
Research Article
Risk Comparison of Improved Estimators in a Linear Regression
Model with Multivariate 𝑡 Errors under Balanced Loss Function

Guikai Hu,1,2 Qingguo Li,1 and Shenghua Yu3

1 School of Mathematics and Econometrics, Hunan University, Changsha 410082, China
2 School of Science, East China Institute of Technology, Nanchang 330013, China
3 School of Economics and Trade, Hunan University, Changsha 410079, China

Correspondence should be addressed to Qingguo Li; liqingguoli@yahoo.com.cn

Received 10 January 2014; Accepted 8 April 2014; Published 6 May 2014

Academic Editor: Francesco Pellicano

Copyright © 2014 Guikai Hu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Under a balanced loss function, we derive the explicit formulae of the risk of the Stein-rule (SR) estimator, the positive-part Stein-
rule (PSR) estimator, the feasible minimum mean squared error (FMMSE) estimator, and the adjusted feasible minimum mean
squared error (AFMMSE) estimator in a linear regression model with multivariate 𝑡 errors.The results show that the PSR estimator
dominates the SR estimator under the balanced loss andmultivariate 𝑡 errors. Also, our numerical results show that these estimators
dominate the ordinary least squares (OLS) estimator when the weight of precision of estimation is larger than about half, and vice
versa. Furthermore, the AFMMSE estimator dominates the PSR estimator in certain occasions.

1. Introduction

In the literature, many statisticians have studied the risk
comparisons of various estimators in the linear model with
normal errors and have generated substantial results. How-
ever, the assumption of normality restricts the range of pos-
sible applications. The multivariate 𝑡 distributions are more
realistic and accurate than multivariate normal distributions
inmodeling real-word data due to their heavy tails.Moreover,
multivariate 𝑡 distribution plays an important role in robust
statistical inference. Therefore, various inference problems
based on these distributions have been studied.The sampling
performance of estimators is an important aspect among
them.

Let us now consider a linear regression model

𝑦 = 𝑋𝛽 + 𝑢, (1)

where 𝑦 is an 𝑛 × 1 vector of observations on a dependent
variable. 𝑋 is an 𝑛 × 𝑘 full rank matrix of observations.
𝛽 is a 𝑘 × 1 vector of coefficients. We assume that 𝑢 has

a multivariate 𝑡 distribution with the probability density
function given by

𝑃 (𝑢 | 𝛼, 𝜎) =
𝑔 (𝛼)

(𝜎
2
)
𝑛/2

1

(𝛼 + 𝑢
󸀠
𝑢/𝜎
2
)
(𝑛+𝛼)/2

, (2)

where 𝑔(𝛼) = 𝛼
𝛼/2
Γ((𝛼 + 𝑛)/2)/𝜋

𝑛/2
Γ(𝛼/2). It is well known

that its mean vector and covariance matrix are given by

𝐸 (𝑢) = 0, for 𝛼 > 1,

𝐸 (𝑢𝑢
󸀠
) =

𝛼𝜎
2

(𝛼 − 2)
𝐼
𝑛
, for 𝛼 > 2.

(3)

As is shown in Zellner [1], the multivariate 𝑡 distribution can
be viewed as a mixture of multivariate normal and inverted
gamma distributions:

𝑃 (𝑢 | 𝛼, 𝜎) = ∫

∞

0

𝑃
𝑁
(𝑢 | 𝜏) ⋅ 𝑃

𝐼𝐺
(𝜏 | 𝛼, 𝜎) 𝑑𝜏, (4)
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where
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𝑁
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/2)
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Γ (𝛼/2)
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2

2𝜏
2
) .

(5)

The ordinary least squares (OLS) estimator of 𝛽 is
𝑏 = 𝑆
−1
𝑋
󸀠
𝑦, where 𝑆 = 𝑋

󸀠
𝑋. Also, the Stein-rule (SR)

estimator is

𝑏SR = (1 −
𝑎𝑒
󸀠
𝑒

𝑏
󸀠
𝑆𝑏
) 𝑏, (6)

where 𝑒 = 𝑦 − 𝑋𝑏, V = 𝑛 − 𝑘, and 𝑎 is a constant such that
0 ≤ 𝑎 ≤ 2(𝑘 − 2)/(V + 2). Under the mean squared error of
prediction, Stein [2] and James and Stein [3] proved that the
SR estimator dominates theOLS estimatorwhen the numbers
of explanatory variables are more than two and the MSE of
the SR estimator is minimized if 𝑎 = (𝑘 − 2)/(V + 2). Thus, we
use this value of 𝑎 hereafter. From then on, lots of improved
estimators have been proposed. For example, Baranchik [4]
proposed the positive-part Stein-rule (PSR) estimator defined
as

