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By establishing the equivalence, respectively, to the existence and uniqueness of positive periodic solutions for corresponding delay
Nicholson-type systems without impulses, some criteria for the existence and uniqueness of positive periodic solutions for a class
of Nicholson-type systems with impulses and delays are established. The results of this paper extend some earlier works reported
in the literature.

1. Introduction

As we know, in order to describe the dynamics of Nicholson’s
blowflies, Gurney et al. [1] proposed a mathematical model

𝑁
󸀠

(𝑡) = −𝛿𝑁 (𝑡) + 𝑃𝑁 (𝑡 − 𝜏) 𝑒
−𝑎𝑁(𝑡−𝜏)

,
(1)

where 𝑁(𝑡) is the size of the population at time 𝑡, 𝑃 is the
maximum per capita daily egg production, 1/𝑎 is the size at
which the population reproduces at itsmaximum rate, 𝛿 is the
per capita daily adult death rate, and 𝜏 is the generation time.
Nicholson’s blowflies model described by delay differential
equation (1) belongs to a class of biological system, and
more andmore biology systems have attractedmore attention
because of their extensively realistic significance [2–6]. In
particular, the effects of a periodically varying environment
are important for evolutionary theory, as the selective forces
on systems in a fluctuating environment differ from those in
a stable environment. There have been some results in the
literature of the problem of the existence of positive periodic
solutions for Nicholson’s blowflies equation [7–11].

Recently, in order to describe the models of marine
protected areas and B-cell chronic lymphocytic leukemia

dynamics which are examples of Nicholson-type delay differ-
ential systems, Berezansky et al. [12], Wang et al. [13], and Liu
[14] studied the following Nicholson-type delay systems:

𝑁
󸀠

1
(𝑡) = −𝛼
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1
(𝑡) + 𝛽
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(𝑡)𝑁
2
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+

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡)𝑁
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝛾
1𝑗
(𝑡)𝑁
1
(𝑡−𝜏
1𝑗
(𝑡))
,

𝑁
󸀠

2
(𝑡) = −𝛼

2
(𝑡)𝑁
2
(𝑡) + 𝛽

2
(𝑡)𝑁
1
(𝑡)

+

𝑚

∑

𝑗=1

𝑐
2𝑗
(𝑡)𝑁
2
(𝑡 − 𝜏
2𝑗
(𝑡)) 𝑒
−𝛾
2𝑗
(𝑡)𝑁
2
(𝑡−𝜏
2𝑗
(𝑡))
,

(2)

where 𝛼
𝑖
(𝑡), 𝛽

𝑖
(𝑡), 𝑐
𝑖𝑗
(𝑡), 𝛾
𝑖𝑗
(𝑡), and 𝜏

𝑖𝑗
(𝑡) ∈ 𝐶(𝑅, (0,∞)),

𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑚. For coefficients and delays that are
constants, Berezansky et al. [12] presented several results for
the permanence and globally asymptotic stability of system
(2). Supposing that 𝛼

𝑖
(𝑡), 𝛽

𝑖
(𝑡), 𝑐
𝑖𝑗
(𝑡), 𝛾
𝑖𝑗
(𝑡), and 𝜏

𝑖𝑗
(𝑡) are

almost periodic functions, Wang et al. [13] obtained some
criteria to ensure that the solutions of system (2) converge
locally exponentially to a positive almost periodic solution.
Furthermore, Liu [14] established some criteria for existence
and uniqueness of positive periodic solutions of system (2) by
applying the method of the Lyapunov functional.



2 Abstract and Applied Analysis

However, besides delay effects, impulsive effects likewise
exist widely in many evolution processes in which states
are changed abruptly at certain moment of time, involving
such fields as medicine and biology, economics, mechanics,
electronics, and telecommunications. That was the reason
for the development of the theory of impulsive differential
equations. We refer the reader to the monographs [15–17]. In
practical, Yan [18] provided the method for studying a class
of impulsive differential equations by changing impulsive
equations into corresponding equations without impulses.

Therefore, it is necessary and reasonable to consider
impulsive effects on the existence and uniqueness of positive
periodic solutions for Nicholson-type delay systems (2).
However, to the best of our knowledge, there are few results
of this problem. Thus, techniques and methods of existence
and uniqueness of positive periodic solutions for system (2)
with impulsive effects should be developed and explored.

In this paper, we consider a class of Nicholson-type
systems with impulses and delays

𝑦
󸀠

1
(𝑡) = −𝛼

1
(𝑡) 𝑦
1
(𝑡) + 𝛽

1
(𝑡) 𝑦
2
(𝑡)

+

𝑚

∑

𝑗=1
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(𝑡) 𝑦
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
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1𝑗
(𝑡)𝑦
1
(𝑡−𝜏
1𝑗
(𝑡))
,

𝑦
󸀠

2
(𝑡) = −𝛼

2
(𝑡) 𝑦
2
(𝑡) + 𝛽

2
(𝑡) 𝑦
1
(𝑡) +

𝑚

∑

𝑗=1

𝑐
2𝑗
(𝑡) 𝑦
2

⋅ (𝑡 − 𝜏
2𝑗
(𝑡)) 𝑒
−𝛾
2𝑗
(𝑡)𝑦
2
(𝑡−𝜏
2𝑗
(𝑡))
, 𝑡 ≥ 0, 𝑡 ̸= 𝑡

𝑘
,

𝑦
𝑖
(𝑡
+

𝑘
) = (1 + 𝑏

𝑘
) 𝑦
𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, 𝑘 = 1, 2, . . . ,

(3)

where 𝛼
𝑖
(𝑡), 𝛽
𝑖
(𝑡), 𝑐
𝑖𝑗
(𝑡), 𝛾
𝑖𝑗
(𝑡), 𝜏
𝑖𝑗
(𝑡) ∈ 𝐶([0,∞), (0,∞)), 𝑖 =

1, 2, 𝑗 = 1, 2, . . . , 𝑚. Δ𝑦
𝑖
(𝑡
𝑘
) = 𝑦
𝑖
(𝑡
+

𝑘
) − 𝑦
𝑖
(𝑡
−

𝑘
) are the impulses

at moments 𝑡
𝑘
.

In (3), we will use the following hypotheses:

(𝐴
1
) 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ are fixed impulsive points with

lim
𝑘→∞

𝑡
𝑘
= ∞;

(𝐴
2
) {𝑏
𝑘
} is a real sequence and 𝑏

𝑘
> −1, 𝑘 = 1, 2, . . .;

(𝐴
3
) 𝛼
𝑖
(𝑡), 𝛽
𝑖
(𝑡), 𝑐
𝑖𝑗
(𝑡), 𝛾
𝑖𝑗
(𝑡), 𝜏
𝑖𝑗
(𝑡), and∏

0<𝑡
𝑘
<𝑡
(1 + 𝑏

𝑘
) are

periodic functions with common periodic 𝜔 > 0, 𝑖 =
1, 2, 𝑗 = 1, 2, . . . , 𝑚, and 𝑘 = 1, 2, . . ..

