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This paper presents a global optimization algorithm for solving the signomial geometric programming (SGP) problem. In the
algorithm, by the straight forward algebraic manipulation of terms and by utilizing a transformation of variables, the initial
nonconvex programming problem (SGP) is first converted into an equivalentmonotonic optimization problem and then is reduced
to a sequence of linear programming problems, based on the linearizing technique. To improve the computational efficiency of the
algorithm, two range reduction operations are combined in the branch and bound procedure.The proposed algorithm is convergent
to the global minimum of the (SGP) by means of the subsequent solutions of a series of relaxation linear programming problems.
And finally, the numerical results are reported to vindicate the feasibility and effectiveness of the proposed method.

1. Introduction

The signomial geometric programming (SGP) problem can
be formulated as the following nonlinear optimization prob-
lem:

(SGP) :
{{

{{

{

min Φ
0
(𝑦)

s.t. Φ
𝑚
(𝑦) ≤ 0, 𝑚 = 1, . . . ,𝑀

0
,

𝑦 ∈ Ω
0
,

(1)

where

Φ
𝑚
(𝑦) =

𝑇
𝑚

∑
𝑡=1

𝛿
𝑚𝑡

𝑛
0

∏
𝑖=1

𝑦
𝑖

𝜂
𝑚𝑡𝑖 , 𝑚 = 0, 1, . . . ,𝑀

0
,

Ω
0
= {𝑦 ∈ 𝑅

𝑛
0

+
| 0 < 𝑦

𝑙

𝑖
≤ 𝑦
𝑖
≤ 𝑦
𝑢

𝑖
< ∞, 𝑖 = 1, . . . , 𝑛

0
} .

(2)

𝑇
𝑚
are positive integers and 𝛿

𝑚𝑡
and 𝜂
𝑚𝑡𝑖

are all arbitrary real
constant coefficients and exponents, respectively. In general,
the problem (SGP) corresponds to a nonlinear optimization
problem with nonconvex objective function and constraint
set. As noted by [1, 2], many nonlinear programming prob-
lems may be restated as geometric programming with little
additional effort by simple techniques such as change of

variables or by straightforward algebraic manipulation of
terms. Additionally, (SGP) problem has found a wide range
of applications in production planning, location, distribution
contexts in risk management problems, various chemical
process design and engineering design situations, and so on
[3–10]. Hence, it is necessary to present good algorithms for
solving (SGP).

The theory of (SGP) was initially developed over three
decades ago by Duffin et al. [11–13]. Subsequently, it had
been studied by a number of researchers. In general, local
optimization approaches for solving (SGP) problem include
three kinds of methods as follows. First, successive approxi-
mation by posynomials has received themost popularity [14].
Second, Passy and Wilde [15] developed a weaker type of
duality to accommodate this class of nonlinear optimization.
Third, general nonlinear programmingmethods [16].Though
local optimization methods for solving SGP problem are
ubiquitous, the global optimization algorithm based on the
characteristics of (SGP) problem is scarce. When 𝜂

𝑚𝑡𝑖
in

Φ
𝑚
(𝑦) is positive integer or rational number, some authors

in [8, 17–19] developed the corresponding global solution
methods for (SGP). In this case that each 𝜂

𝑚𝑡𝑖
is real, Maranas

et al. [20] proposed a global optimization branch and bound
algorithm, by using the exponential variable transformation
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of (SGP) and the convex relaxation. Shen and Zhang [21]
also proposed a global optimization algorithm based on
the exponential variable transformation of (SGP) and the
linear relaxation. Recently, Shen et al. [22] presented a robust
algorithm for (SGP) problem by seeking an essential optimal
solution. Wang et al. [23] developed a general algorithm for
solving (SGP) problem with nonpositive degree of difficulty.
Qu et al. [24] proposed a global optimization algorithm using
linear relaxation for (SGP) problem.

In this paper we present a new global optimization
algorithm for (SGP) problem by using several reduction
operations and by solving a sequence of linear programming
problems over partitioned subsets. The proposed method
uses a convenient transformation based on the characteristics
of (SGP) problem; thus, the original problem (SGP) is equiv-
alently reformulated as a monotonic optimization problem
(𝑃), that is, the objective function is increasing and all the
constrained functions can be denoted by the difference of
two increasing functions in problem (𝑃). A comparison of
this method with other methods reviewed above is given
below. First, the proposed linear relaxation is based on the
monotonic optimization problem (𝑃), which applies more
information of the functions of (SGP). And what is more
important is that the proposed reduction operations which
are adopted in our global optimization algorithm can cut
away a large part of the region in which the global optimal
solution of (SGP) does not exist. This solution procedure will
be more efficient than the methods in [21, 25, 26]. Second,
the problem investigated in this paper generalizes those of
[8, 17–19]. Furthermore, our method is more convenient in
computation than the convex relaxation [19] because the
main work is to solve the linear programs and the zeros
of strictly monotonic functions of one variable over the
interval [0,1), which can be solved very efficiently by the
existing methods, for example, by the simplex method and
the bisection search method. Third, numerical results and
comparison with other methods are conducted to show the
potential advantage of the proposed algorithm.

The remainder of this paper is organized as follows. The
next section converts the (SGP) problem into a monotonic
optimization problem. We discuss the rectangular branching
operation, the lower bounding operation, and the reducing
operations needed in our algorithm in Section 3. Section 4
incorporates this approach into an algorithm for solving
(SGP) and shows the convergence property of the algorithm.
In Section 5, we report the results of solving some numerical
examples with the algorithm. A summary is presented in the
last section.

2. Equivalent Problem

In order to convert (SGP) problem into an equivalent opti-
mization problem (𝑃), for each 𝑚 = 1, . . . ,𝑀

0
, 𝑖 = 1, . . . , 𝑛

0
,

let us denote

𝜂
𝑚𝑖
= min {𝜂

𝑚𝑡𝑖
| 𝑡 = 1, . . . , 𝑇

𝑚
} ,

𝛾
0𝑡𝑖
= 𝜂
0𝑡𝑖
,

𝛾
𝑚𝑡𝑖

= 𝜂
𝑚𝑡𝑖

− 𝜂
𝑚𝑖
.

(3)

By multiplying both sides of each constraint inequality
of (SGP) with ∏

𝑛
0

𝑖=1
𝑦
𝑖

(−𝜂
𝑚𝑖
) and by applying the exponent

transformation

𝑦
𝑖
= exp (𝑥

𝑖
) , 𝑖 = 1, . . . , 𝑛

0
, (4)

to the formulation (SGP), we can obtain the following
equivalent problem:

(SGP1) :

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

min
𝑇
0

∑
𝑡=1

𝛿
0𝑡
exp(

𝑛
0

∑
𝑖=1

𝛾
0𝑡𝑖
𝑥
𝑖
)

s.t.
𝑇
𝑚

∑
𝑡=1

𝛿
𝑚𝑡

exp(
𝑛
0

∑
𝑖=1

𝛾
𝑚𝑡𝑖
𝑥
𝑖
) ≤ 0, 𝑚 = 1, . . . ,𝑀

0
,

𝑥 ∈ Ω = {𝑥 ∈ 𝑅𝑛0 | ln𝑦𝑙
𝑖
= 𝑥𝑙
𝑖
≤ 𝑥
𝑖
≤ 𝑥𝑢
𝑖

= ln𝑦𝑢
𝑖
, 𝑖 = 1, . . . , 𝑛

0
} .

(5)

Next, for convenience, for each 𝑚 = 0, 1, . . . ,𝑀
0
, we

assume, without loss of generality, that 𝛿
𝑚𝑡

> 0 for 𝑡 =

1, . . . , 𝐽
𝑚
and𝛿
𝑚𝑡

< 0 for 𝑡 = 𝐽
𝑚
+1, . . . , 𝑇

𝑚
, and somenotation

is introduced as follows:

𝐼
+

𝑡
= {𝑖 | 𝛾

0𝑡𝑖
> 0, 𝑖 = 1, . . . , 𝑛

0
} ,

𝐼
−

𝑡
= {𝑖 | 𝛾

0𝑡𝑖
< 0, 𝑖 = 1, . . . , 𝑛

0
} .

(6)

Thus, by using 𝐼+
𝑡
, 𝐼−
𝑡
, let us calculate

𝐿
𝑡
= ∑

𝑖∈𝐼
−

𝑡

𝛾
0𝑡𝑖

ln𝑦𝑢
𝑖

for each 𝑡 = 1, . . . , 𝐽
0
,

𝑈
𝑡
= ∑

𝑖∈𝐼
−

𝑡

𝛾
0𝑡𝑖

ln𝑦𝑙
𝑖

for each 𝑡 = 1, . . . , 𝐽
0
,

𝑙
𝑡
= ∑

𝑖∈𝐼
+

𝑡

𝛾
0𝑡𝑖

ln𝑦𝑙
𝑖

for each 𝑡 = 𝐽
0
+ 1, . . . , 𝑇

0
,

𝑢
𝑡
= ∑

𝑖∈𝐼
+

𝑡

𝛾
0𝑡𝑖

ln𝑦𝑢
𝑖

for each 𝑡 = 𝐽
0
+ 1, . . . , 𝑇

0
.

