ
𝑗
(𝑥) = 𝜂(2|𝑥|/𝑗)V(𝑥); then 𝑢̃

𝑗
→ 𝑢, Ṽ

𝑗
→ V in 𝐸

𝜆
.

Lemma 7. One has

lim
𝑗→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑁

(𝐻
𝑠
(𝑢

𝑛
𝑗

, V
𝑛
𝑗

) − 𝐻
𝑠
(𝑢

𝑛
𝑗

− 𝑢̃
𝑗
, V
𝑛
𝑗

− Ṽ
𝑗
)

−𝐻
𝑠
(𝑢̃

𝑗
, Ṽ
𝑗
)) 𝜑

󵄨󵄨󵄨󵄨󵄨
= 0,

lim
𝑗→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑁

(𝐻
𝑡
(𝑢

𝑛
𝑗

, V
𝑛
𝑗

) − 𝐻
𝑡
(𝑢

𝑛
𝑗

− 𝑢̃
𝑗
, V
𝑛
𝑗

− Ṽ
𝑗
)

−𝐻
𝑡
(𝑢̃

𝑗
, Ṽ
𝑗
)) 𝜓

󵄨󵄨󵄨󵄨󵄨
= 0,

(15)

uniformly in (𝜑, 𝜓) ∈ 𝐸 with ‖(𝜑, 𝜓)‖
𝐸
≤ 1.

Proof. The proof of Lemma 7 is similar to the one of Lemma
3.3 [12], so we omit it.

Lemma 8. One has along a subsequence

𝐽
𝜆
(𝑢

𝑛
− 𝑢̃

𝑛
, V
𝑛
− Ṽ

𝑛
) 󳨀→ 𝑐 − 𝐽

𝜆
(𝑢, V) ,

𝐽
󸀠

𝜆
(𝑢

𝑛
− 𝑢̃

𝑛
, V
𝑛
− Ṽ

𝑛
) 󳨀→ 0 𝑖𝑛 𝐸

∗
.

(16)

Proof. Since 𝑢̃
𝑗

→ 𝑢, Ṽ
𝑗

→ V in 𝐸
𝜆
and (𝑢

𝑗
, V
𝑗
) ⇀ (𝑢, V) in

𝐸, we have

𝐽
𝜆
(𝑢

𝑛
− 𝑢̃

𝑛
, V
𝑛
− Ṽ

𝑛
)

= 𝐽
𝜆
(𝑢

𝑛
, V
𝑛
) − 𝐽

𝜆
(𝑢̃

𝑛
, Ṽ
𝑛
)

+
𝜆

2∗
∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

2
∗

−
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃

𝑛

󵄨󵄨󵄨󵄨

2
∗

−
󵄨󵄨󵄨󵄨𝑢̃𝑛

󵄨󵄨󵄨󵄨

2
∗

)

+
𝜆

2∗
∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨V𝑛

󵄨󵄨󵄨󵄨

2
∗

−
󵄨󵄨󵄨󵄨V𝑛 − Ṽ

𝑛

󵄨󵄨󵄨󵄨

2
∗

−
󵄨󵄨󵄨󵄨Ṽ𝑛

󵄨󵄨󵄨󵄨

2
∗

)

+ 𝜆∫
R𝑁

𝐻(𝑢
𝑛
, V
𝑛
) − 𝐻 (𝑢

𝑛
− 𝑢̃

𝑛
, V
𝑛
− Ṽ

𝑛
)

− 𝐻 (𝑢̃
𝑛
, Ṽ
𝑛
) + 𝑜 (1) .