Here and in the sequel we assume that a product equals
unit if the number of factor is equal to zero. We will only
consider the solutions of (3) with initial values given by

𝑦
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝜑

𝑖
(0) > 0, (4)

where 𝜑
𝑖
(𝑠) ∈ 𝐶([−𝜏, 0], [0,∞)), and 𝜏 = max{𝜏+

𝑖𝑗
}, 𝜏+
𝑖𝑗
=

max
0≤𝑡≤𝜔

𝜏
𝑖𝑗
(𝑡), 𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑚.

The organization of this paper is as follows. In Section 2,
we introduce some notations, definitions, and lemmas. In
Section 3, some new sufficient conditions ensuring the
existence and uniqueness of positive periodic solutions of (3)
are derived by changing (3) into a corresponding equation
without impulses. We study the existence of positive periodic
solutions for the corresponding equation without impulses

by coincidence degree theory, and we study the uniqueness
of positive periodic solutions for the corresponding equation
without impulses by the Lyapunov function. Finally, some
conclusions are drawn in Section 4.

2. Preliminaries

For the sake of convenience, throughout this paper, we adopt
the following notations:

𝛼
−

𝑖
= min
0≤𝑡≤𝜔

𝛼
𝑖
(𝑡) , 𝛼

+

𝑖
= max
0≤𝑡≤𝜔

𝛼
𝑖
(𝑡) ,

𝛽
−

𝑖
= min
0≤𝑡≤𝜔

𝛽
𝑖
(𝑡) , 𝛽

+

𝑖
= max
0≤𝑡≤𝜔

𝛽
𝑖
(𝑡) ,

𝑝
−

𝑖𝑗
= min
0≤𝑡≤𝜔

𝑝
𝑖𝑗
(𝑡) , 𝑝

+

𝑖𝑗
= max
0≤𝑡≤𝜔

𝑝
𝑖𝑗
(𝑡) ,

𝑞
−

𝑖𝑗
= min
0≤𝑡≤𝜔

𝑞
𝑖𝑗
(𝑡) , 𝑞

+

𝑖𝑗
= max
0≤𝑡≤𝜔

𝑞
𝑖𝑗
(𝑡) ,

𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑚.

(5)

Definition 1. A map 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡))
𝑇
: [−𝜏,∞) →

(0,∞) × (0,∞) is said to be a solution of (3) on [𝜏,∞)
satisfying the initial value condition (4), if

(i) 𝑦
𝑖
(𝑡) is absolutely continuous on each interval (0, 𝑡

1
]

and (𝑡
𝑘
, 𝑡
𝑘+1
], 𝑘 = 1, 2, . . .;

(ii) for any 𝑡
𝑘
, 𝑘 = 1, 2, . . ., 𝑦

𝑖
(𝑡
+

𝑘
) and 𝑦

𝑖
(𝑡
−

𝑘
) exist, and

𝑦
𝑖
(𝑡
−

𝑘
) = 𝑦
𝑖
(𝑡
𝑘
);

(iii) 𝑦
𝑖
(𝑡) satisfies (3), 𝑖 = 1, 2.

Under the previous hypotheses (𝐴
1
)–(𝐴
3
), we consider

the following delay differential equation without impulses:

𝑥
󸀠
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+

𝑚
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(𝑡) 𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))
,

𝑥
󸀠

2
(𝑡) = −𝛼

2
(𝑡) 𝑥
2
(𝑡) + 𝛽

2
(𝑡) 𝑥
1
(𝑡)

+

𝑚

∑

𝑗=1

𝑝
2𝑗
(𝑡) 𝑥
2
(𝑡 − 𝜏
2𝑗
(𝑡)) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2
(𝑡−𝜏
2j(𝑡)), 𝑡 ≥ 0,

(6)

with initial condition (4)

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , for 𝑠 ∈ [−𝜏, 0] ,

𝜑 ∈ 𝐶 ([−𝜏, 0] , [0,∞)) , 𝜑
𝑖
(0) > 0,

(7)

where

𝑝
𝑖𝑗
(𝑡) = ∏

𝑡−𝜏
𝑖𝑗(𝑡)≤𝑡𝑘<𝑡

(1 + 𝑏
𝑘
)
−1

𝑐
𝑖𝑗
(𝑡) ,

𝑞
𝑖𝑗
(𝑡) = ∏

0<𝑡
𝑘
<𝑡−𝜏
𝑖𝑗(𝑡)

(1 + 𝑏
𝑘
) 𝛾
𝑖𝑗
(𝑡) ,

𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑚.

(8)
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By a solution 𝑦(𝑡) of (6) on [−𝜏,∞), we mean that an
absolutely continuous function on [−𝜏,∞) satisfies (6) for
𝑡 ≥ 0 and initial condition (4). Similar to the method of [18],
we have the following.

Lemma 2. Assume that (𝐴
1
)–(𝐴
3
) hold. Then

(i) if 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇 is a solution (or positive 𝜔-

periodic solution) of (6) on [−𝜏,∞), then 𝑦(𝑡) =

(∏
0<𝑡
𝑘
<𝑡
(1 + 𝑏

𝑘
)𝑥
1
(𝑡),∏

0<𝑡
𝑘
<𝑡
(1 + 𝑏

𝑘
)𝑥
2
(𝑡))
𝑇 is a solu-

tion (or positive𝜔-periodic solution) of (3) on [−𝜏,∞);

(ii) if 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡))
𝑇 is a solution (or positive

𝜔-periodic solution) of (3) on [−𝜏,∞), then 𝑥(𝑡) =
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[−𝜏,∞).

Proof. First, we prove (i). If𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
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(or positive 𝜔-periodic solution) of (6) on [−𝜏,∞), then it is
easy to see that 𝑦
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1
] and (𝑡

𝑘
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𝑘
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(𝑡))
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𝑘
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𝑘
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𝑘
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𝑘
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[
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1
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1
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𝑚

∑
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𝑝
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⋅ 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))]

]

= 0.

(9)

Similarly, we have

𝑦
󸀠

2
(𝑡) + 𝛼

2
(𝑡) 𝑦
2
(𝑡) − 𝛽

2
(𝑡) 𝑦
1
(𝑡)

−

𝑚

∑

𝑗=1

𝑐
2𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜏
2𝑗
(𝑡)) 𝑒
−𝛾
2𝑗
(𝑡)𝑦
2
(𝑡−𝜏
2𝑗
(𝑡))
= 0.