(7)

Then, by introducing some additional variables 𝑥
𝑖
, 𝑖 = 𝑛

0
+

1, . . . , 𝑛, with 𝑛 = 𝑛
0
+ 𝑇
0
, we can convert the problem

(SGP1)into
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(𝑃) :

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

min 𝐹
0
(𝑥) =

𝐽
0

∑
𝑡=1

𝛿
0𝑡
exp(∑

𝑖∈𝐼
+

𝑡

𝛾
0𝑡𝑖
𝑥
𝑖
+ 𝑥
𝑛
0
+𝑡
) +

𝑇
0

∑
𝑡=𝐽
0
+1

𝛿
0𝑡
exp(∑

𝑖∈𝐼
−

𝑡

𝛾
0𝑡𝑖
𝑥
𝑖
− 𝑥
𝑛
0
+𝑡
)

s.t.
𝐽
𝑚

∑
𝑡=1

𝛿
𝑚𝑡

exp(
𝑛
0

∑
𝑖=1

𝛾
𝑚𝑡𝑖
𝑥
𝑖
) +

𝑇
𝑚

∑
𝑡=𝐽
𝑚
+1

𝛿
𝑚𝑡

exp(
𝑛
0

∑
𝑖=1

𝛾
𝑚𝑡𝑖
𝑥
𝑖
) ≤ 0,

𝑚 = 1, . . . ,𝑀
0
,

𝑥
𝑛
0
+𝑡
− ∑

𝑖∈𝐼
−

𝑡

𝛾
0𝑡𝑖
𝑥
𝑖
≥ 0, 𝑡 = 1, . . . , 𝐽

0
,

𝑥
𝑛
0
+𝑡
+ ∑

𝑖∈𝐼
+

𝑡

𝛾
0𝑡𝑖
𝑥
𝑖
≥ 0, 𝑡 = 𝐽

0
+ 1, . . . , 𝑇

0
,

𝑥 ∈ 𝑋0,

(8)

where

𝑋
0

= {𝑥 ∈ 𝑅
𝑛
| 𝑥
𝑙

𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑢

𝑖
, 𝑖 = 1, . . . , 𝑛}

=
{

{

{

𝑥 ∈ 𝑅
𝑛

𝑥𝑙
𝑖
≤ 𝑥
𝑖
≤ 𝑥𝑢
𝑖
, 𝑖 = 1, . . . , 𝑛

0
,

𝐿
𝑖−𝑛
0

≤ 𝑥
𝑖
≤ 𝑈
𝑖−𝑛
0

, 𝑖 = 𝑛
0
+1, . . . , 𝑛

0
+𝐽
0
,

−𝑢
𝑖−𝑛
0

≤ 𝑥
𝑖
≤ −𝑙
𝑖−𝑛
0

, 𝑖 = 𝑛
0
+𝐽
0
+1, . . . , 𝑛,

}

}

}

.

(9)

Additionally, for the sake of simplicity, let𝑀 = 𝑀
0
+ 𝑇
0
; the

problem (𝑃) can be rewritten as the following form:

(𝑃) : min {𝐹
0
(𝑥) | 𝐹

+

𝑚
(𝑥) − 𝐹

−

𝑚
(𝑥) ≤ 0,

𝑚 = 1, . . . ,𝑀, 𝑥 ∈ 𝑋
0
} ,

(10)

where

𝐹
+

𝑚
(𝑥)

=

{{

{{

{

𝐽
𝑚

∑
𝑡=1

𝛿
𝑚𝑡

exp(
𝑛
0

∑
𝑖=1

𝛾
𝑚𝑡𝑖
𝑥
𝑖
) , 𝑚 = 1, . . . ,𝑀

0
,

0, 𝑚 = 𝑀
0
+ 1, . . . ,𝑀,

(11)

𝐹
−

𝑚
(𝑥)

=

{{{{{{{{{

{{{{{{{{{

{

−

𝑇
𝑚

∑
𝑡=𝐽
𝑚
+1

𝛿
𝑚𝑡

exp(
𝑛
0

∑
𝑖=1

𝛾
𝑚𝑡𝑖
𝑥
𝑖
) , 𝑚 = 1, . . . ,𝑀

0
,

𝑥
𝑚+𝑛
0
−𝑀
0

− ∑

𝑖∈𝐼
−

𝑚−𝑀
0

𝛾
0(𝑚−𝑀

0
)𝑖
𝑥
𝑖
, 𝑚 =𝑀

0
+1, . . . ,𝑀

0
+ 𝐽
0
,

𝑥
𝑚+𝑛
0
−𝑀
0

+ ∑

𝑖∈𝐼
+

𝑚−𝑀
0

𝛾
0(𝑚−𝑀

0
)𝑖
𝑥
𝑖
, 𝑚 =𝑀

0
+𝐽
0
+1, . . . ,𝑀.

(12)

Note that each function 𝐹
0
(𝑥), 𝐹+
𝑚
(𝑥), 𝐹−
𝑚
(𝑥) of problem

(𝑃) is increasing (i.e., a function 𝑓 : 𝑅𝑛 → 𝑅 is said to be
increasing if 𝑓(𝑥) ≤ 𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝑅𝑛 satisfying 𝑥

𝑖
≤ 𝑦
𝑖
,

𝑖 = 1, . . . , 𝑛). Thus problem (𝑃) is a monotonic optimization
problem, and the key equivalent result for problems (SGP)
and (𝑃) is given byTheorem 1.

Theorem 1. 𝑦∗ ∈ 𝑅𝑛0 is a global optimal solution for problem
(SGP) if and only if 𝑥∗ ∈ 𝑅𝑛 is a global optimal solution for
problem (P), where

𝑥
∗

𝑖
=

{{{{{{{{{{{

{{{{{{{{{{{

{

ln𝑦∗
𝑖
, 𝑖 = 1, . . . , 𝑛

0
,

∑

𝑖∈𝐼
−

𝑡

𝛾
0𝑡𝑖

ln𝑦∗
𝑖
, 𝑖 = 𝑛

0
+ 1, . . . , 𝑛

0
+ 𝐽
0
,

−∑

𝑖∈𝐼
+

𝑡

𝛾
0𝑡𝑖

ln𝑦∗
𝑖
, 𝑖 = 𝑛

0
+ 𝐽
0
+ 1, . . . , 𝑛.

(13)

Proof. The proof of this theorem follows easily from the
definitions of problems (SGP) and (𝑃); therefore, it is omitted
here.

From Theorem 1, notice that, in order to solve problem
(SGP), we may solve problem (𝑃) instead. In addition, it is
easy to see that the global optimal values of problems (SGP)
and (𝑃) are equal. Based on the above discussion, here, from
now on we assume that the original problem (SGP) has been
converted into the problem (𝑃); then a general approach will
be considered for solving problem (𝑃).

3. Key Algorithm Processes

To globally solve the problem (𝑃), a branch-reduce-bound
(BRB) algorithm will be proposed. This algorithm proceeds
according to the standard branch and bound scheme with
three key processes: branching, reducing, and bounding.

Thebranching process consists in a successive rectangular
partition of the initial box 𝑋

0 = [𝑥𝑙, 𝑥𝑢] following in an
exhaustive subdivision rule, that is, such that any infinite
nested sequence of partition sets generated through the algo-
rithm shrinks to a singleton. A commonly used exhaustive
subdivision rule is the standard bisection.

The reducing process consists in applying reduction
operations to reduce the size of the current partition set 𝑋 =
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[𝑎, 𝑏] ⊂ 𝑋0 = [𝑥𝑙, 𝑥𝑢]. The process aims at tightening the box
containing the feasible portion currently still of interest.

The bounding process consists in using the linearization
method to give a better lower bound.

Next, we begin to establish the approaches processes.

3.1. Lower Bound. At a given stage of the BRB algorithm for
(𝑃), let𝑋 = [𝑎, 𝑏] ⊂ 𝑋

0 be a rectangle during the partitioning
procedure and still of interest; we intend to compute a lower
bound LB(𝑋) of the optimal value of (𝑃) over𝑋. Restrict the
problem (𝑃) to𝑋:

𝑃 (𝑋) : min {𝐹
0
(𝑥) | 𝐹

𝑚
(𝑥) ≤ 0,𝑚 = 1, . . . ,𝑀, 𝑥 ∈ 𝑋} .

(14)

Denote the optimal objective function value of problem𝑃(𝑋)

by 𝑉[𝑃(𝑋)].
Since 𝐹

0
(𝑥) is increasing, an obvious bound is LB(𝑋) =

𝐹
0
(𝑎); although very simple, this bound suffices to ensure

convergence of the algorithm. However, the following proce-
dure may give a better bound.

Our main method for computing a lower bound of
𝑉[𝑃(𝑋)] over𝑋 is to solve the relaxation linear programming
of 𝑃(𝑋). The linear relaxation of the problem 𝑃(𝑋) can be
realized by underestimating every function 𝐹

0
(𝑥) and 𝐹+

𝑚
(𝑥)

and by overestimating every function 𝐹−
𝑚
(𝑥), for each 𝑚 =

1, . . . ,𝑀
0
. All the details for generating the linear relaxation

will be given in the following.
Denote

𝑋
0𝑡
=

{{{{{

{{{{{

{

∑

𝑖∈𝐼
+

𝑡

𝛾
0𝑡𝑖
𝑥
𝑖
+ 𝑥
𝑛
0
+𝑡
, 𝑡 = 1, . . . , 𝐽

0
,

∑

𝑖∈𝐼
−

𝑡

𝛾
0𝑡𝑖
𝑥
𝑖
− 𝑥
𝑛
0
+𝑡
, 𝑡 = 𝐽

0
+ 1, . . . , 𝑇

0
,

𝑋
𝑙

0𝑡
=

{{{{{

{{{{{

{

∑

𝑖∈𝐼
+

𝑡

𝛾
0𝑡𝑖
𝑎
𝑖
+ 𝑎
𝑛
0
+𝑡
, 𝑡 = 1, . . . , 𝐽

0
,

∑

𝑖∈𝐼
−

𝑡

𝛾
0𝑡𝑖
𝑏
𝑖
− 𝑏
𝑛
0
+𝑡
, 𝑡 = 𝐽

0
+ 1, . . . , 𝑇

0
,

𝑋
𝑢

0𝑡
=

{{{{{

{{{{{

{

∑

𝑖∈𝐼
+

𝑡

𝛾
0𝑡𝑖
𝑏
𝑖
+ 𝑏
𝑛
0
+𝑡
, 𝑡 = 1, . . . , 𝐽

0
,

∑

𝑖∈𝐼
−

𝑡

𝛾
0𝑡𝑖
𝑎
𝑖
− 𝑎
𝑛
0
+𝑡
, 𝑡 = 𝐽

0
+ 1, . . . , 𝑇

0
,

𝑋
𝑚𝑡

=

𝑛
0

∑
𝑖=1

𝛾
𝑚𝑡𝑖
𝑥
𝑖
, 𝑡 = 1, . . . , 𝑇

𝑚
,

𝑋
𝑙

𝑚𝑡
=

𝑛
0

∑
𝑖=1

𝛾
𝑚𝑡𝑖
𝑎
𝑖
, 𝑡 = 1, . . . , 𝑇

𝑚
,

𝑋
𝑢

𝑚𝑡
=

𝑛
0

∑
𝑖=1

𝛾
𝑚𝑡𝑖
𝑏
𝑖
, 𝑡 = 1, . . . , 𝑇

𝑚
,

(15)

where𝑚 = 1, . . . ,𝑀
0
. In addition, let

𝐴
𝑚𝑡

=
exp (𝑋𝑢

𝑚𝑡
) − exp (𝑋𝑙

𝑚𝑡
)