𝑏PSR = max[0, 1 − 𝑎𝑒
󸀠
𝑒

𝑏
󸀠
𝑆𝑏
] 𝑏. (7)

Farebrother [5] proposed the feasible minimum mean
squared error (FMMSE) estimator which is

𝑏FMMSE = (
𝑏
󸀠
𝑆𝑏

𝑏
󸀠
𝑆𝑏 + 𝑒

󸀠
𝑒/V

)𝑏. (8)

Further, Ohtani [6] extended the FMMSE estimator to the
adjusted feasible minimum mean squared error (AFMMSE)
estimator by adjusting the degrees of the freedom of the com-
ponent of the FMMSE estimator. The AFMMSE estimator is

𝑏AFMMSE = (
𝑏
󸀠
𝑆𝑏/𝑘

𝑏
󸀠
𝑆𝑏/𝑘 + 𝑒

󸀠
𝑒/V

)𝑏. (9)

Some results related to the comparisons of these esti-
mators have been established. For example, Giles [7] con-
sidered the pretest estimator for linear restrictions. Namba
[8] studied the PMSE performance of the biased estimators
in a regression model when relevant regressors are omitted.
Namba and Ohtani [9] gave the risk comparison of the
Stein-rule estimator under the Pitman nearness criterion.
There is a common characteristic in their studies. That is,
the used loss functions were the quadratic function and
its variants. However, in regression analysis, we are often
interested in using an estimator which has high precision of
estimation and high goodness of fit ofmodel. In this situation,
Zellner [10] proposed a balanced loss function which takes
account of both precision of estimation and goodness of
fit. Balanced loss function is a more comprehensive and
reasonable standard than quadratic loss and residual sum of

squares. Much work has been done about the balanced loss
risk comparisons of improved estimators in the normal linear
model. Some examples are Giles et al. [11], Ohtani et al. [12],
Ohtani [13], and so on.Their results show that SR estimator is
not admissible and is dominated by PSR estimator. However,
do the conclusions still hold under multivariate 𝑡 errors
and balanced loss function? And, do these estimators still
dominate the OLS estimator? It is interesting to discuss them
undermultivariate 𝑡 distributions and balanced loss function.
Thus, we will give the explicit formulae for the balanced
loss risk of these estimators and compare their sampling
performance by theoretical and numerical analysis. In the
next section, the explicit formulae of balanced loss risk of
these estimators are derived. In Section 3,we compare the risk
performance by numerical evaluations. The proofs of main
results are given in Section 4.

2. Balanced Loss Function and Risk

In order to discuss the performance of considered estimators,
we consider the balanced loss function as

𝐿 (𝛽, 𝛽) = 𝜃(𝑦 − 𝑋𝛽)
󸀠

(𝑦 − 𝑋𝛽) + (1 − 𝜃)

× (𝑋𝛽 − 𝑋𝛽)
󸀠

(𝑋𝛽 − 𝑋𝛽) ,

(10)

where 𝜃 is a scalar such that 0 ≤ 𝜃 ≤ 1, and 𝛽 is any estimator
of 𝛽. The corresponding risk function is 𝑅(𝛽) = 𝐸[𝐿(𝛽, 𝛽)].
Since 𝑢 has a multivariate 𝑡 distribution which can be viewed
as the mixture of multivariate normal and inverted gamma
distribution, we have

𝑅 (𝛽) = 𝐸 [𝐿 (𝛽, 𝛽)] = 𝐸
𝜏
𝐸 [𝐿 (𝛽, 𝛽) | 𝜏] . (11)

If the null hypothesis is 𝐻
0
: 𝛽 = 0 and the alternative is

𝐻
1
:𝛽 ̸= 0, then the test statistic for𝐻

0
is𝐹 = (𝑏

󸀠
𝑆𝑏/𝑘)/(𝑒

󸀠
𝑒/V).

In the same way as that of Namba [8], we consider the general
pretest estimator as

𝛽 = 𝐼 (𝐹 ≥ 𝑐) (1 + 𝛾
𝑒
󸀠
𝑒

𝑏
󸀠
𝑆𝑏
)

𝜔

𝑏, (12)

where 𝐼(𝐴) is an indicator function such that 𝐼(𝐴) = 1 if an
event 𝐴 occurs and 𝐼(𝐴) = 0 otherwise. 𝑐 is the critical value
of the pretest, and𝜔 is an arbitrary integer.The term𝛽 reduces
to the SR estimator when 𝑐 = 0, 𝛾 = −𝑎, and 𝜔 = 1, and
it reduces to the PSR estimator when 𝑐 = 𝑎V/𝑘, 𝛾 = −𝑎, and
𝜔 = 1. Furthermore,𝛽 reduces to the FMMSEestimatorwhen
𝑐 = 0, 𝛾 = 1/V, and 𝜔 = −1, and it reduces to the AFMMSE
estimator when 𝑐 = 0, 𝛾 = 𝑘/V, and 𝜔 = −1, respectively.