(10)

On the other hand, for every 𝑡
𝑘
∈ {𝑡
𝑘
}, 𝑖 = 1, 2,

𝑦
𝑖
(𝑡
+

𝑘
) = lim
𝑡→ 𝑡
+

𝑘

∏

0<𝑡
𝑗
<𝑡

(1 + 𝑏
𝑗
) 𝑥
𝑖
(𝑡) = ∏

0<𝑡
𝑗
≤𝑡
𝑘

(1 + 𝑏
𝑗
) 𝑥
𝑖
(𝑡
𝑘
) ,

𝑦
𝑖
(𝑡
𝑘
) = ∏

0<𝑡
𝑗
<𝑡
𝑘

(1 + 𝑏
𝑗
) 𝑥
𝑖
(𝑡
𝑘
) .

(11)

Thus, for every 𝑘 = 1, 2, . . .,

𝑦
𝑖
(𝑡
+

𝑘
) = (1 + 𝑏

𝑘
) 𝑦
𝑖
(𝑡
𝑘
) . (12)

It follows from (9) and (12) that𝑥(𝑡) is the solution (or positive
𝜔-periodic solution) of (3) corresponding to initial condition
(4).

Next, we prove (ii). If 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡))
𝑇 is a solution

(or positive 𝜔-periodic solution) of (3) on [−𝜏,∞), then
𝑦
𝑖
(𝑡) (𝑖 = 1, 2) is absolutely continuous on each interval (0, 𝑡

1
]

and (𝑡
𝑘
, 𝑡
𝑘+1
], and in view of (12), it follows that, for any

𝑘 = 1, 2, . . ., 𝑖 = 1, 2,

𝑥
𝑖
(𝑡
+

𝑘
) = ∏

0<𝑡
𝑗
≤𝑡
𝑘

(1 + 𝑏
𝑗
)
−1

𝑦
𝑖
(𝑡
+

𝑘
)

= ∏

0<𝑡
𝑗
<𝑡
𝑘

(1 + 𝑏
𝑗
)
−1

𝑦
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
) ,

𝑥
𝑖
(𝑡
−

𝑘
) = ∏

0<𝑡
𝑗
≤𝑡
𝑘−1

(1 + 𝑏
𝑗
)
−1

𝑦
𝑖
(𝑡
−

𝑘
)

= ∏

0<𝑡
𝑗
<𝑡
𝑘

(1 + 𝑏
𝑗
)
−1

𝑦
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
) .

(13)

Equations in (13) imply that 𝑥
𝑖
(𝑡) is continuous on [0,∞). It is

easy to prove that𝑥(𝑡) is also absolutely continuous on [0,∞).
Now, one can easily check that 𝑥(𝑡) = ∏

0<𝑡
𝑘
<𝑡
(1 + 𝑏

𝑘
)
−1
𝑦(𝑡)

is the solution (or positive 𝜔-periodic solution) of (6)
corresponding to initial condition (4). This completes the
proof.

Lemma 3. Assume that (𝐴
1
)–(𝐴
3
) hold. Then every solution

of (3) is defined and positive on [−𝜏,∞).
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Proof. Clearly, by Lemma 2, we only need to prove that every
solution of (6) is defined and positive on [−𝜏,∞). In order to
show that, we only need to see Lemma 2.3 in [13].

In the next section, we will study the existence of positive
periodic solution of system (3).Themethod to be used in this
paper involves the applications of the Mawhin’s continuous
theorem of the coincidence degree theory. We introduce
some concepts and results concerning the coincidence degree
as follows. Let𝑋 and𝑍 be real Banach spaces, let 𝐿 : Dom𝐿 ⊂
𝑋 → 𝑍 be a linear mapping, and let 𝑁 : 𝑋 → 𝑍 be
a continuous mapping. The mapping 𝐿 is called a Fredholm
mapping of index zero if dimKer 𝐿 = codim Im𝐿 < +∞ and
Im 𝐿 is closed in𝑍. If 𝐿 is a Fredholmmapping of index zero,
there exist continuous projectors 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑍 →

𝑍 such that Im𝑃 = Ker 𝐿; and Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄).

Lemma 4 (see [19]). Let 𝑋 be a Banach space. Suppose that
𝐿 : 𝐷(𝐿) ⊂ 𝑋 → 𝑋 is a Fredholm operator with index zero
and 𝑁 : Ω → 𝑋 is L-compact on Ω with Ω open bounded
in 𝑋. Moreover, assume that all the following conditions are
satisfied:

(i) 𝐿𝑥 ̸= 𝜆𝑁𝑥, for all 𝑥 ∈ 𝜕Ω ∩ 𝐷(𝐿), 𝜆 ∈ (0, 1);

(ii) 𝑄𝑁𝑥 ̸= 0, for all 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿;
(iii) the Brouwer degree

deg {𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0. (14)

Then equation 𝐿𝑥 = 𝑁𝑥 has at least one solution inΩ.

For ease of exposition, let

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨∞
= max
0≤𝑡≤𝜔

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨 , 𝑢 (𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡))
𝑇

,

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨2
= (∫

𝜔

0

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨

2

)

1/2

, 𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑚.

(15)

We denote𝑋 as the set of all continuously positive𝜔-periodic
functions 𝑥(𝑡) defined on [0,∞) and denote

‖𝑥‖
𝑋
= max {󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨∞
,
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨∞
} . (16)

Then,𝑋 is a Banach space when it is endowed with the norm
‖𝑥‖
𝑋
.
For 𝑢(𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡))
𝑇
∈ 𝑋, Let

(𝑁𝑢) (𝑡) =(

−𝛼
1
(𝑡) 𝑥
1
(𝑡) + 𝛽

1
(𝑡) 𝑥
2
(𝑡) +

𝑚

∑

𝑗=1

𝑝
1𝑗
(𝑡) 𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))

−𝛼
2
(𝑡) 𝑥
2
(𝑡) + 𝛽

2
(𝑡) 𝑥
1
(𝑡) +

𝑚

∑

𝑗=1

𝑝
2𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜏
2𝑗
(𝑡)) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2
(𝑡−𝜏
2𝑗
(𝑡))

), (17)

(𝐿𝑢) (𝑡) = (𝑥
󸀠

1
(𝑡) , 𝑥
󸀠

2
(𝑡))
𝑇

, (18)

𝑃𝑢 = 𝑄𝑢 =
1

𝜔
∫

𝜔

0

𝑢 (𝑡) 𝑑𝑡

= (
1

𝜔
∫

𝜔

0

𝑥
1
(𝑡) 𝑑𝑡,

1

𝜔
∫

𝜔

0

𝑥
2
(𝑡)𝑑𝑡)

𝑇

.