𝑋𝑢
𝑚𝑡
− 𝑋𝑙
𝑚𝑡

,

𝜃
𝑚𝑡
(𝑥) = exp (𝑋

𝑚𝑡
) ,

𝜃
𝑚𝑡
(𝑥) = 𝐴

𝑚𝑡
(𝑋
𝑚𝑡
− 𝑋
𝑙

𝑚𝑡
) + exp (𝑋𝑙

𝑚𝑡
) ,

𝜃
𝑚𝑡
(𝑥) = 𝐴

𝑚𝑡
(𝑋
𝑚𝑡
− ln𝐴

𝑚𝑡
+ 1) ,

(16)

where𝑚 = 0, 1, . . . ,𝑀
0
, 𝑡 = 1, . . . , 𝑇

𝑚
.

Theorem 2. Consider the functions 𝜃
𝑚𝑡
(𝑥), 𝜃

𝑚𝑡
(𝑥), and

𝜃
𝑚𝑡
(𝑥), for any 𝑥 ∈ 𝑋, where𝑚 = 0, . . . ,𝑀

0
and 𝑡 = 1, . . . , 𝑇

𝑚
.

Then the following two statements are valid.

(i) The function 𝜃
𝑚𝑡
(𝑥) is the concave envelope of the

function 𝜃
𝑚𝑡
(𝑥) over 𝑋, and the function 𝜃

𝑚𝑡
(𝑥) is a

supporting hyperplane of 𝜃
𝑚𝑡
(𝑥), which is parallel with

𝜃
𝑚𝑡
(𝑥). Moreover, the functions 𝜃

𝑚𝑡
(𝑥), 𝜃

𝑚𝑡
(𝑥), and

𝜃
𝑚𝑡
(𝑥) satisfy

𝜃
𝑚𝑡
(𝑥) ≤ 𝜃

𝑚𝑡
(𝑥) ≤ 𝜃

𝑚𝑡
(𝑥) , ∀𝑥 ∈ 𝑋. (17)

(ii) The differences Δ1
𝑚𝑡
(𝑥) = 𝜃

𝑚𝑡
(𝑥) − 𝜃

𝑚𝑡
(𝑥) and

Δ2
𝑚𝑡
(𝑥) = 𝜃

𝑚𝑡
(𝑥) − 𝜃

𝑚𝑡
(𝑥) satisfy max

𝑥∈𝑋
Δ1
𝑚𝑡
(𝑥) =

max
𝑥∈𝑋

Δ2
𝑚𝑡
(𝑥) = exp(𝑋𝑙

𝑚𝑡
)(1−𝑍

𝑚𝑡
+𝑍
𝑚𝑡

ln𝑍
𝑚𝑡
) →

0 𝑎𝑠 𝜔
𝑚𝑡

→ 0, where

𝜔
𝑚𝑡

= 𝑋
𝑢

𝑚𝑡
− 𝑋
𝑙

𝑚𝑡
, 𝑍

𝑚𝑡
=
exp (𝜔

𝑚𝑡
) − 1

𝜔
𝑚𝑡

. (18)

Proof. The proof is similar to Theorem 1 in [21]; therefore, it
is omitted here.

Remark 3. FromTheorem 2, we can follow that the functions
𝜃
𝑚𝑡
(𝑥) and 𝜃

𝑚𝑡
(𝑥) enough approximate the function 𝜃

𝑚𝑡
(𝑥)

as 𝜔
𝑚𝑡

→ 0, respectively.

FromTheorem 2, it is obvious that for all 𝑥 ∈ 𝑋 we have

𝐹
0
(𝑥) ≥ LF

0
(𝑥) =

𝐽
0

∑
𝑡=1

𝛿
0𝑡
𝜃
0𝑡
(𝑥) +

𝑇
0

∑
𝑡=𝐽
0
+1

𝛿
0𝑡
𝜃
0𝑡
(𝑥) ,

𝐹
+

𝑚
(𝑥) ≥ LF+

𝑚
(𝑥) =

𝐽
𝑚

∑
𝑡=1

𝛿
𝑚𝑡
𝜃
𝑚𝑡
(𝑥) ,

𝐹
−

𝑚
(𝑥) ≤ UF−

𝑚
(𝑥) = −

𝑇
𝑚

∑
𝑡=𝐽
𝑚
+1

𝛿
𝑚𝑡
𝜃
𝑚𝑡
(𝑥) ,

(19)

where𝑚 = 1, . . . ,𝑀
0
.
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Consequently, we obtain the following linear program-
ming RLP(𝑋) as a linear relaxation of 𝑃(𝑋) over the partition
set𝑋:

RLP (𝑋)

:

{{{{

{{{{

{

min LF
0
(𝑥)

s.t. LF+
𝑚
(𝑥) − UF−

𝑚
(𝑥) ≤ 0, 𝑚 = 1, . . . ,𝑀

0
,

𝐹+
𝑚
(𝑥) − 𝐹

−

𝑚
(𝑥) ≤ 0, 𝑚 = 𝑀

0
+ 1, . . . ,𝑀,

𝑥 ∈ 𝑋.

(20)

An important property of RLP(𝑋) is that its optimal value
𝑉[RLP(𝑋)] satisfies

𝑉 [RLP (𝑋)] ≤ 𝑉 [𝑃 (𝑋)] , (21)

and thus, from (21), the optimal value𝑉[RLP(𝑋)] of RLP(𝑋)
provides a valid lower bound for the optimal value 𝑉[𝑃(𝑋)]
of 𝑃(𝑋) over𝑋.

Based on the above discussion, for any rectangle 𝑋, in
order to obtain a lower bound LB(𝑋) of the optimal value
𝑉[𝑃(𝑋)] of the problem 𝑃(𝑋), we may compute LB(𝑋) such
that

LB (𝑋) = max {𝑉 [RLP (𝑋)] , 𝐹0 (𝑎)} . (22)

Clearly, LB(𝑋) defined in (22) satisfies

𝐹
0
(𝑎) ≤ LB (𝑋) ≤ 𝑉 [𝑃 (𝑋)] (23)

and is consistent. It can provide a valid lower bound and
guarantee convergence.

3.2. Reduction Operations. Clearly, the smaller the rectangle
𝑋 is, the tighter the lower bound LB(𝑋) of 𝑃(𝑋) will be, and
therefore the closer the feasible solution of (𝑃) will be to the
optimal solution of (𝑃). To show this, the next results give
two reduction operations (i.e., reduction rules A and B) to
reduce the size of this partitioned rectangle without losing
any feasible solution currently still of interest.

3.2.1. Reduction Rule A. Rule A is based on the monotonic
structure of the problem (𝑃). At a given stage of the BRB
algorithm for (𝑃), for a rectangle𝑋 = [𝑎, 𝑏] generated during
the partitioning procedure and still of interest, let UB be the
object function value of the best so far feasible solution to
problem (𝑃). Given an 𝜀 > 0, we want to find a feasible
solution𝑥 ∈ 𝑋 of (𝑃) such that𝐹

0
(𝑥) ≤ UB−𝜀 or else establish

that no such 𝑥 exists. So the search for such 𝑥 can then be
restricted to the set𝐻 ∩ [𝑎, 𝑏], where

𝐻 := {𝑥 | 𝐹
0
(𝑥) ≤ UB − 𝜀, 𝐹

𝑚
(𝑥) ≤ 0, 𝑚 = 1, . . . ,𝑀} .

(24)

The reduction rule aims at replacing the rectangle [𝑎, 𝑏]
with a smaller rectangle [𝑎󸀠, 𝑏󸀠] ⊂ [𝑎, 𝑏] without losing any
point 𝑥 ∈ 𝐻∩[𝑎, 𝑏], that is, such that𝐻∩[𝑎󸀠, 𝑏󸀠] = 𝐻∩[𝑎, 𝑏].

The rectangle [𝑎󸀠, 𝑏󸀠] satisfying this condition is denoted by
red][𝑎, 𝑏] with

] = UB − 𝜀. (25)

To illustrate how red][𝑎, 𝑏] = [𝑎󸀠, 𝑏󸀠] is deduced by this rule,
we first define the following functions.

