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Evaluation of squeezed film air damping is critical in the design and control of dynamic MEMS devices. The published squeezed
film air dampingmodels are generally derived from the analytical solutions of Reynolds equation or its other modified forms under
the supposition of trivial pressure boundary conditions on the peripheral borders. These treatments ignoring the border effect can
not give faithful result for structure with smaller air venting gap or the double-gimbaled structure in which the inner frame and
outer one affect the air venting. In this paper, we useGreen’s function to solve the nonlinear Reynolds equationwith inhomogeneous
boundary conditions. For two typical normal motion cases of parallel plate, the analytical models of squeeze film damping force
with border effect are established. The viscous and inertial losses with real values and image values acoustic impedance are all
included in the model. These models reduced the time consumption while giving satisfactory result. Without multifield coupling
analysis, the estimation of the dynamic behavior of MEMS device is also allowed, and the simulation of the system performance is
more convenient.

1. Introduction

With the reduction in feature size of the micromachined
structures, the performances of MEMS devices are affected
by air damping more significantly than machines of conven-
tional dimensions. As long as the ratio of air gap thickness
to the plate width is less than 1/3, the squeeze film air
damping will be greater than the drag force damping and
become the main contribution to air damping [1]. Most of
the micromachined sensors and actuators, such as microac-
celerometers, optical switches, and microgyroscope, often
have a narrow air gap. Therefore, the squeezed film damping
(SFD) has important influence on the dynamic behaviors of
these devices [1], and evaluation of SFD plays an important
role in the design and control of dynamic MEMS devices.

According to the law of conservation of mass, momen-
tum, and energy, the basic equations of fluid mechanics,
including Euler equation, Navier-Stokes equation, and Bur-
nett equation, are established. Because these equations are
hard to be solved analytically, they are usually computed

numerically to simulate the device behavior as part of a full
system analysis. For complex microstructures, 3D Navier-
Stokes-based FEM simulations requires more than a dozen
hours or even a day of computing time, and the compu-
tational effort often becomes prohibitive [2]. Therefore, in
order to design and control MEMS devices more efficiently,
an analytical SFD model is desirable to be derived.

The SFDmodels are generally derived from the analytical
solutions of Reynolds equation or its other modified forms
under a certain boundary conditions. Andrews et al. [3]
have studied the squeeze film theoretical predictions for two
isolated rectangular plates oscillating normal to each other.
Analytic squeeze film air damping models for a rectangular
torsionmirror plate have been developed by Pan et al. [4] and
Minikes et al. [5]. In all these studies, the Reynolds equation
is solved with trivial pressure boundary condition (𝑃 = 0)
on the free edges and trivial flow conditions (𝑉 = 0) on
the fixed edges. Various models have been presented for the
squeeze film analysis of perforated MEMS structures in the
literature spanning over a decade; trivial venting boundary
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condition (𝑃 = 0) is also used [6, 7]. In practice, moreover,
the trivial boundary condition assumed that the gas pressure
disappears abruptly on the border of the movable plate which
does not always hold. In structure with smaller air venting
gap and the double-gimbaled structurewhere the inner frame
and outer one affect the air venting, these methods fail to give
satisfactory results.

In order to model the squeeze film damping considering
the border effects, Hao et al. [8] located the trivial pressure
boundary in the sidewall of the mirror cavity rather than at
the edge of the movable plate; moreover, if the sidewall is
placed closer to themovable plate, their idea is not a good one.
Comparedwith FEMsimulations,Veijola et al. [9] derived the
SFD models with effective extended dimensions. Although
their method improved the accuracy of the damping cal-
culation, it is invalid for structures with complex borders
such as smaller air venting gap structure and the double-
gimbaled MEMS torsion mirror. Darling et al. [10] presented
their model for reactive acoustic impedance. For free plate
under ideally venting conditions, the analytical model they
derived is in agreement with other literature [3]. However,
the validity of their model under slot venting conditions
can be further extended to include viscous losses with real-
values acoustic impedance. Veijola et al. [11] focused on the
nontrivial boundary conditions for the flow, accounting for
the finite acoustic impedance of the surrounding gas at the
borders and extended the validity of the model presented by
Darling et al.

In this paper, a more consistent and intuitive approach
to the solution of inhomogeneous boundary-value problems
was provided. The Green’s function method to the linearized
Reynolds equation with inhomogeneous boundary condi-
tions was adopted. Based on the normal motion of a rect-
angular parallel plate with constant velocity and oscillating
velocity, novel squeeze film air damping models considering
border effect are obtained. The viscous and inertial losses
with real-values and image-values acoustic impedance are all
included in the model.