(19)

In view of (17) and (18), the operator equation

𝐿𝑢 = 𝜆𝑁𝑢 (20)

is equivalent to the following:

(

𝑥
󸀠

1
(𝑡)

𝑥
󸀠

2
(𝑡)
) = 𝜆(

−𝛼
1
(𝑡) 𝑥
1
(𝑡) + 𝛽

1
(𝑡) 𝑥
2
(𝑡) +

𝑚

∑

𝑗=1

𝑝
1𝑗
(𝑡) 𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))

−𝛼
2
(𝑡) 𝑥
2
(𝑡) + 𝛽

2
(𝑡) 𝑥
1
(𝑡) +

𝑚

∑

𝑗=1

𝑝
2𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜏
2𝑗
(𝑡)) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2
(𝑡−𝜏
2𝑗
(𝑡))

), (21)

where 𝜆 ∈ (0, 1).
Again from (17) and (18), it is not difficult to show that

Ker 𝐿 = 𝑅2, Im 𝐿 = {𝑢(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇
∈ 𝑋, ∫

𝜔

0
𝑥
1
(𝑡)𝑑𝑡 =

∫
𝜔

0
𝑥
2
(𝑡)𝑑𝑡 = 0} is closed in 𝑋, and dimKer 𝐿 = codim Im𝐿.

From the definitions of continuous projectors 𝑃 and 𝑄, we
can easily to get

Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿. (22)
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It follows that the operator 𝐿 is a Fredholm operator with
index zero. Furthermore, the generalized inverse (of 𝐿) 𝐾

𝑃
:

Im 𝐿 → 𝐷(𝐿) ∩ Ker𝑃 reads as

(𝐾
𝑃
𝑢) (𝑡)

= (

∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠 −

1

𝜔
∫

𝜔

0

∫

𝑡

0

𝑥
1
(𝑠) 𝑑𝑠 𝑑𝑡

∫

𝑡

0

𝑥
2
(𝑠) 𝑑𝑠 −

1

𝜔
∫

𝜔

0

∫

𝑡

0

𝑥
2
(𝑠) 𝑑𝑠 𝑑𝑡

)

for 𝑢 (𝑡) = (
𝑥
1
(𝑡)

𝑥
2
(𝑡)
) ∈ Im 𝐿.

(23)

Therefore, it is easy to see from (17) and (23) that 𝑁 is 𝐿-
compact onΩ, whereΩ is any open bounded set in𝑋.

3. Main Results

Theorem 5. Assume that (𝐴
1
)–(𝐴
3
) hold. Moreover, the

following condition is satisfied:

(𝐴
4
) 𝐷 = min{𝛼−

1
− 𝛽
+

2
, 𝛼
−

2
− 𝛽
+

1
} > 0.

Then (3) has at least one positive 𝜔-periodic solution.

Proof. Based on Lemma 4, what we need to do is just to
search for an appropriate open bounded subsetΩ for applying
Mawhin’s continuous theorem. To do this, it suffices to prove
that the set of all possible positive 𝜔-periodic solution of (6)
is bounded.

Let 𝑢(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇 be an arbitrary positive 𝜔-

periodic solution of (6). Corresponding to the operator
equation (21), we have

𝑥
󸀠

1
(𝑡) = 𝜆(− 𝛼

1
(𝑡) 𝑥
1
(𝑡) + 𝛽

1
(𝑡) 𝑥
2
(𝑡)

+

𝑚

∑

𝑗=1

𝑝
1𝑗
(𝑡) 𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))
) ,

𝑥
󸀠

2
(𝑡) = 𝜆(− 𝛼

2
(𝑡) 𝑥
2
(𝑡) + 𝛽

2
(𝑡) 𝑥
1
(𝑡)

+

𝑚

∑

𝑗=1

𝑝
2𝑗
(𝑡) 𝑥
2
(𝑡 − 𝜏
2𝑗
(𝑡)) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2
(𝑡−𝜏
2𝑗
(𝑡))
) .

(24)

Multiplying 𝑥
1
(𝑡) and the first formula of (24), and then

integrating from 0 to 𝜔, we obtain

∫

𝜔

0

𝑥
󸀠

1
(𝑡) 𝑥
1
(𝑡) 𝑑𝑡

= 𝜆
{

{

{

∫

𝜔

0

−𝛼
1
(𝑡) 𝑥
2

1
(𝑡) 𝑑𝑡 + ∫

𝜔

0

𝛽
1
(𝑡) 𝑥
1
(𝑡) 𝑥
2
(𝑡) 𝑑𝑡

+

𝑚

∑

𝑗=1

∫

𝜔

0

𝑝
1𝑗
(𝑡) 𝑥
1
(𝑡) 𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡))

⋅ 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))
𝑑𝑡
}

}

}

;

(25)

hence,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜔

0

𝛼
1
(𝑡) 𝑥
2

1
(𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜔

0

𝛽
1
(𝑡) 𝑥
1
(𝑡) 𝑥
2
(𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜔

0

𝑝
1𝑗
(𝑡) 𝑥
1
(𝑡) 𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))
𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(26)

Furthermore, from the Hölder inequality and 𝑒𝑥 > 𝑥 (or 𝑥 ⋅
𝑒
−𝑥
< 1) for 𝑥 > 0, we have

𝛼
−

1

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨

2

2

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜔

0

𝛼
1
(𝑡) 𝑥
2

1
(𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛽
+

1
(∫

𝜔

0

󵄨󵄨󵄨󵄨𝑥1 (𝑡)
󵄨󵄨󵄨󵄨

2

𝑑𝑡)

1/2

⋅ (∫

𝜔

0

󵄨󵄨󵄨󵄨𝑥2(𝑡)
󵄨󵄨󵄨󵄨

2

𝑑𝑡)

1/2

+

𝑚

∑

𝑗=1

∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝
1𝑗
(𝑡) 𝑥
1
(𝑡)

𝑞
1𝑗
(𝑡) 𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡))

𝑞
1𝑗
(𝑡)

⋅ 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤ 𝛽
+

1

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
⋅
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨2
+

𝑚

∑

𝑗=1

𝑝
+

1𝑗

𝑞
−

1𝑗

∫

𝜔

0

󵄨󵄨󵄨󵄨𝑥1 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

≤ 𝛽
+

1

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
⋅
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨2
+

𝑚

∑

𝑗=1

𝑝
+

1𝑗

𝑞
−

1𝑗

√𝜔 ⋅
󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
;

(27)

that is,

𝛼
−

1

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
≤ 𝛽
+

1

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨2
+

𝑚

∑

𝑗=1

𝑝
+

1𝑗

𝑞
−

1𝑗

√𝜔. (28)
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Similarly, we have

𝛼
−

2

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨2
≤ 𝛽
+

2

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
+

𝑚

∑

𝑗=1

𝑝
+

2𝑗

𝑞
−

2𝑗

√𝜔. (29)

Combining (28) and (29), we get

(𝛼
−

1
− 𝛽
+

2
)
󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
+ (𝛼
−

2
− 𝛽
+

1
)
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨2
≤

𝑚

∑

𝑗=1

(

𝑝
+

1𝑗

𝑞
−

1𝑗

+

𝑝
+

2𝑗

𝑞
−

2𝑗

)√𝜔.