Definition 4. Given two boxes [𝑎, 𝑏] and [𝑎󸀠, 𝑏󸀠]with [𝑎󸀠, 𝑏󸀠] ⊆
[𝑎, 𝑏], for 𝑖 = 1, . . . , 𝑛, 𝑚 = 1, . . . ,𝑀, the functions 𝜑𝑖

𝑚
(𝛼),

𝜓𝑖
𝑚
(𝛼), and 𝜓𝑖

0
(𝛼) : [0, 1] → 𝑅 are defined by

𝜑
𝑖

𝑚
(𝛼) = 𝐹

−

𝑚
(𝑏 − 𝛼 (𝑏

𝑖
− 𝑎
𝑖
) 𝑒
𝑖
) − 𝐹
+

𝑚
(𝑎) ,

𝜓
𝑖

𝑚
(𝛼) = 𝐹

+

𝑚
(𝑎
󸀠
+ 𝛼 (𝑏

𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) − 𝐹
−

𝑚
(𝑏) ,

𝜓
𝑖

0
(𝛼) = 𝐹

0
(𝑎
󸀠
+ 𝛼 (𝑏

𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) − ],

(26)

where 𝑒𝑖 denotes the 𝑖th unit vector of𝑅𝑛, that is, a vector such
that 𝑒𝑖
𝑖
= 1, 𝑒𝑖

𝑗
= 0, ∀𝑗 ̸= 𝑖, and the functions𝐹

0
(𝑥),𝐹+
𝑚
(𝑥), and

𝐹−
𝑚
(𝑥) are given in problem (𝑃), respectively.
Clearly, the functions 𝜑𝑖

𝑚
(𝛼), 𝜓𝑖

𝑚
(𝛼), and 𝜓𝑖

0
(𝛼) are either

constant or strictly monotonic over the interval [0,1) from
the properties of 𝐹−

𝑚
(𝑥), 𝐹+

𝑚
(𝑥), and 𝐹

0
(𝑥). By using these

functions, red][𝑎, 𝑏] can be given as follows.

Theorem 5. (i) If 𝐹
0
(𝑎) > ] or 𝐹+

𝑚
(𝑎) − 𝐹−

𝑚
(𝑏) > 0 for some

𝑚 = 1, . . . ,𝑀, then 𝑟𝑒𝑑][𝑎, 𝑏] = [𝑎󸀠, 𝑏󸀠] = 0.
(ii) If 𝐹

0
(𝑎) ≤ ] and 𝐹+

𝑚
(𝑎) − 𝐹−

𝑚
(𝑏) ≤ 0 for each 𝑚 =

1, . . . ,𝑀, then 𝑟𝑒𝑑][𝑎, 𝑏] = [𝑎󸀠, 𝑏󸀠], where

𝑎
󸀠
= 𝑏 −

𝑛

∑
𝑖=1

min
𝑚=1,...,𝑀

{𝛼
𝑖

𝑚
} (𝑏
𝑖
− 𝑎
𝑖
) 𝑒
𝑖
,

𝑏
󸀠
= 𝑎
󸀠
+

𝑛

∑
𝑖=1

min
𝑚=0,1,...,𝑀

{𝛽
𝑖

𝑚
} (𝑏
𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖

(27)

are given by

𝛼
𝑖

𝑚
= {

1, 𝑖𝑓 𝜑𝑖
𝑚
(1) ≥ 0

𝛼 𝑤𝑖𝑡ℎ 𝜑𝑖
𝑚
(𝛼) = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝛽
𝑖

𝑚
= {

1, 𝑖𝑓 𝜓𝑖
𝑚
(1) ≤ 0

𝛼 𝑤𝑖𝑡ℎ 𝜓𝑖
𝑚
(𝛼) = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(28)

Proof. (i) By the increasing property of 𝐹
0
(𝑥), 𝐹+

𝑚
(𝑥), and

𝐹−
𝑚
(𝑥), if 𝐹

0
(𝑎) > ], then 𝐹

0
(𝑥) ≥ 𝐹

0
(𝑎) > ] for every 𝑥 ∈

[𝑎, 𝑏]. If there exists𝑚 ∈ {1, . . . ,𝑀} such that𝐹+
𝑚
(𝑎)−𝐹−

𝑚
(𝑏) >

0, then 𝐹
𝑚
(𝑥) = 𝐹+

𝑚
(𝑥)−𝐹−

𝑚
(𝑥) ≥ 𝐹+

𝑚
(𝑎)−𝐹−

𝑚
(𝑏) > 0 for every

𝑥 ∈ [𝑎, 𝑏]. In both cases,𝐻 ∩ [𝑎, 𝑏] = 0.
(ii) Given any point 𝑥 ∈ [𝑎, 𝑏] satisfying

𝐹
0
(𝑥) ≤ ], 𝐹

+

𝑚
(𝑥) − 𝐹

−

𝑚
(𝑥) ≤ 0, 𝑚 = 1, . . . ,𝑀,

(29)

we will show that 𝑥 ∈ [𝑎󸀠, 𝑏󸀠]. Let

𝛼
𝑖

𝑚
󸀠 = min {𝛼𝑖

𝑚
| 𝑚 = 1, . . . ,𝑀} ,

𝛽
𝑖

𝑚
󸀠󸀠 = min {𝛽𝑖

𝑚
| 𝑚 = 0, 1, . . . ,𝑀} .

(30)
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Firstly, we will show that 𝑥 ≥ 𝑎󸀠. If 𝑥 ̸≥ 𝑎󸀠, then there
exists index 𝑖 such that

𝑥
𝑖
< 𝑎
󸀠

𝑖
= 𝑏
𝑖
− 𝛼
𝑖

𝑚
󸀠 (𝑏𝑖 − 𝑎𝑖) ,

i.e., 𝑥
𝑖
= 𝑏
𝑖
− 𝛼 (𝑏

𝑖
− 𝑎
𝑖
) with 𝛼

𝑖

𝑚
󸀠 < 𝛼 ≤ 1.

(31)

We consider the following two cases.

Case 1. If 𝛼𝑖
𝑚
󸀠 = 1, then from (31) we have 𝑥

𝑖
< 𝑎󸀠
𝑖
= 𝑏
𝑖
−

𝛼𝑖
𝑚
󸀠(𝑏𝑖 − 𝑎𝑖) = 𝑎

𝑖
, conflicting with 𝑥 ∈ [𝑎, 𝑏]; that is, 𝑥

𝑖
≥ 𝑎
𝑖
.

Case 2. If 0 ≤ 𝛼𝑖
𝑚
󸀠 < 1, the function 𝜑𝑖

𝑚
󸀠(𝛼) must be strictly

decreasing in single variable 𝛼 over the interval [0,1). If the
function 𝜑𝑖

𝑚
󸀠(𝛼) is not strictly decreasing in single variable 𝛼,

we get 𝜑𝑖
𝑚
󸀠(𝛼) must be a constant over the interval [0,1). In

this case, we have

𝜑
𝑖

𝑚
󸀠 (1) = 𝜑

𝑖

𝑚
󸀠 (0) = 𝐹

−

𝑚
󸀠 (𝑏) − 𝐹

+

𝑚
󸀠 (𝑎) ≥ 0. (32)

It follows from the definition of 𝛼𝑖
𝑚
󸀠 that 𝛼𝑖

𝑚
󸀠 = 1, contradict-

ing with 0 ≤ 𝛼𝑖
𝑚
󸀠 < 1.

Since the function 𝜑𝑖
𝑚
󸀠(𝛼) is strictly decreasing, it follows

from (31) and the definition of 𝛼𝑖
𝑚
󸀠 that

𝐹
−

𝑚
󸀠 (𝑏 − (𝑏𝑖 − 𝑥𝑖) 𝑒

𝑖
) − 𝐹
+

𝑚
󸀠 (𝑎)

= 𝐹
−

𝑚
󸀠 (𝑏 − 𝛼 (𝑏𝑖 − 𝑎𝑖) 𝑒

𝑖
) − 𝐹
+

𝑚
󸀠 (𝑎)

= 𝜑
𝑖

𝑚
󸀠 (𝛼) < 𝜑

𝑖

𝑚
󸀠 (𝛼
𝑖

𝑚
󸀠) = 0;

(33)

hence,

𝐹
−

𝑚
󸀠 (𝑏 − (𝑏𝑖 − 𝑥𝑖) 𝑒

𝑖
) < 𝐹
+

𝑚
󸀠 (𝑎) . (34)

In addition, since 𝐹−
𝑚
󸀠(𝑥) is an increasing function in 𝑛-

dimension variable 𝑥 and 𝑥 ≤ 𝑏 − (𝑏
𝑖
− 𝑥
𝑖
)𝑒𝑖, we have

𝐹
−

𝑚
󸀠 (𝑥) ≤ 𝐹

−

𝑚
󸀠 (𝑏 − (𝑏𝑖 − 𝑥𝑖) 𝑒

𝑖
) < 𝐹
+

𝑚
󸀠 (𝑎) , (35)

conflicting with 𝐹−
𝑚
󸀠(𝑥) ≥ 𝐹+

𝑚
󸀠(𝑥) ≥ 𝐹+

𝑚
󸀠(𝑎).

Based on the above discussion, we have 𝑥 ≥ 𝑎󸀠; that is,
𝑥 ∈ [𝑎󸀠, 𝑏] in either case.

Secondly, we also can show from 𝑥 ∈ [𝑎󸀠, 𝑏] that

𝑥 ≤ 𝑏
󸀠
, i.e., 𝑥 ∈ [𝑎󸀠, 𝑏󸀠] . (36)

Supposed that 𝑥 ≰ 𝑏󸀠, then there exists some 𝑖 such that

𝑥
𝑖
> 𝑏
󸀠

𝑖
= 𝑎
󸀠

𝑖
+ 𝛽
𝑖

𝑚
󸀠󸀠 (𝑏𝑖 − 𝑎

󸀠

𝑖
) ; (37)

that is, there exists 𝛼 such that

𝑥
𝑖
= 𝑎
󸀠

𝑖
+ 𝛼 (𝑏

𝑖
− 𝑎
󸀠

𝑖
) , 𝛽

𝑖

𝑚
󸀠󸀠 < 𝛼 ≤ 1. (38)

By the definition of 𝛽𝑖
𝑚
󸀠󸀠 , there are the following two cases to

consider.

Case 1. If 𝛽𝑖
𝑚
󸀠󸀠 = 1, then from (38) we have 𝑥

𝑖
> 𝑏󸀠
𝑖
= 𝑎󸀠
𝑖
+ (𝑏
𝑖
−

𝑎󸀠
𝑖
) = 𝑏
𝑖
, conflicting with 𝑥 ∈ [𝑎󸀠, 𝑏]; that is, 𝑥

𝑖
≤ 𝑏
𝑖
.