2. Analytical Model and Green’s
Function Solution

A general parallel plates MEMS device consists of a movable
plate and a stationary substrate as is shown in Figure 1;
the movable plate is suspended by four micro beams. In
microaccelerometers, the moving direction of the movable
plate is normal to the fixed plate. The length of the movable
plate is denoted by 𝑎, and the width is represented by 𝑏;𝐻

0
is

the initial squeeze film thickness under the movable plate; 𝛿
is the gas venting gap between the movable plate and the
cavity sidewall.

The air damping comes from the pressure distribution on
the movable plate surface. Under the isothermal condition,
the air pressure distribution can be modeled with the nonlin-
ear isothermal Reynolds equation:

∇ ⋅ (ℎ
3
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𝜕𝑡
(𝑝ℎ) . (1)

In order to perform analytical modeling analysis, assum-
ing variations of local pressure and squeeze film thickness are
small, 𝑝 = 𝑃

𝑎
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0
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where 𝑃 and𝐻 are the normalized pressure and the normal-
ized squeeze film thickness, respectively, with𝑃

𝑎
denoting the

ambient pressure.
Because this partial differential equation has the same

format as the heat diffusion equation, we can refer to the
solution of heat diffusion equation to solve it. In this section,
we use Green’s function method to solve (2). The heat
diffusion equation satisfied by Green’s function (𝐺) involves
an impulsive point source which is
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The linearized Reynolds equation (2) can be seen as a
heat diffusion equation, and the heat source is a displacement
function of time as 12𝜇/𝑃

𝑎
𝐻
2

0
⋅ 𝜕𝐻/𝜕𝑡, where 𝛼2 = 12𝜇/𝑃
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0

is a constant, with 𝜇 representing the air viscosity.
The solution of the inhomogeneous heat diffusion equa-

tion, with inhomogeneous boundary conditions and zero
initial condition is expressible as [11]
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where 𝜌(𝑟󸀠, 𝑡󸀠) is the effective source point,
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and Green’s function 𝐺(𝑟, 𝑡 | 𝑟󸀠, 𝑡󸀠) can be expanded in terms
of eigenfunctions [11],
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In (6), eigenfunction 𝑢
𝑚𝑛

is a solution of a scalar Helmholtz
equation in a region bounded by a surface 𝑆. Consider
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The eigenvalue 𝜆
𝑚𝑛

is
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If 𝑚, 𝑛 are odd indices, cos is chosed, and sin is chosed for
even indices.
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Figure 1: Schematic diagram of a normal moving MEMS device.

As Green’s function satisfies the homogeneous boundary
condition, the following equation was established:

1
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⋅ 𝐺grad󸀠𝑃 = 0. (9)

The solution of heat diffusion equation (4) satisfies the
inhomogeneous boundary condition. It means that at the
edge of the movable plate, (𝑋, 𝑌, 𝑡) ∈ 𝑆, the solution of
this equation 𝑃(𝑋, 𝑌, 𝑡) equals to the boundary condition
𝜙(𝑋, 𝑌, 𝑡). Then the solution of the inhomogeneous diffusion
equation, with inhomogeneous boundary conditions, can be
reduced as
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(10)

3. Normal Motion with Constant Velocity

3.1. Damping Force. To illustrate the solution of the normal
motion of a rectangular plate, the movable plate is assumed
moving toward the fixed plate with a velocity of 𝑤

𝑀
. The

deviatory squeeze film thickness is same as the displacement
of normal motion, Δℎ = 𝑤

𝑀
𝑡. Under this assumption, the

linearized Reynolds equation has the same form with (2),
where
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With inhomogeneous boundary conditions, the pressures
of boundary are not trivial which are given by
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2
, 𝑡) = 𝑃BC. (12)

The first term of (10) represents the effect of volume
sources. The pressure distribution of the movable plate is
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The second term of (10) represents the effect of inhomo-
geneous boundary conditions; the pressure distribution of the
movable plate is
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As a consequence, the total pressure distribution of the
movable plate is
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The resultant force is the integration of the pressure vari-
ation across the rectangular plate area:
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where 𝛼2 = 12𝜇/𝜂ℎ2
0
𝑃
𝑎
.

In order to achieve steady state, the turn-on transient
term is discarded, and then the resultant force is simplified
as

𝐹 (𝑡) = ∑
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The resultant force comes from the damping pressure
profile across the lower surface of themovable plate. Equation
(17) expressing the reaction force in normal motion is
composed by two different effect parts: the term due to the
effect of volume sources and that due to the border effect.