(17)

In connection with the proof of Brezis-Lieb lemma, it is easy
to check that

lim
𝑛→∞

∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

2
∗

−
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃

𝑛

󵄨󵄨󵄨󵄨

2
∗

−
󵄨󵄨󵄨󵄨𝑢̃𝑛

󵄨󵄨󵄨󵄨

2
∗

) = 0,

lim
𝑛→∞

∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨V𝑛

󵄨󵄨󵄨󵄨

2
∗

−
󵄨󵄨󵄨󵄨V𝑛 − Ṽ

𝑛

󵄨󵄨󵄨󵄨

2
∗

−
󵄨󵄨󵄨󵄨Ṽ𝑛

󵄨󵄨󵄨󵄨

2
∗

) = 0,

lim
𝑛→∞

∫
R𝑁

𝐻(𝑢
𝑛
, V
𝑛
) − 𝐻 (𝑢

𝑛
− 𝑢̃

𝑛
, V
𝑛
− Ṽ

𝑛
) − 𝐻 (𝑢̃

𝑛
, Ṽ
𝑛
) = 0.

(18)

Note that 𝐽
𝜆
(𝑢
𝑛
, V
𝑛
) → 𝑐 and 𝐽

𝜆
(𝑢̃
𝑛
, Ṽ
𝑛
) → 𝐽

𝜆
(𝑢, V); we get

𝐽
𝜆
(𝑢

𝑛
− 𝑢̃

𝑛
, V
𝑛
− Ṽ

𝑛
) 󳨀→ 𝑐 − 𝐽

𝜆
(𝑢, V) . (19)

For any (𝜑, 𝜓) ∈ 𝐸, we have

𝐽
󸀠

𝜆
(𝑢

𝑛
− 𝑢̃

𝑛
, V
𝑛
− Ṽ

𝑛
) (𝜑, 𝜓)

= 𝐽
󸀠

𝜆
(𝑢

𝑛
, V
𝑛
) (𝜑, 𝜓) − 𝐽

󸀠

𝜆
(𝑢̃

𝑛
, Ṽ
𝑛
) (𝜑, 𝜓)

+ 𝜆∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

2
∗

−2

𝑢
𝑛
−
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃

𝑛

󵄨󵄨󵄨󵄨

2
∗

−2

(𝑢
𝑛
− 𝑢̃

𝑛
)

−
󵄨󵄨󵄨󵄨𝑢̃𝑛

󵄨󵄨󵄨󵄨

2
∗

−2

𝑢̃
𝑛
) 𝜑

+ 𝜆∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨V𝑛

󵄨󵄨󵄨󵄨

2
∗

−2V
𝑛
−
󵄨󵄨󵄨󵄨V𝑛 − Ṽ

𝑛

󵄨󵄨󵄨󵄨

2
∗

−2

(V
𝑛
− Ṽ

𝑛
)

−
󵄨󵄨󵄨󵄨Ṽ𝑛

󵄨󵄨󵄨󵄨

2
∗

−2Ṽ
𝑛
)𝜓

+ 𝜆∫
R𝑁

(𝐻
𝑢
(𝑢

𝑛
, V
𝑛
) − 𝐻

𝑢
(𝑢

𝑛
− 𝑢̃

𝑛
, V
𝑛
− Ṽ

𝑛
)

−𝐻
𝑢
(𝑢̃

𝑛
, Ṽ
𝑛
)) 𝜑

+ 𝜆∫
R𝑁

(𝐻V (𝑢𝑛, V𝑛) − 𝐻V (𝑢𝑛 − 𝑢̃
𝑛
, V
𝑛
− Ṽ

𝑛
)

−𝐻V (𝑢̃𝑛, Ṽ𝑛)) 𝜓.

(20)

It is standard to check that

lim
𝑛→∞

∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝑛

󵄨󵄨󵄨󵄨

2
∗

−2

𝑢
𝑛
−
󵄨󵄨󵄨󵄨𝑢𝑛 − 𝑢̃

𝑛

󵄨󵄨󵄨󵄨

2
∗

−2

(𝑢
𝑛
− 𝑢̃

𝑛
)