Case 2. If 0 ≤ 𝛽𝑖
𝑚
󸀠󸀠 < 1, the function 𝜓𝑖

𝑚
󸀠󸀠(𝛼) is strictly

increasing in single variable 𝛼. If the function 𝜓𝑖
𝑚
󸀠󸀠(𝛼) is not

strictly increasing in single variable 𝛼, we get 𝜓𝑖
𝑚
󸀠󸀠(𝛼)must be

a constant over the interval [0,1). In this case, we have
𝜓
𝑖

0
(1) = 𝜓

𝑖

0
(0) = 𝐹

0
(𝑎
󸀠
) − ] ≤ 0, (39)

or
𝜓
𝑖

𝑚
󸀠󸀠 (1) = 𝜓

𝑖

𝑚
󸀠󸀠 (0) = 𝐹

+

𝑚
󸀠󸀠 (𝑎
󸀠
) − 𝐹
−

𝑚
󸀠󸀠 (𝑏) ≤ 0. (40)

It follows from the definition of 𝛽𝑖
𝑚
󸀠󸀠 that 𝛽𝑖

𝑚
󸀠󸀠 = 1, which is a

contradiction with 0 ≤ 𝛽𝑖
𝑚
󸀠󸀠 < 1.

Since the function 𝜓𝑖
𝑚
󸀠󸀠(𝛼) is strictly increasing, from (31)

and the definition of 𝛽𝑖
𝑚
󸀠󸀠 , it implies that

𝐹
0
(𝑎
󸀠
+ 𝛼 (𝑏

𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) − ] = 𝜓

𝑖

0
(𝛼) > 𝜓

𝑖

0
(𝛽
𝑖

0
) = 0,

(41)
or

𝐹
+

𝑚
󸀠󸀠 (𝑎
󸀠
+ 𝛼 (𝑏

𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) − 𝐹
−

𝑚
󸀠󸀠 (𝑏)

= 𝜓
𝑖

𝑚
󸀠󸀠 (𝛼) > 𝜓

𝑖

𝑚
󸀠󸀠 (𝛽
𝑖

𝑚
󸀠󸀠) = 0.

(42)

Assume that (41) holds; we can derive from (38) that
𝐹
0
(𝑎
󸀠
+ (𝑥
𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) = 𝐹
0
(𝑎
󸀠
+ 𝛼 (𝑏

𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) > ].

(43)

It follows from 𝑥 ≥ 𝑎󸀠 + (𝑥
𝑖
− 𝑎󸀠
𝑖
)𝑒𝑖 and 𝐹

0
(𝑥) increasing that

𝐹
0 (𝑥) ≥ 𝐹

0
(𝑎
󸀠
+ (𝑥
𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) > ], (44)

conflicting with 𝐹
0
(𝑥) ≤ ].

If (42) holds, we obtain from (38) that

𝐹
+

𝑚
󸀠󸀠 (𝑎
󸀠
+ (𝑥
𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
)

= 𝐹
+

𝑚
󸀠󸀠 (𝑎
󸀠
+ 𝛼 (𝑏

𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) > 𝐹
−

𝑚
󸀠󸀠 (𝑏) ;

(45)

since 𝑥 ≥ 𝑎
󸀠 + (𝑥
𝑖
− 𝑎󸀠
𝑖
)𝑒𝑖 and 𝐹+

𝑚
󸀠󸀠(𝑥) is increasing, we have

𝐹
+

𝑚
󸀠󸀠 (𝑥) ≥ 𝐹

+

𝑚
󸀠󸀠 (𝑎
󸀠
+ (𝑥
𝑖
− 𝑎
󸀠

𝑖
) 𝑒
𝑖
) > 𝐹
−

𝑚
󸀠󸀠 (𝑏) . (46)

It is a contradiction with 𝐹+
𝑚
󸀠󸀠(𝑥) ≤ 𝐹−

𝑚
󸀠󸀠(𝑥) ≤ 𝐹−

𝑚
󸀠󸀠(𝑏).

From the above results, wemust have 𝑥 ≤ 𝑏󸀠; that is, 𝑥 ∈
[𝑎󸀠, 𝑏󸀠] in both cases, and this ends the proof.

Remark 6. Clearly, for any 𝑖 = 1, . . . , 𝑛, 𝛼𝑖
𝑚
(𝑚 = 1, . . . ,𝑀)

and 𝛽𝑖
𝑚
(𝑚 = 0, 1, . . . ,𝑀) defined in Theorem 5 must exist

and be unique, since the functions 𝐹
0
(𝑥), 𝐹+

𝑚
(𝑥), and 𝐹−

𝑚
(𝑥)

are all continuous and increasing.

3.2.2. Reduction Rule B. For any 𝑥 ∈ 𝑋 = (𝑋
𝑖
)
𝑛×1

with 𝑋
𝑖
=

[𝑎
𝑖
, 𝑏
𝑖
] (𝑖 = 1, . . . , 𝑛), without loss of generality, we assume the

above relaxation linear problem RLP(𝑋) can be rewritten as

RLP (𝑋) :

{{{{{{{{{{{{

{{{{{{{{{{{{

{

min
𝑛

∑
𝑖=1

𝜆
0𝑖
𝑥
𝑖
+ 𝑡
0

s.t.
𝑛

∑
𝑖=1

𝜆
𝑗𝑖
𝑥
𝑖
+ 𝑡
𝑗
≤ 0, 𝑗 = 1, . . . ,𝑀,

𝑥 ∈ 𝑋 ⊆ 𝑋0.

(47)
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Let

RL
𝑗
=

𝑛

∑
𝑖=1

min {𝜆
𝑗𝑖
𝑎
𝑖
, 𝜆
𝑗𝑖
𝑏
𝑖
} + 𝑡
𝑗
, 𝑗 = 0, 1, . . . ,𝑀, (48)

𝜌
𝑖
=
UB − RL

0
+min {𝜆

0𝑖
𝑎
𝑖
, 𝜆
0𝑖
𝑏
𝑖
}

𝜆
0𝑖

with 𝜆
0𝑖

̸= 0, (49)

𝜏
𝑗𝑖
=
−RL
𝑗
+min {𝜆

𝑗𝑖
𝑎
𝑖
, 𝜆
𝑗𝑖
𝑏
𝑖
}

𝜆
𝑗𝑖

with 𝜆
𝑗𝑖

̸= 0, (50)

where 𝑗 = 1, . . . ,𝑀, 𝑖 = 1, . . . , 𝑛.

Theorem 7. For any rectangle 𝑋 = (𝑋
𝑖
)
𝑛×1

⊆ 𝑋0, if 𝑅𝐿
0
>

𝑈𝐵, then there exists no optimal solution of 𝑅𝐿𝑃(𝑋0) over 𝑋;
otherwise, consider the following two cases: if there exists some
ℎ ∈ {1, . . . , 𝑛} satisfying 𝜆

0ℎ
> 0 and 𝜌

ℎ
< 𝑏
ℎ
, then there is

no optimal solution of 𝑅𝐿𝑃(𝑋0) over𝑋
𝑎
; conversely, if 𝜆

0ℎ
< 0

and 𝜌
ℎ
> 𝑎
ℎ
for some ℎ ∈ {1, . . . , 𝑛}, then there does not exist

optimal solution of RLP(𝑋0) over𝑋
𝑏
, where

𝑋
𝑎
= (𝑋
𝑎𝑖
)
𝑛×1

⊆ 𝑋
0

𝑤𝑖𝑡ℎ 𝑋
𝑎𝑖
=

{{

{{

{

𝑋
𝑖
, 𝑖𝑓 𝑖 ̸= ℎ,

(𝜌
ℎ
, 𝑏
ℎ
]⋂𝑋

ℎ
, 𝑖𝑓 𝑖 = ℎ,

𝑋
𝑏
= (𝑋
𝑏𝑖
)
𝑛×1

⊆ 𝑋
0

𝑤𝑖𝑡ℎ 𝑋
𝑏𝑖
=

{{

{{

{

𝑋
𝑖
, 𝑖𝑓 𝑖 ̸= ℎ,

[𝑎
ℎ
, 𝜌
ℎ
)⋂𝑋

ℎ
, 𝑖𝑓 𝑖 = ℎ.

(51)

Theorem 8. For any rectangle𝑋 = (𝑋
𝑖
)
𝑛×1

⊆ 𝑋0, if 𝑅𝐿
𝑗
(𝑥) >

0 for some 𝑗 ∈ {1, . . . ,𝑀}, then there exists no feasible solution
of problem 𝑅𝐿𝑃(𝑋0) over 𝑋, otherwise, consider the following
two cases: if there exists some index ℎ ∈ {1, . . . , 𝑛} and 𝑗 ∈

{1, . . . ,𝑀} satisfying 𝜆
𝑗ℎ

> 0 and 𝜏
𝑗ℎ

< 𝑏
ℎ
, then there is no

feasible solution of the problem 𝑅𝐿𝑃(𝑋0) over 𝑋
𝑐
; conversely,

if 𝜆
𝑗ℎ

< 0 and 𝜏
𝑗ℎ

> 𝑎
ℎ
for some 𝑗 ∈ {1, . . . ,𝑀} and ℎ ∈

{1, . . . , 𝑛}, then there exists no feasible solution of the problem
𝑅𝐿𝑃(𝑋0) over𝑋

𝑑
, where

𝑋
𝑐
= (𝑋
𝑐𝑖
)
𝑛×1

⊆ 𝑋
0

𝑤𝑖𝑡ℎ 𝑋
𝑐𝑖
= {

𝑋
𝑖
, 𝑖𝑓 𝑖 ̸= ℎ,

(𝜏
𝑗ℎ
, 𝑏
ℎ
]⋂𝑋

ℎ
, 𝑖𝑓 𝑖 = ℎ,

𝑋
𝑑
= (𝑋
𝑑𝑖
)
𝑛×1

⊆ 𝑋
0

𝑤𝑖𝑡ℎ 𝑋
𝑑𝑖
= {

𝑋
𝑖
, 𝑖𝑓 𝑖 ̸= ℎ,

[𝑎
ℎ
, 𝜏
𝑗ℎ
)⋂𝑋

ℎ
, 𝑖𝑓 𝑖 = ℎ.

