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The authors establish some new inequalities of Pólya type for multiple integrals on the 𝑛-dimensional ellipsoid, spherical shell, and
ball, in terms of bounds of the higher order derivatives of the integrands. These results generalize the main result in the paper by
Feng Qi, Inequalities for a multiple integral, Acta Mathematica Hungarica (1999).

1. Introduction

In [1], it was obtained that if 𝑓 is differentiable and if 𝑓(𝑎) =
𝑓(𝑏) = 0, then

𝑓
󸀠

(𝜏) >

4

(𝑏 − 𝑎)
2
∫

𝑏

𝑎

𝑓 (𝑡) d𝑡, (1)

for a certain 𝜏 between 𝑎 and 𝑏. This inequality can be found
in [2–4] and many other textbooks. It can be reformulated as
follows. If 𝑓(𝑥) is differentiable and not identically constant,
such that 𝑓(𝑎) = 𝑓(𝑏) = 0 and |𝑓󸀠(𝑥)| ≤ 𝑀 on [𝑎, 𝑏], then
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≤

(𝑏 − 𝑎)
2

4

𝑀. (2)

In the literature, the inequalities (1) or (2) is called the Pólya
integral inequality.

In [5], the inequality (1), or say (2), was generalized as
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∫
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𝑓 (𝑥) d𝑥 − 1
2

(𝑏 − 𝑎) [𝑓 (𝑎) + 𝑓 (𝑏)]
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≤

𝑀(𝑏 − 𝑎)
2

4

−

[𝑓(𝑏) − 𝑓(𝑎)]
2

4𝑀

,

(3)

where 𝑓 : [𝑎, 𝑏]→R is a differentiable function and |𝑓󸀠(𝑥)| ≤
𝑀.

In [6–9], the above inequalities were refined and general-
ized as follows.

Theorem 1 (see [9, Proposition 1]). Let𝑓(𝑥) be continuous on
[𝑎, 𝑏] and differentiable in (𝑎, 𝑏). Suppose that 𝑓(𝑎) = 𝑓(𝑏) =
0, and that 𝑚 ≤ 𝑓

󸀠
(𝑥) ≤ 𝑀 in (𝑎, 𝑏). If 𝑓(𝑥) is not identically

zero, then𝑚 < 0 < 𝑀 and
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󵄨

≤ −

(𝑏 − 𝑎)
2

2

𝑚𝑀

𝑀−𝑚

. (4)

Theorem 2 (see [6, 7, 9]). Let 𝑓(𝑥) be continuous on [𝑎, 𝑏]
and differentiable in (𝑎, 𝑏). Suppose that 𝑓(𝑥) is not identically
𝑎 constant, and that𝑚 ≤ 𝑓

󸀠
(𝑥) ≤ 𝑀 in (𝑎, 𝑏). Then,
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1

𝑏 − 𝑎

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 −

𝑓 (𝑎) + 𝑓 (𝑏)

2
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󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ [𝑓 (𝑏) − 𝑓 (𝑎) − 𝑚 (𝑏 − 𝑎)]

× [𝑀 (𝑏 − 𝑎) − 𝑓 (𝑏) + 𝑓 (𝑎)]

× (2 (𝑀 − 𝑚) (𝑏 − 𝑎))
−1

= −

[𝑀 − 𝑆
0
(𝑎, 𝑏)] [𝑚 − 𝑆

0
(𝑎, 𝑏)]

2 (𝑀 − 𝑚)

(𝑏 − 𝑎) ,

(5)
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where

𝑆
0
(𝑎, 𝑏) =

𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎

. (6)

Theorem 3 (see [8]). For 𝑎 = (𝑎
1
, . . . , 𝑎

𝑚
) ∈ R𝑚 and 𝑏 =

(𝑏
1
, . . . , 𝑏

𝑚
) ∈ R𝑚 with 𝑎

𝑖
< 𝑏
𝑖
for 𝑖 = 1, 2, . . . , 𝑚, denote the

𝑚-rectangles by

𝑄
𝑚
=

𝑚

∏

𝑖=1

[𝑎
𝑖
, 𝑏
𝑖
] , 𝑄

𝑚
(𝑡) =

𝑚

∏

𝑖=1

[𝑎
𝑖
, 𝑐
𝑖
(𝑡)] ,

∘

𝑄
𝑚
=

𝑚

∏

𝑖=1

(𝑎
𝑖
, 𝑏
𝑖
) ,

(7)

where 𝑐
𝑖
(𝑡) = (1−𝑡)𝑎

𝑖
+𝑡𝑏
𝑖
for 𝑖 = 1, 2, . . . , 𝑚 and 𝑡 ∈ (0, 1). Let

] = (]
1
, . . . , ]