To derive the formulae of 𝑅(𝛽), we first compute
𝐸[𝐿(𝛽, 𝛽) | 𝜏], assuming that 𝜏 is given. If we denote 𝑢

1
=

𝑏
󸀠
𝑆𝑏/𝜏
2,𝑢
2
=𝑒
󸀠
𝑒/𝜏
2, then𝑢

1
∼ 𝜒
2

𝑘
(𝜆
1
), and𝑢

2
∼ 𝜒
2

𝑛−𝑘
for given

𝜏, where 𝜆
1
= 𝛽
󸀠
𝑆𝛽/𝜏
2, 𝜒2
𝑓
(𝜆) is the noncentral chi-square

distribution with 𝑓 degrees of freedom and noncentrality
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parameter 𝜆. Thus, using 𝑢
1
and 𝑢

2
, we define the functions

𝐻(𝑝, 𝑞, 𝛾, 𝑐) and 𝐽(𝑝, 𝑞, 𝛾, 𝑐) as

𝐻(𝑝, 𝑞, 𝛾, 𝑐) = 𝐸 [𝐼 (
V
𝑘
⋅
𝑢
1

𝑢
2

≥ 𝑐)(
𝑢
1
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2

𝑢
1

)

𝑝

𝑢
𝑞

1
| 𝜏] ,
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= 𝐸[𝐼 (
V
𝑘
⋅
𝑢
1

𝑢
2

≥ 𝑐)(
𝑢
1
+ 𝛾𝑢
2

𝑢
1

)

𝑝

𝑢
𝑞

1

𝛽
󸀠
𝑆𝑏

𝜏
2

| 𝜏] ,

(13)

where 𝑝, 𝑞 are arbitrary integers. By direct computation, we
have
𝐸 [𝐿 (𝛽, 𝛽) | 𝜏]

= 𝜃 [𝛽
󸀠
𝑆𝛽 + 𝑛𝜏

2
− 2𝜏
2
𝐻(𝜔, 1, 𝛾, 𝑐) + 𝜏

2
𝐻(2𝜔, 1, 𝛾, 𝑐)]

+ (1 − 𝜃) [𝜏
2
𝐻(2𝜔, 1, 𝛾, 𝑐) − 2𝜏

2
𝐽 (𝜔, 0, 𝛾, 𝑐) + 𝛽

󸀠
𝑆𝛽] .

(14)

In the following, we first give one lemma in order to obtain
the explicit formulae of risk.

Lemma 1. The explicit formulae of 𝐻(𝑝, 𝑞, 𝛾, 𝑐) and
𝐽(𝑝, 𝑞, 𝛾, 𝑐) are

𝐻(𝑝, 𝑞, 𝛾, 𝑐) =

∞

∑

𝑖=0

𝑤
𝑖
(𝜆
1
) 𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐) ,

𝐽 (𝑝, 𝑞, 𝛾, 𝑐) = 𝜆
1

∞

∑

𝑖=0

𝑤
𝑖
(𝜆
1
) 𝐺
𝑖+1

(𝑝, 𝑞, 𝛾, 𝑐) ,

(15)

where 𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐) = (2

𝑞
Γ(𝑛/2 + 𝑖 + 𝑞)/Γ(𝑘/2 +

𝑖)Γ(V/2)) ∫
1

𝑐
∗
𝑡
𝑘/2+𝑖+𝑞−𝑝−1

(1 − 𝑡)
V/2−1

[𝛾 + (1 − 𝛾)𝑡]
𝑝
𝑑𝑡,

𝑤
𝑖
(𝜆) = exp(−𝜆/2)(𝜆/2)𝑖/𝑖!, and 𝑐∗ = 𝑘𝑐/(𝑘𝑐 + V).

By this lemma and (11) and (14), we have the following
theorem.

Theorem 2. Under model (1) and loss function (10), the risk of
the general pretest estimator 𝛽 is

𝑅 (𝛽) = 𝛽
󸀠
𝑆𝛽 + 𝑛𝜃𝜎

2 𝛼
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+
𝜎
2

2

𝛼
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×
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.

(16)

According to this theorem, we can obtain the risk of SR,
PSR, FMMSE, and AFMMSE estimators, respectively, and
discuss their dominance properties. Firstly, we analyze the
dominance properties between SR and PSR estimators.

Theorem 3. The PSR estimator dominates the SR estimator in
terms of balanced loss risk when the error term of the model
obeys a multivariate 𝑡 distribution.