−
󵄨󵄨󵄨󵄨𝑢̃𝑛

󵄨󵄨󵄨󵄨

2
∗

−2

𝑢̃
𝑛
) 𝜑 = 0,

lim
𝑛→∞

∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨V𝑛

󵄨󵄨󵄨󵄨

2
∗

−2V
𝑛
−
󵄨󵄨󵄨󵄨V𝑛 − Ṽ

𝑛

󵄨󵄨󵄨󵄨

2
∗

−2

(V
𝑛
− Ṽ

𝑛
)

−
󵄨󵄨󵄨󵄨Ṽ𝑛

󵄨󵄨󵄨󵄨

2
∗

−2Ṽ
𝑛
)𝜓 = 0,

(21)

uniformly in ‖(𝜑, 𝜓)‖
𝐸

≤ 1. Together with Lemma 7, we
complete the proof of Lemma 8.
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Let 𝑢1
𝑛
= 𝑢

𝑛
− 𝑢̃

𝑛
, V1

𝑛
= V

𝑛
− Ṽ

𝑛
; then (𝑢

𝑛
, V
𝑛
) → (𝑢, V) in 𝐸

if and only if (𝑢1
𝑛
, V1
𝑛
) → (0, 0) in 𝐸. Observe that

𝐽
𝜆
(𝑢

1

𝑛
, V1
𝑛
) −

1

2
𝐽
󸀠

𝜆
(𝑢

1

𝑛
, V1
𝑛
) (𝑢

1

𝑛
, V1
𝑛
)

= (
1

2
−

1

2∗
) 𝜆∫

R𝑁
𝐾 (𝑥) (

󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2
∗

+
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2
∗

)

+ 𝜆∫
R𝑁

(
1

2
(𝑢

1

𝑛
𝐻
𝑢
(𝑢

1

𝑛
, V1
𝑛
) + V1

𝑛
𝐻V (𝑢

1

𝑛
, V1
𝑛
))

− 𝐻(𝑢
1

𝑛
, V1
𝑛
))

≥
𝜆

𝑁
𝐾min ∫

R𝑁
(
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2
∗

+
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2
∗

) ,

(22)

where𝐾min = inf
𝑥∈R𝑁𝐾(𝑥) > 0. By Lemma 8, we get

󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

2
∗

𝐿
2
∗ +

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

2
∗

𝐿
2
∗ ≤

𝑁 (𝑐 − 𝐽
𝜆
(𝑢, V))

𝜆𝐾min
+ 𝑜 (1) . (23)

Meanwhile, by (𝐻
2
) and (𝐻

3
), there exists 𝐶

𝑏
> 0 such that

∫
R𝑁

𝐾 (𝑥) (|𝑢|
2
∗

+ |V|2
∗

) + 𝑢𝐻
𝑠
(𝑢, V) + V𝐻

𝑡
(𝑢, V)

≤ 𝑏 (‖𝑢‖
2

𝐿
2 + ‖V‖2

𝐿
2) + 𝐶

𝑏
(‖𝑢‖

2
∗

𝐿
2
∗ + ‖V‖2

∗

𝐿
2
∗) .

(24)

Lemma 9. There is a constant 𝛼
0

> 0 (independent of 𝜆)
such that, for any (𝑃𝑆)

𝑐
sequence {(𝑢

𝑛
, V
𝑛
)} ⊂ 𝐸 for 𝐽

𝜆
with

(𝑢
𝑛
, V
𝑛
) ⇀ (𝑢, V), either (𝑢

𝑛
, V
𝑛
) → (𝑢, V) or 𝑐 − 𝐽

𝜆
(𝑢, V) ≥

𝛼
0
𝜆
1−𝑁/2.

Proof. On the contrary, if (𝑢
𝑛
, V
𝑛
) 󴀀󴀂󴀠 (𝑢, V), we have

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
(𝑢

1

𝑛
, V1
𝑛
)
󵄩󵄩󵄩󵄩󵄩𝐸

> 0, 𝑐 − 𝐽
𝜆
(𝑢, V) > 0. (25)

Let 𝑉
𝑏
(𝑥) = max{𝑉(𝑥), 𝑏}, where 𝑏 is the positive constant in

the assumption (𝑉
0
). In connection with the set ]𝑏 which has

finite measure and 𝑢
1

𝑛
, V1
𝑛

→ 0 in 𝐿
2

loc(R
𝑁
), we have

∫
R𝑁

𝑉 (𝑥) (
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

) = ∫
R𝑁

𝑉
𝑏
(𝑥) (

󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

) + 𝑜 (1) .