𝑚
) be a multi-index; that is, ]

𝑖
is a nonnegative

integer, with |]| = ∑𝑚
𝑖=1

]
𝑖
. Let 𝑓 ∈ 𝐶(𝑛+1)(𝑄

𝑚
) be a function of

𝑚 variables on 𝑄
𝑚
, and let its partial derivatives of (𝑛 + 1)th

order remain between𝑀
𝑛+1
(]) and𝑁

𝑛+1
(]) in

∘

𝑄
𝑚
; that is,

𝑁
𝑛+1
(]) ≤ 𝐷

]
𝑓 (𝑥) ≤ 𝑀

𝑛+1
(]) , 𝑥 ∈

∘

𝑄
𝑚
,

(8)

where |]| = 𝑛 + 1 and

𝐷
]
𝑓 (𝑥) =

𝜕
|]|
𝑓 (𝑥)

∏
𝑚

𝑖=1
𝜕𝑥

]𝑖
𝑖

. (9)

Let

𝐴 (]) =
𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)
]𝑖+1

(]
𝑖
+ 1)!

𝑀
𝑛+1
(]) ,

𝐵 (], 𝑓 (𝑥)) =
𝑚

∏

𝑖=1

[

(𝑏
𝑖
− 𝑎
𝑖
)
]𝑖+1

(]
𝑖
+ 1)!

(

𝜕

𝜕𝑥
𝑖

)

]𝑖

]𝑓 (𝑥) ,

𝐶 (]) =
𝑚

∏

𝑖=1

(𝑏
𝑖
− 𝑎
𝑖
)
]𝑖+1

(]
𝑖
+ 1)!

𝑁
𝑛+1
(]) ,

𝑇 (], 𝑡) =
𝑚

∏

𝑖=1

{1 − (1 − 𝑡)
]𝑖+1
} − 1,

(10)

for 𝑡 ∈ (0, 1). Then, for any 𝑡 ∈ (0, 1),

(1) when 𝑛 is even, one has

∑

|]|=𝑛+1

𝐶 (]) 𝑡
𝑚+𝑛+1

+ ∑

|]|=𝑛+1

𝐴 (]) 𝑇 (], 𝑡)

≤ ∫

𝑄𝑚

𝑓 (𝑥) d𝑥 −
𝑛

∑

𝑘=0

∑

|]|=𝑘

𝐵 (], 𝑓 (𝑎)) 𝑡
𝑚+𝑘

+

𝑛

∑

𝑘=0

(−1)
𝑘
∑

|]|=𝑘

𝐵 (], 𝑓 (𝑏)) 𝑇 (], 𝑡)

≤ ∑

|]|=𝑛+1

𝐴 (]) 𝑡
𝑚+𝑛+1

+ ∑

|]|=𝑛+1

𝐶 (]) 𝑇 (], 𝑡) .

(11)

(2) When 𝑛 is odd, one has

∑

|]|=𝑛+1

𝐶 (]) [𝑡
𝑚+𝑛+1

+ 𝑇 (], 𝑡)]

≤ ∫

𝑄𝑚

𝑓 (𝑥) d𝑥 −
𝑛

∑

𝑘=0

∑

|]|=𝑘

𝐵 (], 𝑓 (𝑎)) 𝑡
𝑚+𝑘

+

𝑛

∑

𝑘=0

(−1)
𝑘
∑

|]|=𝑘

𝐵 (], 𝑓 (𝑏)) 𝑇 (], 𝑡)

≤ ∑

|]|=𝑛+1

𝐴 (]) [𝑡
𝑚+𝑛+1

+ 𝑇 (], 𝑡)] .

(12)

We remark that Theorem 2 has been applied in [10] to
give bounds for the complete elliptic integrals of the first and
second kinds.

For more information on this topic, please refer to [11–18]
and [19, pp. 558–561], especially to the preprint [20].