When the error term obeyed a multivariate normal
distribution, Baranchik [4] proved that the PSR estimator
dominated uniformly the SR estimator under the quadratic
loss, and Ohtani [13] also proved that the SRSV estimator
dominated uniformly the SR estimator under a balanced loss
function. This theorem shows that when the loss function is
extended to a balanced loss function, the dominance of the
PSR estimator over the SR estimator still holds even if the
error term obeys a multivariate 𝑡 distribution. This implies
that the SR estimator is not admissible under a balanced loss
function and multivariate 𝑡 errors.

Since further theoretical analysis of the risk of the SR,
PSR, FMMSE, and AFMMSE estimators is difficult, we will
compare them by numerical analysis in the next section.

3. Numerical Analysis

In order to compare the balanced loss risk of the estima-
tors, we evaluated the values of relative risk defined by
(𝑅(𝛽)/𝜎

2
)/(𝑅(𝑏)/𝜎

2
). Thus, the estimator 𝛽 has smaller risk

than the OLS estimator when the value of relative risk is
smaller than unity. By Theorem 2, we can obtain the risks
of the OLS, SR, PSR, FMMSE, and AFMMSE estimators,
respectively. In the following, taking 𝜃

1
= 𝛽
󸀠
𝑆𝛽/𝜎
2, the

parameter values used in the numerical evaluations are 𝜃
1
=

various values, 𝜃 = 0, 0.25, 0.5, 0.75, 1, 𝑛 = 20, 30, 40, 𝑘 =

3, 5, 8, and 𝛼 = 3, 5, 7, 10, 20. The numerical evaluations are
executed on a personal computer using Version 7.9 (R2009b)
MATLAB Software. In order to evaluate the integral in the
risk expressions of these estimators, we use Trapezoidal
method with 1000 equal subdivisions. Following the method
used byNamba [8], the infinite series in these risk expressions
is judged to converge when the increment of the infinite
series becomes smaller than 10−12. Now, we give the relative
risk of the SR, PSR, FMMSE, and AFMMSE estimators for
the case of 𝑛 = 20, 𝑘 = 5, 𝜃 = 0, 0.25, 0.5, 0.75, 1, 𝜃

1
=

0, 1, 2, 4, 6, 8, 10, 15, 20, and 𝛼 = 3, 20 in Tables 1 and 2,
respectively. According to Tables 1 and 2, it is sufficient to
illustrate the result of Theorem 3. That is, the PSR estimator
dominates the SR estimator under a balanced loss even if
the error term obeys a multivariate 𝑡 distribution. We also
find that when precision of estimation is more important
(i.e., 𝜃 < 0.5), the SR and PSR estimators dominate the OLS
estimator under the balanced loss function, and vice versa.
This shows that the dominance of the SR and PSR estimators
over the OLS estimator is not robust about the loss func-
tion. From Table 1, the FMMSE and AFMMSE estimators
dominate the OLS estimator when the weight of precision
of estimation is larger than about half, and vice versa.
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Table 1: Relative risk of the SR, PSR, FMMSE, and AFMMSE
estimators for 𝑛 = 20, 𝑘 = 5 and 𝛼 = 3.

𝜃
1

𝜃

0 0.25 0.5 0.75 1
SR

0 0.4705 0.8234 0.9999 1.1058 1.1764
1 0.5015 0.8338 0.9999 1.0996 1.1661
2 0.5262 0.8420 1.0000 1.0947 1.1579
4 0.5640 0.8546 1.0000 1.0872 1.1453
6 0.5923 0.8641 1.0000 1.0815 1.1358
8 0.6148 0.8716 1.0000 1.0770 1.1284
10 0.6333 0.8778 1.0000 1.0733 1.1222
15 0.6686 0.8895 1.0000 1.0663 1.1104
20 0.6942 0.8980 1.0000 1.0611 1.1019

PSR
0 0.3533 0.7255 0.9116 1.0233 1.0977
1 0.3918 0.7437 0.9196 1.0252 1.0955
2 0.4231 0.7582 0.9258 1.0263 1.0934
4 0.4715 0.7804 0.9349 1.0275 1.0893
6 0.5079 0.7968 0.9413 1.0279 1.0857
8 0.5367 0.8096 0.9461 1.0280 1.0826
10 0.5603 0.8200 0.9499 1.0278 1.0798
15 0.6050 0.8395 0.9567 1.0271 1.0740
20 0.6371 0.8533 0.9614 1.0262 1.0695