(52)

Proof. The proof of the Theorems 7 and 8 is similar to
Theorems 2 and 3 in [27], respectively; therefore, it is omitted
here.

ByTheorems 7 and 8, we can give a new reduction rule B
to reject some regions in which the globally optimal solution
of RLP(𝑋0) does not exist.The computation procedure of this
rule is summarized as follows.

Step 1. Compute RL
0
in (48). If RL

0
> UB, let 𝑋 = 0;

otherwise, compute 𝜌
𝑖
(𝑖 = 1, . . . , 𝑛) in (49). If 𝜆

0ℎ
> 0

and 𝜌
ℎ
< 𝑏
ℎ
for some ℎ ∈ {1, . . . , 𝑛}, then let 𝑏

ℎ
= 𝜌
ℎ
and

𝑋 = (𝑋
𝑖
)
𝑛×1

with 𝑋
𝑖
= [𝑎
𝑖
, 𝑏
𝑖
] (𝑖 = 1, . . . , 𝑛). If 𝜆

0ℎ
< 0

and 𝜌
ℎ
> 𝑎
ℎ
for some ℎ ∈ {1, . . . , 𝑛}, then let 𝑎

ℎ
= 𝜌
ℎ
and

𝑋 = (𝑋
𝑖
)
𝑛×1

with𝑋
𝑖
= [𝑎
𝑖
, 𝑏
𝑖
] (𝑖 = 1, . . . , 𝑛).

Step 2. For any 𝑗 = 1, . . . ,𝑀, compute RL
𝑗
in (48). If RL

𝑗
> 0

for some 𝑗 ∈ {1, . . . ,𝑀}, then let 𝑋 = 0; otherwise, compute
𝜏
𝑗𝑖
in (50) (𝑗 = 1, . . . ,𝑀, 𝑖 = 1, . . . , 𝑛). If 𝜆

𝑗ℎ
> 0 and 𝜏

𝑗ℎ
< 𝑏
ℎ

for some 𝑗 ∈ {1, . . . ,𝑀} and ℎ ∈ {1, . . . , 𝑛}, then let 𝑏
ℎ
= 𝜏
𝑗ℎ

and 𝑋 = (𝑋
𝑖
)
𝑛×1

with 𝑋
𝑖
= [𝑎
𝑖
, 𝑏
𝑖
] (𝑖 = 1, . . . , 𝑛). If 𝜆

𝑗ℎ
< 0

and 𝜏
𝑗ℎ
> 𝑎
ℎ
for some 𝑗 ∈ {1, . . . ,𝑀} and ℎ ∈ {1, . . . , 𝑛}, then

let 𝑎
ℎ
= 𝜏
𝑗ℎ
and𝑋 = (𝑋

𝑖
)
𝑛×1

with𝑋
𝑖
= [𝑎
𝑖
, 𝑏
𝑖
] (𝑖 = 1, . . . , 𝑛).

Rule B provides a possibility to cut away all or a large
part of the rectangle𝑋 which is currently investigated by the
algorithm procedure.

4. Algorithm and Its Convergence

In this section, a branch-reduce-bound (BRB) algorithm is
developed to solve the problem (𝑃) based on the former
discussion. This method needs to solve a sequence of (RLP)
problems over partitioned subsets of𝑋0.

The BRB algorithm is based on partitioning the rectangle
𝑋0 into subrectangles, each concerned with a node of the
branch and bound tree.Hence, at any stage 𝑘 of the algorithm,
suppose that we have a collection of active nodes denoted
by T

𝑘
, that is, each associated with a rectangle 𝑋 ⊆ 𝑋0,

for all 𝑋 ∈ T
𝑘
. For each such node 𝑋 = [𝑎, 𝑏], we

will compute a lower bound LB(𝑋) of the optimal objective
function value of (𝑃) via the optimal value of the RLP(𝑋)
and 𝐹

0
(𝑎), so the lower bound of the optimal value of (𝑃) at

stage 𝑘 is given by min{LB(𝑋), ∀𝑋 ∈ T
𝑘
}. We now select

an active node to subdivide its associated rectangle into two
subrectangles according to the standard branch rule for each
new node, reducing it, and then compute the lower bound
as before. At the same time, if necessary, we will update the
upper boundUB

𝑘
. Upon fathoming any nonimproving node,

we obtain a collection of active nodes for the next stage, and
this process is repeated until convergence is obtained.

Algorithm 1. Consider the following steps.

Step 0 (Initialization). Choose the convergence tolerance 𝜀 >
0. Let P

0
= {𝑋0} and T

0
= {𝑋0}. If some feasible solutions

are available, add them to𝐻 and let UB
0
= min{𝐹

0
(𝑥) | 𝑥 ∈

𝐻}; otherwise, let𝐻 = 0 and UB
0
= +∞. Set 𝑘 = 0.

Step 1 (Reduction). (i) Delete every box [𝑎, 𝑏] ∈ P
𝑘
such that

𝐹
0
(𝑎) > UB

𝑘
−𝜀 or𝐹+

𝑚
(𝑎)−𝐹−

𝑚
(𝑏) > 0 for some𝑚 ∈ {1, . . . ,𝑀},

and denote the remaining still as P
𝑘
. If P

𝑘
̸= 0, apply the

reduction rule A described in Theorem 5 in Section 3.2 to
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each box [𝑎, 𝑏] ∈ P
𝑘
. Let P󸀠

𝑘
= {red][𝑎, 𝑏] | [𝑎, 𝑏] ∈ P

𝑘
}

with ] = UB
𝑘
− 𝜀.

(ii) If P󸀠
𝑘

̸= 0, for each box [𝑎, 𝑏] ∈ P󸀠
𝑘
that is currently

investigated, we use the reduction rule B in Section 3.2 to cut
away𝑋 and denote the left still asP󸀠󸀠

𝑘
.

Step 2 (Bounding). If P󸀠󸀠
𝑘

̸= 0, begin to do for each [𝑎, 𝑏] ∈

P󸀠󸀠
𝑘
the following.
(i) Solve the problem RLP(𝑋) to obtain the optimal

solution𝑥(𝑋) and the optimal value𝑉[RLP(𝑋)]. Let LB(𝑋) =
max{𝑉[RLP(𝑋)], 𝐹

0
(𝑎)}.

(ii) If 𝐹
𝑚
(𝑎) ≤ 0 for every 𝑚 = 1, . . . ,𝑀, then set 𝐻 =

𝐻 ∪ {𝑎}.
(iii) If 𝐹

0
(𝑏) > UB − 𝜀, compute a point 𝑥 = 𝑎 + 𝜃(𝑏 − 𝑎)

such that 𝐹
0
(𝑎 + 𝜃(𝑏 − 𝑎)) = UB − 𝜀; otherwise, let 𝑥 = 𝑏.

(iv) If 𝐻 ̸= 0, define the new upper bound UB
𝑘

=

min{𝐹
0
(𝑥) | 𝑥 ∈ 𝐻}, and the best known feasible point

is denoted by 𝑥∗ = argmin{𝐹
0
(𝑥) | 𝑥 ∈ 𝐻}. Set T

𝑘
=

(T
𝑘
\ 𝑋
𝑘
) ∪P󸀠󸀠

𝑘
.

Step 3 (Convergence Checking). SetT
𝑘+1

= T
𝑘
\{𝑋 | LB(𝑋) >

UB
𝑘
− 𝜀,𝑋 ∈ T

𝑘
}.

If T
𝑘+1

= 0, then stop: if UB
𝑘
= +∞, the problem is

infeasible; otherwise, UB
𝑘
is the optimal value and 𝑥∗ is the

optimal solution. Otherwise, select an active node 𝑋𝑘+1 =

arg min{LB(𝑋) | 𝑋 ∈ T
𝑘+1

} for further consideration.

Step 4 (Branching). Divide 𝑋𝑘+1 into two new subrectangles
using the standard branch rule and letP

𝑘+1
be the collection

of these two subrectangles. Set 𝑘 = 𝑘 + 1 and return to Step 1.

Convergence Analysis. In this subsection, we give the conver-
gence of the proposed algorithm. Assume that the number of
globally optimal solutions of (SGP) is finite. Then the above
proposed algorithm either terminates finitely at a globally
optimal solution or generates an infinite sequence of iteration
nodes. If the algorithm terminates at some iteration 𝑘, then
obviously the point 𝑥∗ is a globally optimal solution and UB
is the optimal value of problem (𝑃). If the algorithm is infinite,
its convergence is discussed as follows.

Theorem 9. Assume that the above algorithm is infinite; then
it generates an infinite sequence of iterations such that along
any infinite branch-and-bound tree any accumulation point of
the sequence {𝐿𝐵

𝑘
} will be the global minimum of problem (𝑃).

Proof. Since the algorithm is infinite, it generates an infinite
sequence {𝑋𝑘} such that a subsequence {𝑋𝑘𝑙} of {𝑋𝑘} satisfies
𝑋𝑘𝑙+1 ⊂ 𝑋𝑘𝑙 for 𝑙 = 1, 2, . . .. In this case, for every iteration
𝑘 = 0, 1, 2, . . ., from [28, 29] there is at least an infinite
subsequence {LB

𝑘
𝑙

} of {LB
𝑘
} such that

LB
𝑘
𝑙

⩽ min
𝑥∈𝑋

𝐹
0
(𝑥) , 𝑋

𝑘
𝑙 ∈ arg min

𝑋∈T
𝑘
𝑙

LB (𝑋) ,

𝑥
𝑘
𝑙 = 𝑥 (𝑋

𝑘
𝑙) ∈ 𝑋

𝑘
𝑙 ⊆ 𝑋
0
,

(53)

where 𝑋 denotes the feasible region of problem (𝑃). We
see from [28–30] that {LB

𝑘
𝑙

} is a nondecreasing sequence

bounded above by min
𝑥∈𝑋

𝐹
0
(𝑥), which guarantees the exis-

tence of the limit lim
𝑙→∞

LB
𝑘
𝑙

:= LB and LB ≤ min
𝑥∈𝑋

𝐹
0
(𝑥).