(26)
Therefore, we obtain

𝑆 (
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
∗ +

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
∗)

≤ ∫
R𝑁

(
󵄨󵄨󵄨󵄨󵄨
∇𝑢

1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
∇V1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜆𝑉 (𝑥) (
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

))

− ∫
R𝑁

𝜆𝑉 (𝑥) (
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

)

≤ 𝜆∫
R𝑁

𝐾 (𝑥) (
󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2
∗

+
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2
∗

)

+ 𝑢
1

𝑛
𝐻
𝑠
(𝑢

1

𝑛
, V1
𝑛
) + V1

𝑛
𝐻
𝑡
(𝑢

1

𝑛
, V1
𝑛
)

− ∫
R𝑁

𝜆𝑉
𝑏
(𝑥) (

󵄨󵄨󵄨󵄨󵄨
𝑢
1

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
V1
𝑛

󵄨󵄨󵄨󵄨󵄨

2

) + 𝑜 (1)

≤ 𝜆𝐶
𝑏
(
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

2
∗

𝐿
2
∗ +

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

2
∗

𝐿
2
∗) + 𝑜 (1) ,

(27)

where 𝑆 is the best Sobolev constant which satisfies

𝑆‖𝑢‖
2

𝐿
2
∗ ≤ ∫

R𝑁
|∇𝑢|

2
∀𝑢 ∈ 𝐻

1
(R

𝑁
) . (28)

By (23), we get

𝑆 ≤ 𝜆𝐶
𝑏
(
󵄩󵄩󵄩󵄩󵄩
𝑢
1

𝑛

󵄩󵄩󵄩󵄩󵄩

2
∗

𝐿
2
∗ +

󵄩󵄩󵄩󵄩󵄩
V1
𝑛

󵄩󵄩󵄩󵄩󵄩

2
∗

𝐿
2
∗)

(2
∗

−2)/2
∗

+ 𝑜 (1)

≤ 𝜆𝐶
𝑏
(
𝑁(𝑐 − 𝐽

𝜆
(𝑢, V))

𝜆𝐾min
)

2/𝑁

+ 𝑜 (1)

= 𝜆
1−2/𝑁

𝐶
𝑏
(

𝑁

𝐾min
)

2/𝑁

(𝑐 − 𝐽
𝜆
(𝑢, V))2/𝑁 + 𝑜 (1) .

(29)

Therefore, 𝛼
0
𝜆
1−𝑁/2

≤ 𝑐 − 𝐽
𝜆
(𝑢, V) + 𝑜(1), where 𝛼

0
=

𝑆
𝑁/2

𝐶
−𝑁/2

𝑏
𝑁
−1

𝐾min. The proof is completed.

Lemma 10. There is a constant 𝛼
0
> 0 (independent of 𝜆) such

that if a sequence {(𝑢
𝑛
, V
𝑛
)} ⊂ 𝐸 satisfies

𝐽
𝜆
(𝑢

𝑛
, V
𝑛
) 󳨀→ 𝑐 < 𝛼

0
𝜆
1−𝑁/2

,

𝐽
󸀠

𝜆
(𝑢

𝑛
, V
𝑛
) 󳨀→ 0 𝑖𝑛 𝐸

∗
,

(30)

then {(𝑢
𝑛
, V
𝑛
)} is relatively compact in 𝐸.

Proof. Lemma 9 implies that 𝐽
𝜆
satisfies the following local

(PS)
𝑐
condition. The proof is completed.

Next, we consider 𝜆 ≥ 1 and see that 𝐽
𝜆
has the mountain

pass structure.