FMMSE
0 0.7254 0.8680 0.9394 0.9821 1.0107
1 0.7391 0.8747 0.9425 0.9832 1.0104
2 0.7503 0.8802 0.9451 0.9841 1.0101
4 0.7680 0.8888 0.9492 0.9855 1.0096
6 0.7816 0.8954 0.9523 0.9865 1.0092
8 0.7926 0.9008 0.9548 0.9873 1.0089
10 0.8019 0.9052 0.9569 0.9879 1.0086
15 0.8197 0.9139 0.9609 0.9892 1.0080
20 0.8329 0.9202 0.9639 0.9901 1.0076

AFMMSE
0 0.3357 0.7042 0.8885 0.9991 1.0728
1 0.3641 0.7186 0.8959 1.0022 1.0731
2 0.3885 0.7308 0.9020 1.0047 1.0732
4 0.4285 0.7508 0.9119 1.0086 1.0730
6 0.4605 0.7666 0.9196 1.0114 1.0726
8 0.4871 0.7795 0.9258 1.0135 1.0720
10 0.5096 0.7905 0.9309 1.0152 1.0713
15 0.5541 0.8119 0.9407 1.0180 1.0696
20 0.5875 0.8277 0.9478 1.0198 1.0679

This indicates that the dominance results of the FMMSE and
AFMMSE estimators over the OLS estimator do not hold
necessarily under the balanced loss function. It is easy to see
that the risk of the AFMMSE estimator is much smaller than
the risks of the SR and PSR estimators if 𝜃 < 0.5. However,
the AFMMSE estimator does not dominate the FMMSE
estimator under the balanced loss function when 𝜃 ≥ 0.75.

Table 2: Relative risk of the SR, PSR, FMMSE, and AFMMSE
estimators for 𝑛 = 20, 𝑘 = 5 and 𝛼 = 20.

𝜃
1

𝜃

0 0.25 0.5 0.75 1
SR

0 0.4705 0.8234 0.9999 1.1058 1.1764
1 0.5537 0.8512 1.0000 1.0892 1.1487
2 0.6176 0.8725 1.0000 1.0765 1.1274
4 0.7074 0.9025 1.0000 1.0585 1.0975
6 0.7662 0.9221 1.0000 1.0468 1.0779
8 0.8068 0.9356 1.0000 1.0386 1.0644
10 0.8362 0.9454 1.0000 1.0328 1.0546
15 0.8823 0.9608 1.0000 1.0235 1.0392
20 0.9087 0.9696 1.0000 1.0183 1.0304

PSR
0 0.3533 0.7255 0.9116 1.0233 1.0977
1 0.4568 0.7743 0.9331 1.0283 1.0918
2 0.5386 0.8122 0.9490 1.0311 1.0858
4 0.6560 0.8653 0.9699 1.0327 1.0745
6 0.7329 0.8988 0.9818 1.0316 1.0648
8 0.7852 0.9209 0.9888 1.0295 1.0566
10 0.8220 0.9359 0.9929 1.0271 1.0499
15 0.8771 0.9574 0.9976 1.0216 1.0377
20 0.9066 0.9682 0.9991 1.0176 1.0299

FMMSE
0 0.7254 0.8680 0.9394 0.9821 1.0107
1 0.7621 0.8860 0.9479 0.9851 1.0099
2 0.7914 0.9003 0.9547 0.9874 1.0091
4 0.8348 0.9213 0.9646 0.9906 1.0079
6 0.8648 0.9359 0.9714 0.9927 1.0069
8 0.8864 0.9463 0.9762 0.9942 1.0062
10 0.9025 0.9540 0.9798 0.9952 1.0055
15 0.9288 0.9666 0.9855 0.9968 1.0044
20 0.9444 0.9740 0.9888 0.9977 1.0036

AFMMSE
0 0.3357 0.7042 0.8885 0.9991 1.0728
1 0.4122 0.7429 0.9083 1.0075 1.0736
2 0.4767 0.7752 0.9245 1.0140 1.0737
4 0.5783 0.8255 0.9492 1.0234 1.0728
6 0.6535 0.8622 0.9666 1.0292 1.0710
8 0.7105 0.8896 0.9791 1.0328 1.0686
10 0.7548 0.9105 0.9883 1.0350 1.0661
15 0.8297 0.9447 1.0023 1.0368 1.0598
20 0.8748 0.9645 1.0093 1.0361 1.0541

In sum, our results show that when the loss function
and error terms are extended from the usual quadratic loss
function and normal distribution to balanced loss function
and multivariate 𝑡 distribution, the dominance of the PSR
estimator over the SR estimator is robust. However, the
dominance of these estimators over the OLS estimator is not
robust.
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4. Proof of Main Results