3.2. Boundary Pressure. In the derived damping force model,
the border effect is denoted as a function of the boundary
pressure 𝑃

𝐵𝐶
. To calculate the damping force with border

effect, the boundary pressure should be determined firstly.
As can be seen in Figure 2, the gas venting gap between

the movable plate and the sidewall can be regarded as a slot
between two parallel plates. One of these two parallel plates
is fixed, and the other is in vertical motion at speed 𝑤

𝑀
in

the inverse 𝑧-direction.The cross section length, cross section
width, and channel length of the slot are 2(𝐿 + 𝑊), 𝛿, and
𝐷
𝑝
, respectively. The steady flow velocity of fluid between

paralleled plates is 𝑢 = V = 0, 𝑤. According to the continuity
equation, 𝜕𝑢/𝜕𝑥 = 0 and 𝜕V/𝜕𝑦 = 0. For incompressible
viscous flow, ignoring the mass force, the N-S equation can
be simplified as [12]

0 = −
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,
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(18)

where the boundary conditions are 𝑤 = 𝑤
𝑀

at 𝑥 = 0 and
𝑤 = 0 at 𝑥 = 𝛿.

By solving the above equations, the volume flow rate 𝑄
between the parallel plates channel can be obtained as

𝑄 = ∫

𝛿

0
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𝑀
.

(19)
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Figure 2: Flow between parallel plates.

The volume flow rate 𝑄 between the parallel plates chan-
nel is composed of two parts: Couette flow and Poiseuille
flow.TheCouette flow is driven by themotion of themovable
plate, and the Poiseuille flow is driven by the pressure gradient
through two stationary flat walls.

Because the gas is considered as incompressible, the
venting volume of gas through the slot is equal to the
reduction of volume under the movable plate caused by the
plate movement; the boundary pressure at the edge of the
movable plant is

𝑃BC =
6𝜇𝐷
𝑃
𝑤
𝑀
(𝑎𝑏 + 𝑎𝛿 + 𝑏𝛿)

(𝑎 + 𝑏) 𝛿
3

, (20)

where the constant velocity of the plate is 𝑤
𝑀
.

3.3. Comparison of Numerical and Simulation Results. Three-
dimensional computational fluid dynamics (CFD) simula-
tions have been carried out to compare themodel considering
the border effects with the ideally vented model. The fluid
field analysis software ANSYS/FLOTRAN has been adopted
to compute the incompressible Navier-Stokes equations. Due
to the symmetry, a quarter of the fluid domain was studied.
In order to simulate the devices to fully open to ambient pres-
sure, the boundaries dimensions of the fluid domain above
the plate are extended by 𝐿/2. Software ANSYS generated the
3D mesh, made by tetrahedral elements for the surrounding
air of the movable plate. In order to improve the accuracy
and efficiency of simulation, the grid below the movable
plate is much denser than that above the movable plate.
Figure 3(a) shows a typical mesh generation, and Figure 3(b)
is a corresponding typical pressure distribution.

Serious simulations were performed with different struc-
ture dimensions. Table 1 is the comparison of squeeze film
damping force in constant velocity normal motion between
analytical models and the simulation results. As can be seen,
the model considering the border effects is more accurate
than the ideally vented model. With the gap (𝛿) between
the movable plate and the sidewall larger than the initial
squeeze film thickness (𝐻

0
), the damping forces are close to

the numerical simulation results. Whereas, with the gap 𝛿
comparable to the thickness ℎ

0
, the gas will be compressed

and the model is not accurate enough. The error rate of our
model is 23.55%, and the error rate of ideally vented model is
even 45.84%.
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Table 1: Comparison of squeeze film damping between analytical models and simulation results in normal motion.

Case Dimension 10−6 m Simulation Force N Ideally vented model Our model
𝑎, 𝑏 𝐻

0
𝛿 Force N Error rate 𝑃BC Force N Error rate

1 400 40 60 3.5447𝑒 − 8 2.9909𝑒 − 8 15.62% 0.026 3.4046𝑒 − 8 3.95%
2 400 40 50 4.1837𝑒 − 8 2.9909𝑒 − 8 28.51% 0.043 3.6601𝑒 − 8 1.63%
3 400 40 40 5.5220𝑒 − 8 2.9909𝑒 − 8 45.84% 0.081 4.2217𝑒 − 8 23.55%

(a) (b)

Figure 3: Simulated results in a constant velocity normal moving rectangular movable plate. (a) Typical mesh and (b) pressure distribution.