In what follows, we will continue to use some notations
fromTheorem 3. Assume that 𝑏

𝑖
, 𝑟
𝑖
> 0 for 𝑖 = 1, 2, . . . , 𝑛 and

𝜌, 𝜌
1
, 𝜌
2
> 0 with 𝜌

1
< 𝜌
2
, and adopt the following notations:

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) , 𝑟 = (𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
)

V = (V
1
, V
2
, . . . , V

𝑛
) ,

Ω (𝑎, 𝑏, 2𝑟)

= {𝑥 :

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
2𝑟𝑖

𝑏
2𝑟𝑖

𝑖

≤ 1, 𝑥
1
≥ 𝑎
1
, . . . , 𝑥

𝑛
≥ 𝑎
𝑛
}

= Ω
2𝑟
,

Ω
1
(𝑎, 𝑏) = {𝑥 :

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
2

𝑏
2

𝑖

≤ 1} = Ω
1
,

Ω
2
(𝜌
1
, 𝜌
2
) = {𝑥 : 𝜌

2

1
≤

𝑛

∑

𝑖=1

𝑥
2

𝑖
≤ 𝜌
2

2
} = Ω

2
,

Ω
3
(𝑎, 𝜌) = {𝑥 :

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
2

≤ 𝜌
2
} = Ω

3
,

Ω
4
(𝑡) = {𝑥 :

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
2

≤ 𝜌
2

(𝑡) , 𝜌 (𝑡) = 𝑡𝜌, 𝑡 ∈ (0, 1 ]}

= Ω
4
.

(13)
Moreover, let 𝑓 : 𝐼 ⊆ R → R be an (𝑚 + 1)-times
differentiable function, and let

𝑔
1
(𝑥) = √

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
2

𝑏
2

𝑖

, 𝑥 ∈ Ω
1
,

𝑔
2
(𝑥) = √

𝑛

∑

𝑖=1

𝑥
2

𝑖
, 𝑥 ∈ Ω

2
,

𝑔
3
(𝑥) = √

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
2

, 𝑥 ∈ Ω
3
.

(14)
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In this paper, we will establish some new inequalities
of Pólya type for multiple integrals of the composition
function 𝑓 ∘ 𝑔

1
on the 𝑛-dimensional ellipsoid Ω

1
, of the

composition function 𝑓 ∘ 𝑔
2
on the spherical shellΩ

2
, and of

the composition function𝑓∘𝑔
3
on the 𝑛-dimensional ballΩ

3
.

We also obtain a general inequality for the multiple integral
∫
Ω2𝑟

𝑓(𝑥)d𝑥.

2. A Lemma

In order to establish some new inequalities of Pólya type for
multiple integrals, we need the following lemma.

Lemma 4. For 𝑏
𝑖
, 𝑟
𝑖
> 0, and V

𝑖
> −1, one has

∫

Ω2𝑟

𝑛

∏

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
V𝑖
𝑑𝑥

=

∏
𝑛

𝑖=1
(𝑏

V𝑖+1

𝑖
/𝑟
𝑖
)

2
𝑛−1
∑
𝑛

𝑖=1
((V
𝑖
+ 1) /𝑟

𝑖
)

∏
𝑛

𝑖=1
Γ ((V
𝑖
+ 1) /2𝑟

𝑖
)

Γ (∑
𝑛

𝑖=1
(V
𝑖
+ 1) /2𝑟

𝑖
)

,

(15)

where

Γ (𝑧) = ∫

∞

0

𝑡
𝑧−1
𝑒
−𝑡
𝑑𝑡, R (𝑧) > 0 (16)

is the classical Euler gamma function.

Proof. Using the spherical coordinates on the region Ω
2𝑟

yields

𝑥
1
= 𝑏
1
𝑠
1/𝑟1cos1/𝑟1𝜑

1
+ 𝑎
1
,

𝑥
𝑖
= 𝑏
𝑖
[𝑠 cos𝜑

𝑖

𝑖−1

∏

𝑘=1

sin𝜑
𝑘
]

1/𝑟𝑖

+ 𝑎
𝑖
, 2 ≤ 𝑖 ≤ 𝑛 − 1,

𝑥
𝑛
= 𝑏
𝑛
[𝑠

𝑛−1

∏

𝑘=1

sin𝜑
𝑘
]

1/𝑟𝑛

+ 𝑎
𝑛
,

(17)

where 0 ≤ 𝑠 ≤ 1 and 0 ≤ 𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛−1
≤ 𝜋/2, and

𝐹
𝑖
≡ 𝑠
2

𝑖−1

∏

𝑘=1

sin2𝜑
𝑘
−

𝑛

∑

𝑘=𝑖

(

𝑥
𝑘
− 𝑎
𝑘

𝑏
𝑘

)

2𝑟𝑘

= 0, 1 ≤ 𝑖 ≤ 𝑛.