Since {𝑥𝑘𝑙} is an infinite sequence on a compact set, it follows
that there exists a convergent subsequence {𝑥𝑞} of {𝑥𝑘𝑙}
satisfying lim

𝑞→∞
𝑥
𝑞
= 𝑥, 𝑥

𝑞
∈ 𝑋
𝑞 and LB

𝑞
= LB(𝑋𝑞) =

LF
0
(𝑥𝑞), where {𝑋𝑞} is a subsequence of {𝑋𝑘𝑙}. The linear

functions LF
𝑗
(𝑗 = 0, 1, . . . ,𝑀) used in the problem RLP(𝑋)

are strongly consistent on 𝑋0. Thus, lim
𝑞→∞

LB
𝑞
= LB =

𝐹
0
(𝑥). All that remains is to show that 𝑥 ∈ 𝑋. Since 𝑋0 is

a closed set, it follows that 𝑥 ∈ 𝑋0. Suppose that 𝑥 ∉ 𝑋. Then
there exists some 𝐹

𝑗
, 𝑗 ∈ {1, . . . ,𝑀}, such that 𝐹

𝑗
(𝑥) = 𝛿 > 0.

Since LF
𝑗
(𝑥) is continuous, the sequence {LF

𝑗
(𝑥𝑞)} converges

to 𝐹
𝑗
(𝑥) as 𝑞 → ∞. By definition of convergence, ∃ 𝑞

𝛿
such

that |LF
𝑗
(𝑥𝑞) − 𝐹

𝑗
(𝑥)| < 𝛿 as 𝑞 > 𝑞

𝛿
, and so when 𝑞 > 𝑞

𝛿
,

LF
𝑗
(𝑥
𝑞
) > 0 implies that the problem RLP(𝑋) is infeasible.

This contradicts the assumption of 𝑥𝑞 = 𝑥(𝑋𝑞). Therefore,
𝑥 ∈ 𝑋; that is, LB = 𝐹

0
(𝑥) = min

𝑥∈𝑋
𝐹
0
(𝑥), and the proof is

complete.

5. Numerical Results

To verify the performance of the proposed algorithm, we will
give some computational results through ten test problems.
The algorithm is coded in Compaq Visual Fortran. The
simplex method is applied to solve the relaxation linear
programming problems. All test problems are implemented
in an Athlon(tm) CPU 2.31 GHz with 960MBRAM micro-
computer.

Example 1 (see [22, 31, 32]). Consider

min 𝑦
0.8

3
𝑦
1.2

4

s.t. 𝑦
1
𝑦
−1

4
+ 𝑦
−1

2
𝑦
−1

4
≤ 1,

− 𝑦
−2

1
𝑦
−1

3
− 𝑦
2
𝑦
−1

3
≤ 1,

0.1 ≤ 𝑦
1
≤ 1, 5 ≤ 𝑦

2
≤ 10,

8 ≤ 𝑦
3
≤ 15, 0.01 ≤ 𝑦

4
≤ 1.

(54)

Example 2 (see [22, 32]). Consider

min 𝑦
0

s.t. 3.7𝑦
−1

0
𝑦
0.85

1
+ 1.985𝑦

−1

0
𝑦
1
+ 700.3𝑦

−1

0
𝑦
−0.75

2
≤ 1,

0.7673𝑦
0.05

2
− 0.05𝑦

1
≤ 1, 5 ≤ 𝑦

0
≤ 15,

0.1 ≤ 𝑦
1
≤ 5, 380 ≤ 𝑦

2
≤ 450.

(55)

Example 3 (see [21, 22, 31, 33]). Consider

min 0.5𝑦
1
𝑦
−1

2
− 𝑦
1
− 5𝑦
−1

2

s.t. 0.01𝑦
2
𝑦
−1

3
+ 0.01𝑦

2
+ 0.0005𝑦

1
𝑦
3
≤ 1,

70 ≤ 𝑦
1
≤ 150, 1 ≤ 𝑦

2
≤ 30,

0.5 ≤ 𝑦
3
≤ 21.

(56)
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Example 4 (see [21, 22, 33]). Consider

min 168𝑦
1
𝑦
2
+ 3651.2𝑦

1
𝑦
2
𝑦
−1

3
+ 4 × 10

4
𝑦
−1

4

s.t. 1.0425𝑦
1
𝑦
−1

2
≤ 1,

3.5 × 10
−4
𝑦
1
𝑦
2
≤ 1,

1.25𝑦
−1

1
𝑦
4
+ 41.63𝑦

−1

1
≤ 1,

40 ≤ 𝑦
1
≤ 44, 40 ≤ 𝑦

2
≤ 45,

60 ≤ 𝑦
3
≤ 70, 0.1 ≤ 𝑦

4
≤ 1.4.

(57)

Example 5 (see [21, 22, 33]). Consider

min 5.3578𝑦
2

3
+ 0.8357𝑦

1
𝑦
5
+ 37.2392𝑦

1

s.t. 0.00002584𝑦
3
𝑦
5
− 0.00006663𝑦

2
𝑦
5

− 0.0000734𝑦
1
𝑦
4
≤ 1,

0.000853007𝑦
2
𝑦
5
+ 0.00009395𝑦

1
𝑦
4

− 0.00033085𝑦
3
𝑦
5
≤ 1,

1330.3294𝑦
−1

2
𝑦
−1

5
− 0.42𝑦

1
𝑦
−1

5

− 0.30586𝑦
−1

2
𝑦
2

3
𝑦
−1

5
≤ 1,

0.00024186𝑦
2
𝑦
5
+ 0.00010159𝑦

1
𝑦
2

+ 0.00007379𝑦
2

3
≤ 1,

2275.1327𝑦
−1

3
𝑦
−1

5
− 0.2668𝑦

1
𝑦
−1

5

− 0.40584𝑦
4
𝑦
−1

5
≤ 1,

0.00029955𝑦
3
𝑦
5
+ 0.00007992𝑦

1
𝑦
3

+ 0.00012157𝑦
3
𝑦
4
≤ 1,

78.0 ≤ 𝑦
1
≤ 102.0, 33.0 ≤ 𝑦

2
≤ 45.0,

27.0 ≤ 𝑦
3
≤ 45.0, 27.0 ≤ 𝑦

4
≤ 45.0,

27.0 ≤ 𝑦
5
≤ 45.0.

(58)

Example 6 (see [21, 24, 34]). Consider

min 5𝑥
1
+ 5 × 10

4
𝑥
−1

1
+ 46.2𝑥

2
+ 7.2 × 10

4
𝑥
−1

1

+ 1.44 × 10
5
𝑥
−1

3

s.t. 4𝑥
−1

1
+ 32𝑥

−1

2
+ 120𝑥

−1

3
≤ 1,

1 ≤ 𝑥
1
, 𝑥
2
, 𝑥
3
≤ 220.

(59)

Example 7 (see [24]). Consider

min −4𝑥
2
+ (𝑥
1
− 1)
2
+ 𝑥
2

2
− 10𝑥

2

3

s.t. 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
≤ 2,

(𝑥
1
− 2)
2
+ 𝑥
2

2
+ 𝑥
2

3
≤ 2,

2 − √2 ≤ 𝑥
1
≤ √2, −√2 ≤ 𝑥

2
≤ √2,

− √2 ≤ 𝑥
3
≤ √2.

(60)

Example 8 (see [22]). Consider

min 𝑥
12
(12.62626 − 1.231059𝑦

1
)

+ 𝑥
13
(12.62626 − 1.231059𝑥

2
)

+ 𝑥
14
(12.62626 − 1.231059𝑦

3
)

+ 𝑥
15
(12.62626 − 1.231059𝑥

4
)

+ 𝑥
16
(12.62626 − 1.231059𝑥

5
)

s.t. 𝑥
12
− 𝑥
11
≤ 0, 𝑥

11
− 𝑥
12
≤ 50,

𝑥
10
− 𝑥
4
≤ 0, 𝑥

9
− 𝑥
10
≤ 0,

𝑥
8
− 𝑥
9
≤ 0, 2𝑥

7
− 𝑥
1
≤ 1,

𝑥
3
− 𝑥
4
≤, 𝑥

3
𝑥
2
− 𝑥
3
≤ 0,

𝑥
1
− 𝑥
2
≤ 0,

𝑥
4
𝑥
16
− 50𝑥

4
− 𝑥
5
𝑥
16
≤ −450,

50𝑥
4
+ 𝑥
5
𝑥
16
+ 𝑥
10
𝑥
15
− 50𝑥

10

− 𝑥
4
𝑥
15
− 𝑥
4
𝑥
16
≤ 0,

50𝑥
10
+ 𝑥
4
𝑥
5
+ 𝑥
9
𝑥
14
− 50𝑥

9

− 𝑥
3
𝑥
14
− 𝑥
8
𝑥
15
≤ 0,

50𝑥
8
+ 50𝑥

9
+ 𝑥
3
𝑥
14
+ 𝑥
8
𝑥
13

− 𝑥
2
𝑥
13
− 𝑥
9
𝑥
14
≤ 500,

50𝑥
7
+ 𝑥
2
𝑥
13
+ 𝑥
7
𝑥
12
− 50𝑥

8

− 𝑥
1
𝑥
12
− 𝑥
8
𝑥
13
≤ 0,

50𝑥
8
+ 𝑥
1
𝑥
12
+ 𝑥
8
𝑥
13
− 50𝑥

7

− 𝑥
2
𝑥
13
− 𝑥
7
𝑥
12
≤ 0,

𝑥
6
𝑥
11
+ 𝑥
1
𝑥
12
+ 𝑥
7
𝑥
11
− 𝑥
6
𝑥
12
≤ 0,

100𝑥
6
+ 0.0975𝑥

2

1
− 3.475𝑥

1
− 9.75𝑥

1
𝑥
6
≤ 0,

100𝑥
7
+ 0.0975𝑥

2

2
− 3.475𝑥

2
− 9.75𝑥

2
𝑥
7
≤ 0,

100𝑥
8
+ 0.0975𝑥

2

3
− 3.475𝑥

3
− 9.75𝑥

3
𝑥
8
≤ 0,
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Table 1: The numerical results for Examples 1–4.