4. Normal Motion with Oscillating Velocity

4.1. Boundary Pressure. Consider the movable plate oscil-
lating in air close to the fixed plate, the displacement of
the movable plate is assumed to be a harmonic function of
time ℎ(𝑡) = 𝐻 sin(𝜔𝑡), where 𝐻 and 𝜔 are the amplitude
and frequency of motion, respectively. The corresponding
oscillating velocity of the movable plate is

𝑤 (𝑡) =
𝜕𝐻

𝜕𝑡
= 𝐻𝜔 cos (𝜔𝑡) . (21)

The acoustic impedance of a slot of channel length 𝐷
𝑝
,

cross section length 2(𝑎+𝑏), and cross section width 𝛿 is [10]

𝑍
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𝛿3 (𝑎 + 𝑏)
+ 𝑗𝜔

3𝜌
𝑎
𝐷
𝑝

5𝛿 (𝑎 + 𝑏)
. (22)

The equivalent circuit topology is shown in Figure 4.
The equivalent values of the resistance and the inductance
are given in (22). The venting volume of gas through the
slot is equal to the reduced volume of gas under the plate,
𝑄 = 𝑎𝑏𝐻𝜔 cos(𝜔𝑡). The boundary pressure at the edge of the
movable plant with oscillating velocity can be obtained as

𝑃BO = 𝑃𝑐 cos (𝜔𝑡) + 𝑃𝑠 sin (𝜔𝑡) , (23)
where the coefficient 𝑃

𝑐
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𝑠
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𝐷
𝑃
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2

5𝛿 (𝑎 + 𝑏)
. (24)

4.2. Damping Force. Similarly, the linearized Reynolds equa-
tion of normal motion with oscillating velocity has the same
form as (2). The effective source term in (5) is

𝜌 (𝑟, 𝑡) = −
𝛼
2
𝜂

4𝜋

𝜕𝐻

𝜕𝑡
= −
𝛼
2
𝜂

4𝜋

𝐻𝜔

ℎ
0

cos (𝜔𝑡) . (25)

RA

MA

I = Q

U = ΔP

Figure 4: Electrical equivalent circuit of acoustic impedance.

The boundary pressures are not trivial which can be
obtained by (23)

𝜙 = 𝑃(±
𝑎

2
, 𝑌, 𝑡) = 𝑃(𝑋, ±

𝑏

2
, 𝑡) = 𝑃BO. (26)

The first term of (10) representing the effect of volume
sources is

𝑃
1 (𝑟, 𝑡) = ∫

𝑡
+

0

𝑑𝑡
󸀠
∫𝑑𝑉
󸀠
𝜌 (𝑟
󸀠
, 𝑡
󸀠
)𝐺 (𝑟, 𝑡 | 𝑟

󸀠
, 𝑡
󸀠
)

= ∑

𝑚,𝑛=odd

8(−1)
(𝑚+𝑛)/2

𝑚𝑛𝜋2
⋅
𝐻𝜂𝜔

𝐻
0
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⋅
2 cos (𝜔𝑡) 𝜆2

𝑚𝑛
/𝛼
2
+ 2𝜔 sin (𝜔𝑡)

(𝜆2
𝑚𝑛
/𝛼2)
2
+ 𝜔2

⋅ cos 𝑚𝜋𝑥
𝑎

cos
𝑛𝜋𝑦

𝑏
.

(27)

The resultant force under ideal vented conditions is the
integration of the pressure variation across the rectangular
plate area:

𝐹
1 (𝑡)

= ∑

𝑚,𝑛=odd

64

𝑚2𝑛2𝜋4

⋅
𝜂𝜎𝑃
𝑎
𝑎𝑏

𝜔𝐻
0

(𝑚
2
𝜋
2
+ (𝑎
2
/𝑏
2
) 𝑛
2
𝜋
2
)

(𝑚2𝜋2 + (𝑎2/𝑏2) 𝑛2𝜋2)
2
+ 𝜎2
𝐻𝜔 cos (𝜔𝑡)

+ ∑

𝑚,𝑛=odd

64

𝑚2𝑛2𝜋4
⋅
𝜂𝜎
2
𝑃
𝑎
𝑎𝑏

𝐻
0

×
1

(𝑚2𝜋2 + (𝑎2/𝑏2) 𝑛2𝜋2)
2
+ 𝜎2
𝐻 sin (𝜔𝑡) ,

(28)

where 𝜎 is the squeeze number, 𝜎 = 𝜔𝑎2𝛼2 = 12𝜇𝜔𝑎2/ℎ2
0
𝑃
𝑎
.

The resultant force has two components: the spring force,
which is in phase with the displacement, and damping force,
which is in phase with the velocity. These results, consistent
with those of Andrews et al. [3], are under ideally vented
conditions.