Proof of Lemma 1. For given 𝜏, 𝑢
1
∼ 𝜒
2

𝑘
(𝜆
1
) and 𝑢

2
∼ 𝜒
2

𝑛−𝑘
;

meanwhile, 𝑢
1
and 𝑢

2
are mutually independent. Therefore,

we have

𝐻(𝑝, 𝑞, 𝛾, 𝑐) = 𝐸 [𝐼 (
V
𝑘

𝑢
1

𝑢
2

≥ 𝑐)(
𝑢
1
+ 𝛾𝑢
2

𝑢
1

)

𝑝

𝑢
𝑞

1
| 𝜏]

=

∞

∑

𝑖=0

𝑤
𝑖
(𝜆
1
)

(1/2)
𝑛/2+𝑖

Γ (𝑘/2 + 𝑖) Γ (V/2)

×∬

𝑅

(𝑢
1
+ 𝛾𝑢
2
)
𝑝

𝑢
𝑘/2+𝑖+𝑞−𝑝−1

1
𝑢
V/2−1
2

× exp(−𝑢1 + 𝑢2
2

) 𝑑𝑢
1
𝑑𝑢
2
,

(17)

where 𝑅 is the region such that (V/𝑘)(𝑢
1
/𝑢
2
) ≥ 𝑐.

Making use of the change of variables, V
1
= 𝑢
1
/𝑢
2
, V
2
=

𝑢
2
, the integral in (17) reduces to

∫

∞

𝑘𝑐/V
∫

∞

0

V𝑘/2+𝑖+𝑞−𝑝−1
1

V𝑛/2+𝑖+𝑞−1
2

(V
1
+ 𝛾)
𝑝

× exp(−
V
2
(1 + V

1
)

2
) 𝑑V
2
𝑑V
1
.

(18)

Again,making use of the change of variables, 𝑧 = V
2
(1+V
1
)/2,

V
1
= V
1
, the integral in (18) becomes

2
𝑛/2+𝑖+𝑞

Γ (
𝑛

2
+ 𝑖 + 𝑞)

× ∫

∞

𝑘𝑐/V
V𝑘/2+𝑖+𝑞−𝑝−1
1

(V
1
+ 𝛾)
𝑝

(1 + V
1
)
−(𝑛/2+𝑖+𝑞)

𝑑V
1
.

(19)

Further,making use of the change of a variable, 𝑡 = V
1
/(1+V

1
),

the integral in (19) reduces to

∫

1

𝑘𝑐/(𝑘𝑐+V)
𝑡
𝑘/2+𝑖+𝑞−𝑝−1

[𝛾 + (1 − 𝛾) 𝑡]
𝑝

(1 − 𝑡)
V/2−1

𝑑𝑡. (20)

By (17)–(20), we have

𝐻(𝑝, 𝑞, 𝛾, 𝑐) =

∞

∑

𝑖=0

𝑤
𝑖
(𝜆
1
) 𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐) . (21)

Next, we derive the formula for 𝐽(𝑝, 𝑞, 𝛾, 𝑐). Noting that
𝜕𝜆
1
/𝜕𝛽 = 2𝑆𝛽/𝜏

2 and differentiating𝐻(𝑝, 𝑞, 𝛾, 𝑐)with respect
to 𝛽, we have

𝜕𝐻 (𝑝, 𝑞, 𝛾, 𝑐)

𝜕𝛽
=

∞

∑

𝑖=0

𝜕𝑤
𝑖
(𝜆
1
)

𝜕𝛽
𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐)

= −
𝑆𝛽

𝜏
2
𝐻(𝑝, 𝑞, 𝛾, 𝑐)

+
𝑆𝛽

𝜏
2

∞

∑

𝑖=0

𝑤
𝑖
(𝜆
1
) 𝐺
𝑖+1

(𝑝, 𝑞, 𝛾, 𝑐) .

(22)

Since𝑢
1
= 𝑏
󸀠
𝑆𝑏/𝜏
2 and 𝑏 ∼ 𝑁(𝛽, 𝜏

2
(𝑋
󸀠
𝑋)
−1
),𝐻(𝑝, 𝑞, 𝛾, 𝑐)

can be expressed as

𝐻(𝑝, 𝑞, 𝛾, 𝑐) = ∬

𝑅

(
𝑢
1
+ 𝛾𝑢
2

𝑢
1

)

𝑝

𝑢
𝑞

1
𝑓
1
(𝑏) 𝑓
2
(𝑢
2
) 𝑑𝑢
2
𝑑𝑏,

(23)

where 𝑓
2
(𝑢
2
) is the density function of 𝑢

2
and

𝑓
1
(𝑏) =

1

(2𝜋)
𝑘/2󵄨󵄨󵄨󵄨󵄨

𝜏
2
(𝑋
󸀠
𝑋)
−1󵄨󵄨󵄨󵄨󵄨

1/2

× exp[−
(𝑏 − 𝛽)

󸀠

𝑋
󸀠
𝑋(𝑏 − 𝛽)

2𝜏
2

] .