Lemma 11. Assume that (𝑉
0
), (𝐾

0
), and (𝐻

1
)–(𝐻

3
) hold.

There exist 𝛼
𝜆
, 𝜌
𝜆
> 0 such that

𝐽
𝜆
(𝑢, V) > 0, 0 < ‖(𝑢, V)‖𝐸 < 𝜌

𝜆
;

𝐽
𝜆
(𝑢, V) ≥ 𝛼

𝜆
, 𝑖𝑓 ‖(𝑢, V)‖𝐸 = 𝜌

𝜆
.

(31)

Proof. Observe that ‖𝑢‖
2

𝐿
2 + ‖V‖2

𝐿
2 ≤ 𝐶

1
‖(𝑢, V)‖2

𝐸
. For 𝛿 ≤

(4𝜆𝐶
1
)
−1, there is a constant 𝐶

𝛿
such that

𝐽
𝜆
(𝑢, V) ≥

1

4
‖(𝑢, V)‖2

𝐸
− 𝜆𝐶

𝛿
(‖𝑢‖

2
∗

𝐿
2
∗ + ‖V‖2

∗

𝐿
2
∗) , (32)

which implies that the required conclusions hold.

Lemma 12. Under the assumptions ofTheorem 3, for any finite
dimensional subspace 𝐹 ⊂ 𝐸, we get

𝐽
𝜆
(𝑢, V) 󳨀→ −∞ 𝑎𝑠 (𝑢, V) ∈ 𝐹, ‖(𝑢, V)‖𝐸 󳨀→ ∞. (33)

Proof. By (𝐾
0
) and (𝐻

3
), we get

𝐽
𝜆
(𝑢, V) ≤

1

2
‖(𝑢, V)‖2

𝐸
− 𝜆𝑎

0
(‖𝑢‖

𝛼

𝐿
𝛼 + ‖V‖𝛽

𝐿
𝛽
) ∀ (𝑢, V) ∈ 𝐸.

(34)

Since all norms in a finite dimensional space are equivalent
and 𝛼, 𝛽 > 2, we easily obtain the desired conclusion.
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Define the functional

Φ
𝜆
(𝑢, V) =

1

2
∫
R𝑁

(|∇𝑢|
2
+ |∇V|2 + 𝜆𝑉 (𝑥) (|𝑢|

2
+ |V|2))

− 𝑎
0
𝜆∫

R𝑁
(|𝑢|

𝛼
+ |V|𝛽) ,

𝐼
𝜆
(𝑢, V) =

1

2
∫
R𝑁

(|∇𝑢|
2
+ |∇V|2 + 𝑉 (𝜆

−1/2
𝑥) (|𝑢|

2
+ |V|2))

− 𝑎
0
∫
R𝑁

(|𝑢|
𝛼
+ |V|𝛽) .

(35)

The standard arguments show thatΦ
𝜆
∈ 𝐶

1
(𝐸) and 𝐽

𝜆
(𝑢, V) ≤

Φ
𝜆
(𝑢, V), (𝑢, V) ∈ 𝐸.
Observe that

inf {∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

2

: 𝜙 ∈ 𝐶
∞

0
(R

𝑁
,R) ,

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐿𝛼

= 1} = 0,

inf {∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜓
󵄨󵄨󵄨󵄨

2

: 𝜓 ∈ 𝐶
∞

0
(R

𝑁
,R) ,

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐿𝛽

= 1} = 0.