The second term of (10) represents the border effect. The
pressure distribution on themovable plate caused by nontriv-
ial boundary pressure is

𝑃
2
(𝑟, 𝑡)

= −
1

4𝜋
∫

𝑡
+

0

𝑑𝑡
󸀠
∫𝑑𝑆
󸀠
𝜙
𝜕𝐺

𝜕𝑛

= − ∑

𝑚,𝑛=odd

[

[

((
𝑃
𝑐
𝜆
2

𝑚𝑛

𝛼2
− 𝑃
𝑠
𝜔) cos (𝜔𝑡)

+ (
𝑃
𝑠
𝜆
2

𝑚𝑛

𝛼2
+ 𝑃
𝑐
𝜔) sin (𝜔𝑡))

× ((
𝜆
2

𝑚𝑛

𝛼2
)

2

+ 𝜔
2
)

−1

]

]

⋅ (−1)

𝑚 + 𝑛

2
16

𝛼2

𝜆
2

𝑚𝑛

𝑚𝑛𝜋2
⋅ cos 𝑚𝜋𝑥

𝑎
cos
𝑛𝜋𝑦

𝑏
.

(29)

Integrating over the area of the movable plate, the resul-
tant force caused by nontrivial boundary pressure is

𝐹
2 (𝑡)

=
64𝑃
𝑎
𝑎𝑏

𝜋4

× ∑

𝑚,𝑛=odd
(𝑃
𝑐
(𝑚
2
𝜋
2
+
𝑎
2

𝑏2
𝑛
2
𝜋
2
)

2

−𝑃
𝑠
𝜎(𝑚
2
𝜋
2
+
𝑎
2

𝑏2
𝑛
2
𝜋
2
))

× ((𝑚
2
𝜋
2
+
𝑎
2

𝑏2
𝑛
2
𝜋
2
)

2

+ 𝜎
2
)

−1

⋅
cos (𝜔t)
𝑚2𝑛2

+
64𝑃
𝑎
𝑎𝑏

𝜋4

× ∑
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(𝑃
𝑠
(𝑚
2
𝜋
2
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𝑎
2

𝑏2
𝑛
2
𝜋
2
)

2

+𝑃
𝑐
𝜎(𝑚
2
𝜋
2
+
𝑎
2

𝑏2
𝑛
2
𝜋
2
))

× ((𝑚
2
𝜋
2
+
𝑎
2

𝑏2
𝑛
2
𝜋
2
)

2

+ 𝜎
2
)

−1

⋅
sin (𝜔𝑡)
𝑚2𝑛2

.

(30)

Accordingly, the total resultant force is

𝐹 (𝑡) = 𝐹
1
(𝑡) + 𝐹

2
(𝑡) . (31)

This total resultant force is also caused by the damping
pressure distribution on the surface of the movable plate.
Equation (31) represents the net reaction force for square plate
with slotted vents along all four edges, which comprises two
kinds of force: the air damping force and the air spring force.

4.3. Instance Analysis. As an example of this model, consider
a rigid, square plate with motion normal to its surface and
with slotted vents along all four edges through which the
trapped gas film is vented. The square plate moves with
an oscillating velocity. The normalized amplitude of the
vibrating plate𝐻/𝐻

0
equals to 0.1. The channel length of the

venting slot𝐷
𝑃
is half of the width of themovable plate 𝑎.The

spring and damping components of the reaction force under
free-venting condition and under slot-venting condition are
shown in Figure 5(a). As can be seen, the venting conditions
at the border have a significant influence on the damping
force and the spring force. The damping force and the spring
force under slot-venting condition are all larger than that
under ideally venting condition. The damping force and
the spring force for different normalized widths of 𝛿/𝑎 are
plotted in Figure 5(b). The smaller the width of the slot is,
the greater the damping force and the spring force are. With
normalized width ≥0.3, the contribution of border effect to
the damping force and the spring force is >10%.

5. Conclusions

The squeeze film damping analytical models with trivial
pressure boundary condition fails to give satisfactory results
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Figure 5: Result of an instance: (a) spring and damping forces (b) relationship of slot width and force.

for structures under nontrivial pressure boundary conditions
such as the air venting gap between movable plate and
sidewall being small. In order to consider the border effects
in the analytically model, the nonlinear Reynolds equation
is solved with inhomogeneous boundary conditions using
Green’s function approach in present paper. Analytical results
in a range ofMEMS devices with different structural parame-
ters are comparedwith theCFDnumerical simulation results.
Moreover, the contribution of border effect for the damping
force and the spring force is analyzed.
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