(30)

Since 𝐷 = min{𝛼−
1
− 𝛽
+

2
, 𝛼
−

2
− 𝛽
+

1
} > 0, (30) implies that |𝑥

1
|
2

and |𝑥
2
|
2
are bounded. Therefore, according to the previous

proof, there exists a positive constant 𝐷
1
(independent of 𝜆)

such that
󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
≤ 𝐷
1
,

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨2
≤ 𝐷
1
. (31)

From (24), together with the Hölder inequality and 𝑥𝑒−𝑥 < 1
for 𝑥 > 0, we can obtain

∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 ≤ 𝛼

+

1
∫

𝜔

0

󵄨󵄨󵄨󵄨𝑥1 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 + 𝛽

+

1
∫

𝜔

0

󵄨󵄨󵄨󵄨𝑥2 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

+

𝑚

∑

𝑗=1

𝑝
+

1𝑗
∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞
1𝑗
(𝑡) 𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡))

𝑞
1𝑗
(𝑡)

⋅ 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤ 𝛼
+

1
√𝜔
󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
+ 𝛽
+

1
√𝜔
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨2
+

𝑚

∑

𝑗=1

𝑝
+

1𝑗

𝑞
−

1𝑗

𝜔 ≜ 𝐷
2
,

∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

2
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 ≤ 𝛼

+

2
∫

𝜔

0

󵄨󵄨󵄨󵄨𝑥2 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡 + 𝛽

+

2
∫

𝜔

0

󵄨󵄨󵄨󵄨𝑥1 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

+

𝑚

∑

𝑗=1

𝑝
+

2𝑗
∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞
2𝑗
(𝑡) 𝑥
2
(𝑡 − 𝜏
2𝑗
(𝑡))

𝑞
2𝑗
(𝑡)

⋅ 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2
(𝑡−𝜏
2𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡

≤ 𝛼
+

2
√𝜔
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨2
+ 𝛽
+

2
√𝜔
󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨2
+

𝑚

∑

𝑗=1

𝑝
+

2𝑗

𝑞
−

2𝑗

𝜔 ≜ 𝐷
3
.

(32)

(31)–(32) imply that there exist two positive constants 𝜇
𝑖
, 𝑖 =

1, 2, such that

∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

𝑖
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 ≤ 𝜇

𝑖
, 𝑖 = 1, 2. (33)

Equations in (31) imply that there exist two points 𝜉
𝑖
∈ [0, 𝜔],

𝑖 = 1, 2, and two positive constants 𝑑
𝑖
, 𝑖 = 1, 2, such that

󵄨󵄨󵄨󵄨𝑥𝑖 (𝜉𝑖)
󵄨󵄨󵄨󵄨 ≤ 𝑑𝑖, 𝑖 = 1, 2. (34)

Since, for ∀𝑡 ∈ [0, 𝜔],

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑖
(𝜉
𝑖
) + ∫

𝑡

𝜉
𝑖

𝑥
󸀠

𝑖
(𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑑
𝑖

+ ∫

𝜔

0

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

𝑖
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡, 𝑖 = 1, 2,

(35)

from (33), it follows that there exists a positive constant 𝜁 such
that

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨∞
≤ 𝜁, 𝑖 = 1, 2. (36)

Clearly, 𝜁 is independent of 𝜆. Let𝐻∗ = 𝜁 + 𝐶, where 𝐶 > 1
is taken sufficiently large so that

𝐷𝐻
∗
>

𝑚

∑

𝑗=1

(

𝑝
+

1𝑗

𝑞
−

1𝑗

+

𝑝
+

2𝑗

𝑞
−

2𝑗

) ; (37)

Now, we take Ω = {𝑢(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇
∈ 𝑋, ‖𝑢‖

𝑋
=

max{|𝑥
1
|
∞
, |𝑥
2
|
∞
} < 𝐻

∗
}. This satisfied condition (i) of

Lemma 4.
When 𝑢(𝑡) = (𝑥

1
(𝑡), 𝑥
2
(𝑡))
𝑇
∈ 𝜕Ω⋂Ker 𝐿, (𝑥

1
(𝑡), 𝑥
2
(𝑡))
𝑇

is a constant vector (𝑥
1
, 𝑥
2
)
𝑇 in 𝑅

2 with ‖𝑢‖
𝑋

=

max{|𝑥
1
|
∞
, |𝑥
2
|
∞
} = 𝐻

∗, then

𝑄𝑁(
𝑥
1

𝑥
2

) =(

−
𝑥
1

𝜔
∫

𝜔

0

𝛼
1
(𝑡) 𝑑𝑡 +

𝑥
2

𝜔
∫

𝜔

0

𝛽
1
(𝑡) 𝑑𝑡 +

𝑚

∑

𝑗=1

𝑥
1

𝜔
∫

𝜔

0

𝑝
1𝑗
(𝑡) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1𝑑𝑡

−
𝑥
2

𝜔
∫

𝜔

0

𝛼
2
(𝑡) 𝑑𝑡 +

𝑥
1

𝜔
∫

𝜔

0

𝛽
2
(𝑡) 𝑑𝑡 +

𝑚

∑

𝑗=1

𝑥
2

𝜔
∫

𝜔

0

𝑝
2𝑗
(𝑡) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2𝑑𝑡

). (38)
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In view of (38), we have