(36)

For any 𝛿 > 0, there are 𝜙
𝛿
, 𝜓

𝛿
∈ 𝐶

∞

0
(R𝑁

,R) with ‖𝜙
𝛿
‖
𝐿
𝛼 =

‖𝜓
𝛿
‖
𝐿
𝛽 = 1 and supp(𝜙

𝛿
, 𝜓

𝛿
) ⊂ 𝐵

𝑟
𝛿

(0) such that ‖∇𝜙
𝛿
‖
2

𝐿
2 ,

‖∇𝜓
𝛿
‖
2

𝐿
2 < 𝛿. Set 𝑒

𝜆
(𝑥) = (𝜙

𝛿
(√𝜆𝑥), 𝜓

𝛿
(√𝜆𝑥)); then,

supp 𝑒
𝜆
⊂ 𝐵

𝜆
−1/2

𝑟
𝛿

(0). For 𝑡 ≥ 0, we get

Φ
𝜆
(𝑡𝑒

𝜆
) = 𝜆

1−𝑁/2
𝐼
𝜆
(𝑡𝜙

𝛿
, 𝑡𝜓

𝛿
) . (37)

It is obvious that

max
𝑡≥0

𝐼
𝜆
(𝑡𝜙

𝛿
, 𝑡𝜓

𝛿
)

≤
𝛼 − 2

2𝛼(𝛼𝑎
0
)
2/(𝛼−2)

{∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜙
𝛿

󵄨󵄨󵄨󵄨

2

+ 𝑉(𝜆
−1/2

𝑥)
󵄨󵄨󵄨󵄨𝜙𝛿

󵄨󵄨󵄨󵄨

2

}

𝛼/(𝛼−2)

+
𝛽 − 2

2𝛽(𝛽𝑎
0
)
2/(𝛽−2)

× {∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜓
𝛿

󵄨󵄨󵄨󵄨

2

+ 𝑉(𝜆
−1/2

𝑥)
󵄨󵄨󵄨󵄨𝜓𝛿

󵄨󵄨󵄨󵄨

2

}

𝛽/(𝛽−2)

.

(38)

In connection with 𝑉(0) = 0 and supp𝜙
𝛿
, supp𝜓

𝛿
⊂ 𝐵

𝑟
𝛿

(0),
there is Λ

𝛿
> 0 such that

max
𝑡≥0

𝐽
𝜆
(𝑡𝜙

𝛿
, 𝑡𝜓

𝛿
)

≤ 𝜆
1−𝑁/2

(
𝛼 − 2

2𝛼(𝛼𝑎
0
)
2/(𝛼−2)

(2𝛿)
𝛼/(𝛼−2)

+
𝛽 − 2

2𝛽(𝛽𝑎
0
)
2/(𝛽−2)

(2𝛿)
𝛽/(𝛽−2)

) ,

(39)

for all 𝜆 ≥ Λ
𝜎
.

From (39), we easily obtain the following result.

Lemma 13. For any 𝜎 > 0, there exists Λ
𝜎
> 0 such that, for

each 𝜆 ≥ Λ
𝜎
, there exists 𝑒

𝜆
∈ 𝐸 with ‖𝑒

𝜆
‖
𝐸
> 𝜌

𝜆
; we get

𝐽
𝜆
(𝑒
𝜆
) ≤ 0, max

𝑡≥0

𝐽
𝜆
(𝑡𝑒

𝜆
) ≤ 𝜎𝜆

1−𝑁/2
, (40)

where 𝜌
𝜆
is defined form Lemma 11.

Proof. This proof is similar to Lemma 4.3 in [12]; it can be
easily obtained.

For any 𝑚 ∈ N, we choose 𝑚 functions 𝜙
𝑖

𝛿
∈ 𝐶

∞

0
(R𝑁

)