(24)

Differentiating (23) with respect to 𝛽, we have

𝜕𝐻 (𝑝, 𝑞, 𝛾, 𝑐)

𝜕𝛽

= ∬

𝑅

(
𝑢
1
+ 𝛾𝑢
2

𝑢
1

)

𝑝

𝑢
𝑞

1
𝑓
1
(𝑏) 𝑓
2
(𝑢
2
)
𝑆𝑏 − 𝑆𝛽

𝜏
2

𝑑𝑢
2
𝑑𝑏

= ∬

𝑅

(
𝑢
1
+ 𝛾𝑢
2

𝑢
1

)

𝑝

𝑢
𝑞

1
𝑓
1
(𝑏) 𝑓
2
(𝑢
2
)
𝑆𝑏

𝜏
2
𝑑𝑢
2
𝑑𝑏

−
𝑆𝛽

𝜏
2
𝐻(𝑝, 𝑞, 𝛾, 𝑐) ,

(25)

which together with (22) yields that

∬

𝑅

(
𝑢
1
+ 𝛾𝑢
2

𝑢
1

)

𝑝

𝑢
𝑞

1
𝑓
1
(𝑏) 𝑓
2
(𝑢
2
)
𝑆𝑏

𝜏
2
𝑑𝑢
2
𝑑𝑏

=
𝑆𝛽

𝜏
2

∞

∑

𝑖=0

𝑤
𝑖
(𝜆
1
) 𝐺
𝑖+1

(𝑝, 𝑞, 𝛾, 𝑐) .

(26)

Multiplying 𝛽󸀠 from the left of the above, we have

𝐽 (𝑝, 𝑞, 𝛾, 𝑐) = 𝜆
1

∞

∑

𝑖=0

𝑤
𝑖
(𝜆
1
) 𝐺
𝑖+1

(𝑝, 𝑞, 𝛾, 𝑐) . (27)

This completes the proof of this lemma.

Proof of Theorem 2. By Lemma 1, we have

𝐸
𝜏
[𝜏
2
𝐻(𝑝, 𝑞, 𝛾, 𝑐)]

=

∞

∑

𝑖=0

𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐) ∫

∞

0

𝜏
2
𝑤
𝑖
(𝜆
1
) 𝑃
𝐼𝐺
(𝜏 | 𝛼, 𝜎) 𝑑𝜏

=

∞

∑

𝑖=0

𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐)

𝑖!

𝛼
𝛼/2
𝜂
𝑖

1

Γ (𝛼/2)
2
1−𝛼/2−𝑖

𝜎
𝛼

× ∫

∞

0

𝜏
−(𝛼−1+2𝑖) exp(−

𝜂
1
+ 𝛼𝜎
2

2𝜏
2

)𝑑𝜏,

(28)
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where 𝜂
1
= 𝛽
󸀠
𝑆𝛽. Making use of the change of a variable, 𝑡

1
=

(𝜂
1
+ 𝛼𝜎
2
)/2𝜏
2, (28) becomes

𝜎
2

2

∞

∑

𝑖=0

𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐)

𝑖!

𝛼
𝛼/2

Γ (𝛼/2)

× Γ (
𝛼

2
+ 𝑖 − 1) (

𝜂
1

𝜎
2
)

𝑖

(
𝜂
1

𝜎
2
+ 𝛼)

−𝛼/2−𝑖+1

.

(29)

Taking 𝜃
1
= 𝜂
1
/𝜎
2, (29) becomes

𝜎
2

2

𝛼
𝛼/2

Γ (𝛼/2)

∞

∑

𝑖=0

𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐)

𝑖!

Γ (𝛼/2 + 𝑖 − 1) 𝜃
𝑖

1

(𝜃
1
+ 𝛼)
𝛼/2+𝑖−1

, (30)

which together with (28) and (29) yields

𝐸
𝜏
[𝜏
2
𝐻(𝑝, 𝑞, 𝛾, 𝑐)] =

𝜎
2

2

𝛼
𝛼/2

Γ (𝛼/2)

×

∞

∑

𝑖=0

𝐺
𝑖
(𝑝, 𝑞, 𝛾, 𝑐)

𝑖!

Γ (𝛼/2 + 𝑖 − 1) 𝜃
𝑖

1

(𝜃
1
+ 𝛼)
𝛼/2+𝑖−1

.

(31)

In a similar way, we have

𝐸
𝜏
[𝜏
2
𝐽 (𝑝, 𝑞, 𝛾, 𝑐)]

= 𝜎
2 𝛼
𝛼/2

Γ (𝛼/2)

∞

∑

𝑖=0

𝐺
𝑖+1

(𝑝, 𝑞, 𝛾, 𝑐)

𝑖!