Example Optimal solution Optimal value Iter 𝜀

1

Ours (0.1, 9.9999, 8.0, 0.2) 0.7651 58 10−5

[22] (0.1, 9.9999, 8.0, 0.2) 0.7651 132 10−5

[31] (0.1015, 7.331972, 8.0169, 0.2395) 0.9514 175 10−5

[32] (0.1358, 9.9324, 8.6973, 0.2365) 1.0000 171 10
−5

2
Ours (7.8922, 0.1002, 450.0000) 7.8922 14 10

−2

[22] (12.0475, 0.8167, 444.9416) 12.0475 6472 10−2

[32] (11.9538, 0.8150, 445.1249) 11.9538 67 10−2

3

Ours (149.99608, 29.9530, 3.9456) −147.6591 156 10−2

[22] (150, 30, 4.9620) −147.6667 328 10
−2

[21] (88.724706796, 7.672652781, 1.317862596) −83.2497. . . 1829 10−2

[31] (88.6274, 7.9621, 1.3215) −83.6898 1754 10−2

[33] −83.2497, . . . 1809 10
−2

[24] (88.875643887, 7.5637589, 1.3124563877) −83.661573642 754 10−8

4

Ours (43.1601, 44.9944, 69.9968, 1.2241) 460224.676188 23 10−1

[22] (43.0473, 44.9317, 69.9359, 1.1338) 461200.00 968 10−1

[21] (43.0137, . . . , 44.8148, . . . , 66.4239, . . . , 1.1070, . . .) 623249.876, . . . 2100 10
−1

[33] 623249.8752, . . . 1717 10−1

[24] (43.0899785, 44.9997852, 66.419945664, 1.1069987564) 468479.996875421 1987 10−8

Table 2: The numerical results for Examples 5–10.

Example Optimal solution Optimal value Iter 𝜀

5

Ours (78.0, 33.0, 29.9957, 44.9999, 36.7753) 10122.4932 92 10−1

[22] (78.2135, 33.2135, 29.6588, 44.757, 37.6808) 10088.51 122 10−1

[21] (78, 32.9999, . . . , 29.9957, . . . , 45, 36.7753, . . .) 10122.4931, . . . 341 10
−1

[33] 10122.3811, . . . 204 10−1

[24] (78, 32.99998, 29.99737, 45, 36.77533) 10122.85643 324 10−4

6

Ours (175.3433, 74.119872, 219.9999) 5651.37804758 2319 10−6

[24] (109.32546781, 84.04821454, 214.32459429) 6217.46548921 612 10
−8

[21] (108.734706796, 85.126214158, 204.32459429) 6299.842427922 550
[34] (107.4, 84.9, 204.5) 6300.00

7 Ours (0.9999, 0.18181812, 0.98333213) −10.363636 837 10−6

[24] (0.99712235, 0.18184214, 0.98034321) −10.305022, . . . 3 10
−8

8 Ours (8.037732, 8.9999, 9, 9, 9, 1, 1, 1.15686, 1.15686, 1.15686, 50, 0, 1, 50, 50, 0) 156.2196 67 10
−5

[22] (8.03772, 9, 9, 9, 9, 1, 1, 1.1568, 1.1568, 1.1568, 50, 0, 1, 50, 50, 0) 156.2196 3 10
−5

9 Ours (5.0, 0.021584, 0.044603, 5.0) 5.8894162 3 10−1

[22] (4.99671, 0.02158, 0.044603, 4.99584) 5.888618 12097 10−1

10 Ours (5.0, 5.0, 0.13996, 1.177798, 0.94773) 28660.8648 2831 10−1

[22] (4.992904, 4.99136, 0.1460728, 1.173758, 0.95455) 28745.107539 12014 10
−1

100𝑥
9
+ 0.0975𝑥

2

4
− 3.475𝑥

4
− 9.75𝑥

4
𝑥
9
≤ 0,

100𝑥
10
+ 0.0975𝑥

2

5
− 3.475𝑥

5
− 9.75𝑥

5
𝑥
10
≤ 0,

𝑥 ≥ (1, 1, 9, 9, 9, 1, 1, 1, 1, 1, 50, 0, 1, 50, 50, 0) ,

𝑥 ≤ (8.037732, 9, 9, 9, 9, 1, 4.518866, 9, 9, 9, 100,

50, 50, 50, 50, 0) .

(61)

Example 9 (see [22]). Consider

min (3 + 𝑥
1
𝑥
3
) (𝑥
1
𝑥
2
𝑥
3
𝑥
4
+ 2𝑥
1
𝑥
3
+ 2)
2/3

s.t. − 3 (2𝑥
1
𝑥
2
+ 3𝑥
1
𝑥
2
𝑥
4
) (2𝑥
1
𝑥
3
+ 4𝑥
1
𝑥
4
− 𝑥
2
)

− (𝑥
1
𝑥
3
+ 3𝑥
1
𝑥
2
𝑥
4
)

× (4𝑥
3
𝑥
4
+ 4𝑥
1
𝑥
3
𝑥
4
+ 𝑥
1
𝑥
3
− 4𝑥
1
𝑥
2
𝑥
4
)
1/3
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+ 3 (𝑥
4
+ 3𝑥
1
𝑥
3
𝑥
4
)

× (3𝑥
1
𝑥
2
𝑥
3
+ 3𝑥
1
𝑥
4
+ 2𝑥
3
𝑥
4
− 3𝑥
1
𝑥
2
𝑥
4
)
1/4

≤ −309.219315,

− 2 (3𝑥
3
+ 3𝑥
1
𝑥
2
𝑥
3
) (𝑥
1
𝑥
2
𝑥
3
+ 4𝑥
2
𝑥
4
− 𝑥
3
𝑥
4
)
2

+ (3𝑥
1
𝑥
2
𝑥
3
) (3𝑥
3
+ 2𝑥
1
𝑥
2
𝑥
3
+ 3𝑥
4
)
4

− (𝑥
2
𝑥
3
𝑥
4
+ 𝑥
1
𝑥
3
𝑥
4
) (4𝑥
1
− 1)
3/4

− 3 (3𝑥
3
𝑥
4
+ 2𝑥
1
𝑥
3
𝑥
4
)

× (𝑥
1
𝑥
2
𝑥
3
𝑥
4
+ 𝑥
3
𝑥
4
− 4𝑥
1
𝑥
2
𝑥
3
− 2𝑥
1
)
4

≤ −78243.910551,

− 3 (4𝑥
1
𝑥
3
𝑥
4
) (2𝑥
4
+ 2𝑥
1
𝑥
2
− 𝑥
2
− 𝑥
3
)
2

+ 2 (𝑥
1
𝑥
2
𝑥
4
+ 3𝑥
1
𝑥
3
𝑥
4
)

× (𝑥
1
𝑥
2
+ 2𝑥
2
𝑥
3
+ 4𝑥
2
− 𝑥
2
𝑥
3
𝑥
4
− 𝑥
1
𝑥
3
)
4

≤ 9618,

0 ≤ 𝑥
𝑖
≤ 5, 𝑖 = 1, . . . , 4.

(62)

Example 10 (see [22]). Consider

min 4 (𝑥
2

1
𝑥
3
+ 2𝑥
2

1
𝑥
2
𝑥
2

3
𝑥
5
+ 2𝑥
2

1
𝑥
2
𝑥
3
)

× (5𝑥
2

1
𝑥
3
𝑥
2

4
𝑥
5
+ 3𝑥
2
)
3/5

+ 3 (2𝑥
2

4
𝑥
2

5
) (4𝑥
2

1
𝑥
4
+ 4𝑥
2
𝑥
5
)
5/3

s.t. − 2 (2𝑥
1
𝑥
5
+ 5𝑥
2

1
𝑥
2
𝑥
2

4
𝑥
5
) (3𝑥
1
𝑥
4
𝑥
2

5
+ 5 + 4𝑥

3
𝑥
2

5
)
1/2

≤ −7684.470329,

2 (2𝑥
1
𝑥
2

2
𝑥
3
𝑥
2

4
) (2𝑥
1
𝑥
2
𝑥
3
𝑥
2

4
+ 2𝑥
2
𝑥
2

4
𝑥
5
− 𝑥
2

1
𝑥
2

5
)
3/2

≤ 1286590.314422,

0 ≤ 𝑥
𝑖
≤ 5, 𝑖 = 1, . . . , 5.

(63)

Tables 1 and 2 summarize the computational results on the
above examples, where Iter denotes the number of algorithm
iteration.

From the computational results, we can see that the
proposed BRB algorithm can solve the problem (SGP) effec-
tively.This illustrates the potential advantage of the proposed
algorithm: not only is a feasible optimal solution obtained,
but also less computational effort may be required for finding
a better objective function value.

6. Conclusion

To globally solve the problem (SGP), a new branch-reduce-
bound algorithm is proposed, based on an equivalent mono-
tonic optimization problem and a linear relaxation method.
The algorithm can attain the global minimum through the
successive refinement of a linear relaxation and the subse-
quent solutions of a series of linear programming problems.
To improve the convergence speed, two range reduction
operations are proposed, which can cut away a large part of
the region in which the global optimal solution of (SGP) does
not exist. The convergence of the algorithm is proved and
numerical results are reported to vindicate the feasibility and
effectiveness of the proposed algorithm.
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