such that supp𝜙
𝑖

𝛿
∩ supp𝜙

𝑗

𝛿
= 0, 𝑖 ̸= 𝑗, ‖𝜙𝑖

𝛿
‖
𝐿
𝛼 = 1, and

‖∇𝜙
𝑖

𝛿
‖
2

𝐿
2 < 𝛿. Similarly, one can also get 𝑚 functions 𝜓

𝑖

𝛿
∈

𝐶
∞

0
(R𝑁

) with supp𝜓
𝑖

𝛿
∩ supp𝜓

𝑗

𝛿
= 0, 𝑖 ̸= 𝑗, ‖𝜓𝑖

𝛿
‖
𝐿
𝛽 = 1, and

‖∇𝜓
𝑖

𝛿
‖
2

𝐿
2 < 𝛿. Let 𝑟𝑚

𝛿
> 0 such that supp(𝜙𝑖

𝛿
, 𝜓

𝑖

𝛿
) ⊂ 𝐵

𝑖

𝑟
𝑚

𝛿

(0) for
𝑖 = 1, 2, . . . , 𝑚. Set 𝑒𝑖

𝜆
(𝑥) = (𝜙

𝑖

𝛿
(√𝜆𝑥), 𝜓𝑖

𝛿
(√𝜆𝑥)) = (𝑓

𝑖

𝜆
, 𝑔

𝑖

𝜆
),

𝑖 = 1, 2, . . . , 𝑚; then supp 𝑒
𝑖

𝜆
(𝑥) ⊂ 𝐵

𝜆
−1/2

𝑟
𝑚

𝛿

(0).
Define 𝐹

𝑚

𝜆𝛿
= span{𝑒1

𝜆
, 𝑒
2

𝜆
, . . . , 𝑒

𝑚

𝜆
}. For each (𝑢, V) =

∑
𝑚

𝑖=1
𝑘
𝑖
𝑒
𝑖

𝜆
∈ 𝐹

𝑚

𝜆𝛿
, we easily get

𝐽
𝜆
(𝑢, V) =

𝑚

∑

𝑖=1

𝐽
𝜆
(𝑘

𝑖
𝑒
𝑖

𝜆
) ,

𝐽
𝜆
(𝑘

𝑖
𝑒
𝑖

𝜆
) ≤ 𝜙

𝜆
(𝑘

𝑖
𝑒
𝑖

𝜆
) .

(41)

Set 𝛽
𝛿
:= max{‖(𝜙𝑖

𝛿
, 𝜓

𝑖

𝛿
)‖
2

2
: 𝑖 = 1, 2, . . . , 𝑚} and choose some

Λ
𝑚𝛿

> 0 such that

𝑉(𝜆
−1/2

𝑥) ≤
𝛿

𝛽
𝛿

∀ |𝑥| ≤ 𝑟
𝑚

𝛿
, 𝜆 ≥ Λ

𝑚𝛿
. (42)

Furthermore, we have the following inequality:

max
(𝑢,V)∈𝐹𝑚

𝜆𝛿

𝐽
𝜆
(𝑢, V)

≤ 𝜆
1−𝑁/2

(
𝑚 (𝛼 − 2)

2𝛼(𝛼𝑎
0
)
2/(𝛼−2)

(2𝛿)
𝛼/(𝛼−2)

+
𝑚 (𝛽 − 2)

2𝛽(𝛽𝑎
0
)
2/(𝛽−2)

(2𝛿)
𝛽/(𝛽−2)

) .

(43)

Lemma 14. Under the assumptions of Theorem 4, for any𝑚 ∈

N and 𝜎 > 0, there isΛ
𝑚𝜎

> 0 such that, for each 𝜆 ≥ Λ
𝑚𝛿
, we

can get an 𝑚-dimensional subspace 𝐹 which satisfies

max
(𝑢,V)∈𝐹

𝐽
𝜆
(𝑢, V) ≤ 𝜎𝜆

(2−𝑁)/2
. (44)

Proof. For any 𝜎 > 0, we choose 𝛿 > 0 so small that

(
𝑚 (𝛼 − 2)

2𝛼(𝛼𝑎
0
)
2/(𝛼−2)

(2𝛿)
𝛼/(𝛼−2)

+
𝑚 (𝛽 − 2)

2𝛽(𝛽𝑎
0
)
2/(𝛽−2)

(2𝛿)
𝛽/(𝛽−2)

) ≤ 𝜎.