max
0≤𝑡≤𝜔

󵄨󵄨󵄨󵄨󵄨󵄨
𝑄𝑁(𝑥

1
, 𝑥
2
)
𝑇

1

󵄨󵄨󵄨󵄨󵄨󵄨

= max
0≤𝑡≤𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
𝑥
1

𝜔
∫

𝜔

0

𝛼
1
(𝑡) 𝑑𝑡 +

𝑥
2

𝜔
∫

𝜔

0

𝛽
1
(𝑡) 𝑑𝑡

+

𝑚

∑

𝑗=1

𝑥
1

𝜔
∫

𝜔

0

𝑝
1𝑗
(𝑡) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
𝑥
1

𝜔
∫

𝜔

0

𝛼
1
(𝑡) 𝑑𝑡 −

𝑥
2

𝜔
∫

𝜔

0

𝛽
1
(𝑡) 𝑑𝑡

−

𝑚

∑

𝑗=1

𝑥
1

𝜔
∫

𝜔

0

𝑝
1𝑗
(𝑡) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1𝑑𝑡

≥ 𝛼
−

1
𝑥
1
− 𝛽
+

1
𝑥
2
−

𝑚

∑

𝑗=1

𝑝
+

1𝑗

𝑞
−

1𝑗

⋅ 𝑞
−

1𝑗
𝑥
1
𝑒
−𝑞
−

1𝑗
𝑥
1

≥ 𝛼
−

1
𝑥
1
− 𝛽
+

1
𝑥
2
−

𝑚

∑

𝑗=1

𝑝
+

1𝑗

𝑞
−

1𝑗

,

max
0≤𝑡≤𝜔

󵄨󵄨󵄨󵄨󵄨󵄨
𝑄𝑁(𝑥

1
, 𝑥
2
)
𝑇

2

󵄨󵄨󵄨󵄨󵄨󵄨

= max
0≤𝑡≤𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
𝑥
2

𝜔
∫

𝜔

0

𝛼
2
(𝑡) 𝑑𝑡 +

𝑥
1

𝜔
∫

𝜔

0

𝛽
2
(𝑡) 𝑑𝑡

+

𝑚

∑

𝑗=1

𝑥
2

𝜔
∫

𝜔

0

𝑝
2𝑗
(𝑡) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
𝑥
2

𝜔
∫

𝜔

0

𝛼
2
(𝑡) 𝑑𝑡 −

𝑥
1

𝜔
∫

𝜔

0

𝛽
2
(𝑡) 𝑑𝑡

−

𝑚

∑

𝑗=1

𝑥
2

𝜔
∫

𝜔

0

𝑝
2𝑗
(𝑡) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2𝑑𝑡

≥ 𝛼
−

2
𝑥
2
− 𝛽
+

2
𝑥
1
−

𝑚

∑

𝑗=1

𝑝
+

2𝑗

𝑞
−

2𝑗

⋅ 𝑞
−

2𝑗
𝑥
2
𝑒
−𝑞
−

2𝑗
𝑥
2

≥ 𝛼
−

2
𝑥
2
− 𝛽
+

2
𝑥
1
−

𝑚

∑

𝑗=1

𝑝
+

2𝑗

𝑞
−

2𝑗

,

(39)

Equations in (39), together with (37), imply that

󵄩󵄩󵄩󵄩󵄩
𝑄𝑁(𝑥

1
, 𝑥
2
)
𝑇󵄩󵄩󵄩󵄩󵄩𝑋

≥
1

2
[max
0≤𝑡≤𝜔

󵄨󵄨󵄨󵄨󵄨󵄨
𝑄𝑁(𝑥

1
, 𝑥
2
)
𝑇

1

󵄨󵄨󵄨󵄨󵄨󵄨
+ max
0≤𝑡≤𝜔

󵄨󵄨󵄨󵄨󵄨󵄨
𝑄𝑁(𝑥

1
, 𝑥
2
)
𝑇

2

󵄨󵄨󵄨󵄨󵄨󵄨
]

≥
1

2

[

[

(𝛼
−

1
− 𝛽
+

2
) 𝑥
1
+ (𝛼
−

2
− 𝛽
+

1
) 𝑥
2
−

𝑚

∑

𝑗=1

(

𝑝
+

1𝑗

𝑞
−

1𝑗

+

𝑝
+

2𝑗

𝑞
−

2𝑗

)]

]

≥
1

2

[

[

𝐷𝐻
∗
−

𝑚

∑

𝑗=1

(

𝑝
+

1𝑗

𝑞
−

1𝑗

+

𝑝
+

2𝑗

𝑞
−

2𝑗

)]

]

> 0.

(40)

Consequently, condition (ii) of Lemma 4 is satisfied.
Furthermore, we define a continuous function 𝜓 :

Dom𝐿 × [0, 1] → 𝑋 by

𝜓 (𝑥
1
, 𝑥
2
, 𝜇) = 𝜇(

− (𝛼
−

1
− 𝛽
+

2
) 𝑥
1

− (𝛼
−

2
− 𝛽
+

1
) 𝑥
2

) + (1 − 𝜇)

⋅(

−
𝑥
1

𝜔
∫

𝜔

0

𝛼
1
(𝑡) 𝑑𝑡 +

𝑥
2

𝜔
∫

𝜔

0

𝛽
1
(𝑡) 𝑑𝑡 +

𝑚

∑

𝑗=1

𝑥
1

𝜔
∫

𝜔

0

𝑝
1𝑗
(𝑡) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1𝑑𝑡

−
𝑥
2

𝜔
∫

𝜔

0

𝛼
2
(𝑡) 𝑑𝑡 +

𝑥
1

𝜔
∫

𝜔

0

𝛽
2
(𝑡) 𝑑𝑡 +

𝑚

∑

𝑗=1

𝑥
2

𝜔
∫

𝜔

0

𝑝
2𝑗
(𝑡) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2𝑑𝑡

).

(41)

When (𝑥
1
, 𝑥
2
)
𝑇
∈ 𝜕Ω⋂Ker 𝐿 and 𝜇 ∈ [0, 1], (𝑥

1
(𝑡), 𝑥
2
(𝑡))
𝑇

is a constant vector (𝑥
1
, 𝑥
2
)
𝑇 in 𝑅

2 with ‖(𝑥
1
, 𝑥
2
)
𝑇
‖
𝑋

=

max{|𝑥
1
|
∞
, |𝑥
2
|
∞
} = 𝐻

∗, then, from (37), we obtain

󵄩󵄩󵄩󵄩𝜓(𝑥1, 𝑥2, 𝜇)
󵄩󵄩󵄩󵄩𝑋

≥
1

2

{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− 𝜇 (𝛼
−

1
− 𝛽
+

2
) 𝑥
1
+ (1 − 𝜇)

⋅ [

[

−
𝑥
1

𝜔
∫

𝜔

0

𝛼
1
(𝑡) 𝑑𝑡 +

𝑥
2

𝜔
∫

𝜔

0

𝛽
1
(𝑡) 𝑑𝑡

+

𝑚

∑

𝑗=1

𝑥
1

𝜔
∫

𝜔

0

𝑝
1𝑗
(𝑡) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1𝑑𝑡]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− 𝜇 (𝛼
−

2
− 𝛽
+

1
) 𝑥
2
+ (1 − 𝜇)
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⋅ [

[

−
𝑥
2

𝜔
∫

𝜔

0

𝛼
2
(𝑡) 𝑑𝑡 +

𝑥
1

𝜔
∫

𝜔

0

𝛽
2
(𝑡) 𝑑𝑡

+

𝑚

∑

𝑗=1

𝑥
2

𝜔
∫

𝜔

0

𝑝
2𝑗
(𝑡) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
2𝑑𝑡]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