(18)

We note that when 𝑖 = 1, the empty product in (18) is
understood to be 1. It is clear that the expressions in (17) are
solutions of (18), and that

𝐽 =

𝐷𝑥

𝐷 (𝑠, 𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛−1
)

= (−1)
𝑛
𝐷(𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
) /𝐷 (𝑠, 𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑛−1
)

𝐷 (𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
) /𝐷𝑥

.

(19)

A straightforward computation gives

𝐽 =

𝑛

∏

𝑘=1

𝑏
𝑘

𝑟
𝑘

𝑠
∑
𝑛

𝑖=1
(1/𝑟𝑖)−1

𝑛−1

∏

𝑘=1

sin∑
𝑛

𝑖=𝑘+1
(1/𝑟𝑖)−1

𝜑
𝑘
cos(1/𝑟𝑘)−1𝜑

𝑘
.

(20)

Since

∫

𝜋/2

0

cos𝑚𝜑 sin𝑛𝜑 d𝜑 = Γ ((𝑚 + 1) /2) Γ ((𝑛 + 1) /2)
2Γ ((𝑚 + 𝑛 + 2) /2)

, (21)

we obtain

∫

Ω2𝑟

𝑛

∏

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
V𝑖d𝑥

=

∏
𝑛

𝑖=1
𝑏
V𝑖+1

𝑖

∏
𝑛

𝑖=1
𝑟
𝑖

∫

1

0

𝑠
∑
𝑛

𝑘=1
((V𝑘+1)/𝑟𝑘)−1d𝑠

×

𝑛−1

∏

𝑘=1

∫

𝜋/2

0

sin∑
𝑛

𝑖=𝑘+1
((V𝑖+1)/𝑟𝑖)−1

𝜑
𝑘
cos((V𝑘+1)/𝑟𝑘)−1𝜑

𝑘
d𝜑
𝑘

=

∏
𝑛

𝑖=1
(𝑏

V𝑖+1

𝑖
/𝑟
𝑖
)

2
𝑛−1
∑
𝑛

𝑖=1
((V
𝑖
+ 1) /𝑟

𝑖
)

∏
𝑛

𝑖=1
Γ ((V
𝑖
+ 1) /2𝑟

𝑖
)

Γ (∑
𝑛

𝑖=1
(V
𝑖
+ 1) /2𝑟

𝑖
)

.

(22)

The proof of Lemma 4 is complete.

3. Main Results

Now, we start out to state and prove our main results.

Theorem 5. Let 𝑓 : [0, 1] → R be an (𝑚 + 1)-times differen-
tiable function satisfying

𝑁(𝑚) ≤ 𝑓
(𝑚+1)

(𝑢) ≤ 𝑀 (𝑚) . (23)

Then, one has

2𝜋
𝑛/2
(𝑛 − 1)!∏

𝑛

𝑖=1
𝑏
𝑖

Γ (𝑛/2) (𝑛 + 𝑚 + 1)!

min {(−1)𝑚+1𝑀(𝑚) , (−1)
𝑚+1
𝑁(𝑚)}

≤ ∫

Ω1

𝑓 (𝑔
1
(𝑥)) 𝑑𝑥

−

𝑚

∑

𝑘=0

(−1)
𝑘
2𝜋
𝑛/2
(𝑛 − 1)!∏

𝑛

𝑖=1
𝑏
𝑖

(𝑛 + 𝑘)!Γ (𝑛/2)

𝑓
(𝑘)

(1)

≤

2𝜋
𝑛/2
(𝑛 − 1)!∏

𝑛

𝑖=1
𝑏
𝑖

Γ (𝑛/2) (𝑛 + 𝑚 + 1)!

×max {(−1)𝑚+1𝑀(𝑚) , (−1)
𝑚+1
𝑁(𝑚)} .

(24)

Proof. Using the transformation in (17) onΩ
1
and letting 𝑟

𝑖
=

1 for 𝑖 = 1, 2, . . . , 𝑛 yield the Jacobian determinant

𝐽 = 𝑠
𝑛−1

𝑛

∏

𝑘=1

𝑏
𝑘

𝑛−2

∏

𝑘=1

sin𝑛−𝑘−1𝜑
𝑘
, (25)

0 ≤ 𝑠 ≤ 1, 0 ≤ 𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑛−2
≤ 𝜋,

0 ≤ 𝜑
𝑛−1

≤ 2𝜋.