(45)

Meanwhile, we take 𝐹 = 𝐹
𝑚

𝜆𝛿
. By (43), we prove the required

conclusion.
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4. Proof of the Main Results

Proof of Theorem 3. Define 𝑐
𝜆

= inf
𝛾∈Γ
𝜆

max
𝑡∈[0,1]

𝐽
𝜆
(𝛾(𝑡)),

where Γ
𝜆

= {𝛾 ∈ 𝐶([0, 1], 𝐸) : 𝛾(0) = 0, 𝛾(1) = 𝑒
𝜆
}. For any

0 < 𝜎 < 𝛼
0
, there exists Λ

𝜎
> 0 such that, for each 𝜆 ≥ Λ

𝜎
,

we can choose 𝑐
𝜆
satisfying 𝑐

𝜆
≤ 𝜎𝜆

1−(𝑁/2).
By Lemma 9, 𝐽

𝜆
satisfies the (PS)

𝑐
𝜆

condition. Hence,
by the mountain pass theorem, there exists (𝑢

𝜆
, V
𝜆
) ∈ 𝐸

satisfying 𝐽
󸀠

𝜆
(𝑢
𝜆
, V
𝜆
) = 0 and 𝐽

𝜆
(𝑢
𝜆
, V
𝜆
) = 𝑐

𝜆
. So (𝑢

𝜆
, V
𝜆
) is

a weak solution of (7).
Furthermore, we have

𝐽
𝜆
(𝑢

𝜆
, V
𝜆
) = 𝐽

𝜆
(𝑢

𝜆
, V
𝜆
) −

1

𝜃
𝐽
󸀠

𝜆
(𝑢

𝜆
, V
𝜆
) (𝑢

𝜆
, V
𝜆
)

≥ (
1

2
−

1

𝜃
)
󵄩󵄩󵄩󵄩(𝑢𝜆, V𝜆)

󵄩󵄩󵄩󵄩

2

𝐸
.

(46)

This shows that
𝜃 − 2

2𝜃
∫
R𝑁

(
󵄨󵄨󵄨󵄨∇𝑢

𝜆

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇V𝜆

󵄨󵄨󵄨󵄨

2

+ 𝜆𝑉 (𝑥) (
󵄨󵄨󵄨󵄨𝑢𝜆

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨V𝜆

󵄨󵄨󵄨󵄨

2

))

≤ 𝜎𝜆
1−𝑁/2

.

(47)

Proof of Theorem 4. By Lemma 14, for any 𝑚 ∈ N and 𝜎 ≤

𝛼
0
, there exists Λ

𝑚𝜎
such that, for 𝜆 ≥ Λ

𝑚𝜎
, we choose

an 𝑚-dimensional subspace 𝐹 with max 𝐽
𝜆
(𝐹) ≤ 𝜎𝜆

1−𝑁/2.
By Lemma 12, there is 𝑅 > 0 such that 𝐽

𝜆
(𝑢) ≤ 0 for all

𝑢 ∈ 𝐹 | 𝐵
𝑅
. Define 𝑒

𝜆
𝑗

= inf
𝑖(Ω)≥𝑗

sup
𝑢,V∈Ω𝐽𝜆(𝑢, V), 1 ≤ 𝑗 ≤ 𝑚,

where 𝑖(Ω) is a version of Benci’s pseudoindex [19].
Since 𝐽

𝜆
(𝑢, V) ≥ 𝛼

𝜆
for all (𝑢, V) ∈ 𝜕𝐵

𝜌
𝜆

(see Lemma 11)
and 𝑖(𝐹) = dim𝐹 = 𝑚, one has

𝛼
𝜆
≤ 𝑐

𝜆
1

≤ 𝑐
𝜆
2

≤ ⋅ ⋅ ⋅ ≤ 𝑐
𝜆
𝑚

≤ sup
(𝑢,V)∈𝐹𝑚

𝜆𝜎

𝐽
𝜆
(𝑢, V) ≤ 𝜎𝜆

1−𝑁/2
.

(48)

We easily get that 𝑐
𝜆
𝑗

are critical levels and 𝐽
𝜆
has at least 𝑚

pairs of nontrivial critical points.This proof is completed.
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