}

}

≥
1

2

{

{

{

𝜇 (𝛼
−

1
− 𝛽
+

2
) 𝑥
1
+ (1 − 𝜇)

𝑥
1

𝜔
∫

𝜔

0

𝛼
1
(𝑡) 𝑑𝑡

− (1 − 𝜇)
𝑥
2

𝜔
∫

𝜔

0

𝛽
1
(𝑡) 𝑑𝑡

− (1 − 𝜇)

𝑚

∑

𝑗=1

𝑥
1

𝜔
∫

𝜔

0

𝑝
1𝑗
(𝑡) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1𝑑𝑡

+ 𝜇 (𝛼
−

2
− 𝛽
+

1
) 𝑥
2
+ (1 − 𝜇)

𝑥
2

𝜔
∫

𝜔

0

𝛼
2
(𝑡) 𝑑𝑡

− (1 − 𝜇)
𝑥
1

𝜔
∫

𝜔

0

𝛽
2
(𝑡) 𝑑𝑡

− (1 − 𝜇)

𝑚

∑

𝑗=1

𝑥
2

𝜔
∫

𝜔

0

𝑝
2𝑗
(𝑡) 𝑒
−𝑞
2𝑗
(𝑡)𝑥
1𝑑𝑡
}

}

}

≥
1

2

{

{

{

𝜇 (𝛼
−

1
− 𝛽
+

2
) 𝑥
1
+ (1 − 𝜇) 𝛼

−

1
𝑥
1

− (1 − 𝜇) 𝛽
+

1
𝑥
2
− (1 − 𝜇)

𝑚

∑

𝑗=1

𝑝
+

1𝑗

𝑞
−

1𝑗

+ 𝜇 (𝛼
−

2
− 𝛽
+

1
) 𝑥
2
+ (1 − 𝜇) 𝛼

−

2
𝑥
2

− (1 − 𝜇) 𝛽
+

2
𝑥
1
− (1 − 𝜇)

𝑚

∑

𝑗=1

𝑝
+

2𝑗

𝑞
−

2𝑗

}

}

}

≥
1

2

{

{

{

(𝛼
−

1
− 𝛽
+

2
) 𝑥
1
+ (𝛼
−

2
− 𝛽
+

1
) 𝑥
2

− (1 − 𝜇)

𝑚

∑

𝑗=1

(

𝑝
+

1𝑗

𝑞
−

1𝑗

+

𝑝
+

2𝑗

𝑞
−

2𝑗

)
}

}

}

≥
1

2

{

{

{

𝐷𝐻
∗
−

𝑚

∑

𝑗=1

(

𝑝
+

1𝑗

𝑞
−

1𝑗

+

𝑝
+

2𝑗

𝑞
−

2𝑗

)
}

}

}

> 0.

(42)

It follows that

𝜓 (𝑥
1
, 𝑥
2
, 𝜇) ̸= (0, 0)

𝑇
,

∀(𝑥
1
, 𝑥
2
)
𝑇

∈ 𝜕Ω ∩ Ker 𝐿, 𝜇 ∈ [0, 1] .
(43)

Hence, using the homotopy invariance theorem, we obtain

deg {𝑄𝑁,Ω ∩ Ker 𝐿, (0, 0)𝑇}

= deg {(−(𝛼−
1
− 𝛽
+

2
)𝑥
1
, −(𝛼
−

2
− 𝛽
+

1
)𝑥
2
)
𝑇

,

Ω ∩ Ker 𝐿, (0, 0)𝑇} ̸= 0.

(44)

Condition (iii) of Lemma 4 is also satisfied. Thus, by
Lemma 4, we conclude that 𝐿𝑢 = 𝑁𝑢, 𝑢 = (𝑥

1
(𝑡), 𝑥
2
(𝑡))
𝑇;

that is, (6) has at least one solution in 𝑋. Then, by Lemma 2,
we immediately obtain that (3) has at least one positive 𝜔-
periodic solution. This completes the proof.

Theorem6. Let (𝐴
1
)–(𝐴
3
) hold; furthermore, assume that the

following conditions are satisfied:

(𝐴
5
) min{(𝛼−

1
−𝛽
+

2
)−∑
𝑚

𝑗=1
2𝑝
+

1𝑗
, (𝛼
−

2
−𝛽
+

1
)−∑
𝑚

𝑗=1
2𝑝
+

2𝑗
} > 0,

(𝐴
6
) 𝜏
𝑖𝑗
(𝑡) ∈ 𝐶

1
([0,∞), (0,∞)) and 𝜏󸀠

𝑖𝑗
(𝑡) ≤ 0, 𝑖 = 1, 2,

𝑗 = 1, 2, . . . , 𝑚.

Then (3) has a unique positive 𝜔-periodic solution.

Proof. By Lemma 2, it suffices to prove the uniqueness of
positive 𝜔-periodic solutions for system (6). According to
Theorem 5, we know that (6) has at least a positive𝜔-periodic
solution 𝑥∗(𝑡) = (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡))
𝑇 with initial condition (4).

Suppose that 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇 is an arbitrary positive

𝜔-periodic solution of (6) with initial condition (4). Then it
follows from (6) that

𝑑

𝑑𝑡
(𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)) = −𝛼

1
(𝑡) [𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)]

+ 𝛽
1
(𝑡) [𝑥
2
(𝑡) − 𝑥

∗

2
(𝑡)] +

𝑚

∑

𝑗=1

𝑝
1𝑗
(𝑡)

⋅ [𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))

−𝑥
∗

1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
∗

1
(𝑡−𝜏
1𝑗
(𝑡))
] .

(45)

Calculating the upper-right derivative, we have

𝑑
+

𝑑𝑡

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨

≤ −𝛼
−

1

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 + 𝛽
+

1

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑗=1

𝑝
+

1𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡))

⋅ 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1j(𝑡)) − 𝑥

∗

1
(𝑡 − 𝜏
1𝑗
(𝑡))

⋅ 𝑒
−𝑞
1𝑗
(𝑡)𝑥
∗

1
(𝑡−𝜏
1𝑗
(𝑡))
󵄨󵄨󵄨󵄨󵄨󵄨
.