(26)

Because

∫

𝜋

0

sin𝑛𝑡d𝑡 = 2∫
𝜋/2

0

cos𝑛𝑡d𝑡 = √𝜋Γ ((𝑛 + 1) /2)
Γ ((𝑛 + 2) /2)

, (27)
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we have

𝑛−2

∏

𝑘=1

∫

𝜋

0

sin𝑛−𝑘−1𝜑
𝑘
d𝜑
𝑘
∫

2𝜋

0

d𝜑
𝑛−1

=

2𝜋
𝑛/2

Γ (𝑛/2)

. (28)

By integration by parts, one has

∫

𝛽

𝛼

𝑠
𝑛−1
𝑓 (𝑠) d𝑠

=

𝑚

∑

𝑘=0

(−1)
𝑘
(𝑛 − 1)! [𝛽

𝑛+𝑘
𝑓
(𝑘)
(𝛽) − 𝛼

𝑛+𝑘
𝑓
(𝑘)
(𝛼)]

(𝑛 + 𝑘)!

+ (−1)
𝑚+1 (𝑛 − 1)!

(𝑛 + 𝑚)!

∫

𝛽

𝛼

𝑓
(𝑚+1)

(𝑠) 𝑠
𝑛+𝑚d𝑠.

(29)

Choosing 𝛼 = 0 and 𝛽 = 1 in the above equality shows that

∫

Ω1

𝑓 (𝑔
1
(𝑥)) d𝑥

=

𝑛

∏

𝑘=1

𝑏
𝑘
∫

1

0

𝑠
𝑛−1
𝑓 (𝑠) d𝑠

𝑛−2

∏

𝑘=1

∫

𝜋

0

sin𝑛−𝑘−1𝜑
𝑘
d𝜑
𝑘
∫

2𝜋

0

d𝜑
𝑛−1

=

2𝜋
𝑛/2
∏
𝑛

𝑖=1
𝑏
𝑖

Γ (𝑛/2)

𝑚

∑

𝑘=0

(−1)
𝑘
(𝑛 − 1)!𝑓

(𝑘)
(1)

(𝑛 + 𝑘)!

+ (−1)
𝑚+1

2𝜋
𝑛/2
∏
𝑛

𝑖=1
𝑏
𝑖

Γ (𝑛/2)

(𝑛 − 1)!

(𝑛 + 𝑚)!

∫

1

0

𝑓
(𝑚+1)

(𝑠) 𝑠
𝑛+𝑚d𝑠.

(30)

Further utilizing the condition (23) leads to the inequality
(24). The proof of Theorem 5 is completed.

Theorem 6. Let 𝑓 : [𝜌
1
, 𝜌
2
] → R be an (𝑚 + 1)-times

differentiable function satisfying the inequality (23). Then, one
has

2𝜋
𝑛/2
(𝜌
𝑛+𝑚+1

2
− 𝜌
𝑛+𝑚+1

1
) (𝑛 − 1)!

Γ (𝑛/2) (𝑛 + 𝑚 + 1)!

×min {(−1)𝑚+1𝑀(𝑚) , (−1)
𝑚+1
𝑁(𝑚)}

≤ ∫

Ω2

𝑓 (𝑔
2
(𝑥)) 𝑑𝑥 −

2𝜋
𝑛/2

Γ (𝑛/2)

×

𝑚

∑

𝑘=0

(−1)
𝑘
(𝑛 − 1)! [𝜌

𝑛+𝑘

2
𝑓
(𝑘)
(𝜌
2
) − 𝜌
𝑛+𝑘

1
𝑓
(𝑘)
(𝜌
1
)]

(𝑛 + 𝑘)!

≤

2𝜋
𝑛/2
(𝜌
𝑛+𝑚+1

2
− 𝜌
𝑛+𝑚+1

1
) (𝑛 − 1)!

Γ (𝑛/2) (𝑛 + 𝑚 + 1)!

×max {(−1)𝑚+1𝑀(𝑚) , (−1)
𝑚+1
𝑁(𝑚)} .

(31)

Proof. Using the transformation in (17) on Ω
2
and choosing

𝑟
𝑖
= 1, 𝑎

𝑖
= 0, and 𝑏

𝑖
= 1 for 𝑖 = 1, 2, . . . , 𝑛 yield

𝐽 = 𝑠
𝑛−1

𝑛−2

∏

𝑘=1

sin𝑛−𝑘−1𝜑
𝑘
,

𝜌
1
≤ 𝑠 ≤ 𝜌

2
, 0 ≤ 𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑛−2
≤ 𝜋,

0 ≤ 𝜑
𝑛−1

≤ 2𝜋.