Γ (𝛼/2 + 𝑖) 𝜃
𝑖+1

1

(𝜃
1
+ 𝛼)
𝛼/2+𝑖

.

(32)

Obviously, we have 𝐸
𝜏
(𝜏
2
) = 𝜎

2
(𝛼/(𝛼 − 2)). This together

with (11), (14), (31), and (32) yields the expression of𝑅(𝛽).The
proof of this theorem is completed.

Proof of Theorem 3. ByTheorem 2, let 𝛾 = −𝑎, 𝜔 = 1; we have

𝑅 (𝛽) = 𝛽
󸀠
𝑆𝛽 + 𝑛𝜃𝜎

2 𝛼

𝛼 − 2
+
𝜎
2

2

𝛼
𝛼/2

Γ (𝛼/2)

×

∞

∑

𝑖=0

𝐺
𝑖
(2, 1, −𝑎, 𝑐)

𝑖!

Γ (𝛼/2 + 𝑖 − 1) 𝜃
𝑖

1

(𝜃
1
+ 𝛼)
𝛼/2+𝑖−1

− 𝜃𝜎
2 𝛼
𝛼/2

Γ (𝛼/2)

∞

∑

𝑖=0

𝐺
𝑖
(1, 1, −𝑎, 𝑐)

𝑖!

Γ (𝛼/2 + 𝑖 − 1) 𝜃
𝑖

1

(𝜃
1
+ 𝛼)
𝛼/2+𝑖−1

− 2 (1 − 𝜃) 𝜎
2 𝛼
𝛼/2

Γ (𝛼/2)

×

∞

∑

𝑖=0

𝐺
𝑖+1

(1, 0, −𝑎, 𝑐)

𝑖!

Γ (𝛼/2 + 𝑖) 𝜃
𝑖+1

1

(𝜃
1
+ 𝛼)
𝛼/2+𝑖

.

(33)

Since

𝜕 ∫
1

𝑐
∗
𝑡
𝑘/2+𝑖+𝑞−𝑝−1

(1 − 𝑡)
V/2−1

[𝛾 + (1 − 𝛾) 𝑡]
𝑝

𝑑𝑡

𝜕𝑐

= −(
𝑘𝑐

𝑘𝑐 + V
)

𝑘/2+𝑖+𝑞−𝑝−1

(1 −
𝑘𝑐

𝑘𝑐 + V
)

V/2−1

× [𝛾 + (1 − 𝛾)
𝑘𝑐

𝑘𝑐 + V
]

𝑝
𝑘V

(𝑘𝑐 + V)2
,

(34)

hence, differentiating (33) with respect to 𝑐 and performing
some manipulations, we have

𝜕𝑅 (𝛽)

𝜕𝑐
= 𝜎
2 𝛼
𝛼/2

Γ (𝛼/2)

×

∞

∑

𝑖=0

Γ (𝑛/2 + 𝑖 + 1) Γ (𝛼/2 + 𝑖 − 1) 𝜃
𝑖

1

Γ (𝑘/2 + 𝑖) Γ (V/2) (𝜃
1
+ 𝛼)
𝛼/2+𝑖−1

𝑖!

×
(𝑘𝑐)
𝑘/2+𝑖−1VV/2−1

(𝑘𝑐 + V)𝑛/2+𝑖−1
× [−𝑎 + (1 + 𝑎)

𝑘𝑐

𝑘𝑐 + V
]

× { − [−𝑎 + (1 + 𝑎)
𝑘𝑐

𝑘𝑐 + V
] + 2𝜃

𝑘𝑐

𝑘𝑐 + V

+2 (1 − 𝜃)
𝑘𝑐

𝑘𝑐 + V
(𝛼/2 + 𝑖 − 1) 𝜃

1

(𝑘/2 + 𝑖) (𝜃
1
+ 𝛼)

} .

(35)

From (35), when 𝛾 = −𝑎, 𝜔 = 1, a condition for 𝑅(𝛽) to be
monotonically decreasing is

−𝑎 + (1 + 𝑎)
𝑘𝑐

𝑘𝑐 + V
≤ 0. (36)

Thus, 𝑅(𝛽) is monotonically decreasing on 𝑐 ∈ [0, 𝑎V/𝑘] if
𝛾 = −𝑎, 𝜔 = 1. Since 𝛽 becomes the SR estimator when 𝛾 =

−𝑎, 𝜔 = 1, and 𝑐 = 0 and it reduces to the PSR estimator when
𝛾 = −𝑎, 𝜔 = 1, and 𝑐 = 𝑎V/𝑘, the PSR estimator dominates
the SR estimator. This completes the proof.
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