(46)
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For 𝑦 = 𝑥𝑒−𝑟𝑥, 𝑟 > 0 is a real number, 0 < 𝑎 ≤ 𝑥 ≤ 𝑏, and by
mean value theorem, we have

󵄨󵄨󵄨󵄨󵄨
𝑏𝑒
−𝑟𝑏
− 𝑎𝑒
−𝑟𝑎󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑎𝑒
−𝑟𝑎
− 𝑏𝑒
−𝑟𝑏󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑎𝑒
−𝑟𝑎
− 𝑎𝑒
−𝑟𝑏
+ 𝑎𝑒
−𝑟𝑏
− 𝑏𝑒
−𝑟𝑏󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
−𝑎𝑟𝑒
−𝑟𝜉󵄨󵄨󵄨󵄨󵄨

|𝑏 − 𝑎| +
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑟𝑏󵄨󵄨󵄨󵄨󵄨

|𝑏 − 𝑎|

=
󵄨󵄨󵄨󵄨󵄨
𝑎𝑟𝑒
−𝑟𝑎
⋅ 𝑒
−𝑟(𝜉−𝑎)󵄨󵄨󵄨󵄨󵄨

|𝑏 − 𝑎| +
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑟𝑏󵄨󵄨󵄨󵄨󵄨

|𝑏 − 𝑎|

≤ 2 |𝑏 − 𝑎| ,

(47)

where 𝑎 < 𝜉 < 𝑏. Thus, for any fixed 𝑗 = 1, 2, . . . , 𝑚, we also
have

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
∗

1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗(𝑡)
𝑥
∗

1
(𝑡−𝜏
1𝑗
(𝑡))

−𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) 𝑒
−𝑞
1𝑗
(𝑡)𝑥
1
(𝑡−𝜏
1𝑗
(𝑡))
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2
󵄨󵄨󵄨󵄨󵄨
𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) − 𝑥

∗

1
(𝑡 − 𝜏
1𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨
.

(48)

Hence,

𝑑
+

𝑑𝑡

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨

≤ −𝛼
−

1

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 + 𝛽
+

1

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑗=1

2𝑝
+

1𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) − 𝑥

∗

1
(𝑡 − 𝜏
1𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨
.

(49)

Similarly, we have

𝑑
+

𝑑𝑡

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨

≤ −𝛼
−

2

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 + 𝛽
+

2

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑗=1

2𝑝
+

2𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
2
(𝑡 − 𝜏
2𝑗
(𝑡)) − 𝑥

∗

2
(𝑡 − 𝜏
2𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨
.

(50)

We define a Lyapunov function 𝑉(⋅) by

𝑉 (𝑡) = 𝑉 (𝑥
1
, 𝑥
2
) (𝑡)

=

2

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) − 𝑥
∗

𝑖
(𝑡)
󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑗=1

∫

𝑡

𝑡−𝜏
1𝑗(𝑡)

2𝑝
+

1𝑗

󵄨󵄨󵄨󵄨𝑥1 (𝑠) − 𝑥
∗

1
(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

+

𝑚

∑

𝑗=1

∫

𝑡

𝑡−𝜏
2𝑗(𝑡)

2𝑝
+

2𝑗

󵄨󵄨󵄨󵄨𝑥2 (𝑠) − 𝑥
∗

2
(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠,

(51)

for 𝑡 > 0, and by virtue of (49), (50), and assumption (𝐴
6
),

we get

𝑑
+
𝑉 (𝑡)

𝑑𝑡

≤ − (𝛼
−

1
− 𝛽
+

2
)
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

∗

1
(𝑡)
󵄨󵄨󵄨󵄨

− (𝛼
−

2
− 𝛽
+

1
)
󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑗=1

2𝑝
+

1𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) − 𝑥

∗

1
(𝑡 − 𝜏
1𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑗=1

2𝑝
+

2𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
2
(𝑡 − 𝜏
2𝑗
(𝑡)) − 𝑥

∗

2
(𝑡 − 𝜏
2𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨

+

𝑚

∑

𝑗=1

2𝑝
+

1𝑗

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 +

𝑚

∑

𝑗=1

2𝑝
+

2𝑗

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨

−

𝑚

∑

𝑗=1

2𝑝
+

1𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
1
(𝑡 − 𝜏
1𝑗
(𝑡)) − 𝑥

∗

1
(𝑡 − 𝜏
1𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨

⋅ (1 − 𝜏
󸀠

1𝑗
(𝑡))

−

𝑚

∑

𝑗=1

2𝑝
+

2𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
2
(𝑡 − 𝜏
2𝑗
(𝑡)) − 𝑥

∗

2
(𝑡 − 𝜏
2𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨

⋅ (1 − 𝜏
󸀠

2𝑗
(𝑡))

≤ −[

[

(𝛼
−

1
− 𝛽
+

2
) −

𝑚

∑

𝑗=1

2𝑝
+

1𝑗

]

]

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨

− [

[

(𝛼
−

2
− 𝛽
+

1
) −

𝑚

∑

𝑗=1

2𝑝
+

2𝑗

]

]

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨

≤ −min
{

{

{

(𝛼
−

1
−𝛽
+

2
)−

𝑚

∑

𝑗=1

2𝑝
+

1𝑗
, (𝛼
−

2
− 𝛽
+

1
)−

𝑚

∑

𝑗=1

2𝑝
+

2𝑗

}

}

}

⋅ (
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

∗

1
(𝑡)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨) .

(52)

According to (𝐴
5
),

min
{

{

{

(𝛼
−

1
− 𝛽
+

2
) −

𝑚

∑

𝑗=1

2𝑝
+

1𝑗
, (𝛼
−

2
− 𝛽
+

1
) −

𝑚

∑

𝑗=1

2𝑝
+

2𝑗

}

}

}

> 0, (53)

and it follows that

𝑑
+
𝑉 (𝑡)

𝑑𝑡
≤ 0, 𝑡 > 0. (54)

Hence, we obtain

𝑉 (𝑡) ≤ 𝑉 (0) , ∀𝑡 > 0. (55)
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So
2

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) − 𝑥
∗

𝑖
(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑉 (𝑡) ≤ 𝑉 (0)

=

2

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 (0) − 𝑥
∗

𝑖
(0)
󵄨󵄨󵄨󵄨 = 0, ∀𝑡 > 0.

(56)

In view of (56) and periodicity of 𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡), we have

𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡) = 0, ∀𝑡 > 0, 𝑖 = 1, 2. (57)

Then by Lemma 2, we conclude that (3) has a unique positive
𝜔-periodic solution. This completes the proof.

4. Conclusion

In this paper, a class of Nicholson-type systems with impulses
and delays are investigated. We conquer the difficulty of
coexistence of impulsive and delay factors in a dynamic
system and give some results of the existence and uniqueness
of positive periodic solutions.The results in this paper extend
some earlier works reported in the literature. Moreover,
our results are easy to test and important in applications
of periodic oscillatory delayed Nicholson-type systems with
impulsive control.
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