(32)

Further letting 𝛼 = 𝜌
1
and 𝛽 = 𝜌

2
in (29) gives

∫

Ω2

𝑓 (𝑔
2
(𝑥)) d𝑥

= ∫

𝜌2

𝜌1

𝑠
𝑛−1
𝑓 (𝑠) d𝑠

𝑛−2

∏

𝑘=1

∫

𝜋

0

sin𝑛−𝑘−1𝜑
𝑘
d𝜑
𝑘
∫

2𝜋

0

d𝜑
𝑛−1

=

2𝜋
𝑛/2

Γ (𝑛/2)

𝑚

∑

𝑘=0

(−1)
𝑘

(𝑛 − 1)!

× [𝜌
𝑛+𝑘

2
𝑓
(𝑘)
(𝜌
2
) − 𝜌
𝑛+𝑘

1
𝑓
(𝑘)
(𝜌
1
)]

× ((𝑛 + 𝑘)!)
−1

+

(−1)
𝑚+1
2𝜋
𝑛/2
(𝑛 − 1)!

Γ (𝑛/2) (𝑛 + 𝑚)!

∫

𝜌2

𝜌1

𝑓
(𝑚+1)

(𝑠) 𝑠
𝑛+𝑚d𝑠.

(33)

Hence, by virtue of the condition (23), the inequality (31) fol-
lows immediately. The proof of Theorem 6 is completed.

Theorem 7. Let 𝑓 : [0, 𝜌] → R be an (𝑚 + 1)-times dif-
ferentiable function satisfying (23). Then, one has

2𝜋
𝑛/2
(𝑛 − 1)!𝜌

𝑛+𝑚+1

Γ (𝑛/2) (𝑛 + 𝑚 + 1)!

min {(−1)𝑚+1𝑀(𝑚) , (−1)
𝑚+1
𝑁(𝑚)}

≤ ∫

Ω3

𝑓 (𝑔
3
(𝑥)) 𝑑𝑥

−

𝑚

∑

𝑘=0

(−1)
𝑘
2𝜋
𝑛/2
(𝑛 − 1)!𝜌

𝑛+𝑘

(𝑛 + 𝑘)!Γ (𝑛/2)

𝑓
(𝑘)
(𝜌)

≤

2𝜋
𝑛/2
(𝑛 − 1)!𝜌

𝑛+𝑚+1

Γ (𝑛/2) (𝑛 + 𝑚 + 1)!

×max {(−1)𝑚+1𝑀(𝑚) , (−1)
𝑚+1
𝑁(𝑚)} .

(34)

Proof. Similar to the proof of Theorem 5, by choosing 𝑏
1
=

𝑏
2
= ⋅ ⋅ ⋅ = 𝑏

𝑛
= 𝜌 and 0 ≤ 𝑠 ≤ 𝜌, we obtain the inequality

(34). The proof is complete.
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Corollary 8. Under the conditions ofTheorem 7, if𝑓(𝑘)(𝜌) = 0
for 𝑘 = 0, 1, 2, . . . , 𝑚, then

2𝜋
𝑛/2
(𝑛 − 1)!𝜌

𝑛+𝑚+1

Γ (𝑛/2) (𝑛 + 𝑚 + 1)!

𝑁 (𝑚)

≤ (−1)
𝑚−1

∫

Ω3

𝑓 (𝑔
3
(𝑥)) 𝑑𝑥

≤

2𝜋
𝑛/2
(𝑛 − 1)!𝜌

𝑛+𝑚+1

Γ (𝑛/2) (𝑛 + 𝑚 + 1)!

𝑀 (𝑚) .

(35)

4. A More General Inequality

Let ] = (]
1
, ]
2
, . . . , ]

𝑛
) be an 𝑛-tuple index; that is, the

numbers ]
1
, ]
2
, . . . , ]

𝑛
are nonnegative and denote |]| =

∑
𝑛

𝑖=1
]
𝑖
. Let 𝑓 : Ω

2𝑟
→ R be a function which has an 𝑚 + 1

times continuous derivative onΩ
2𝑟
, and let

𝐷
]
𝑓 (𝑥) =

𝜕
|]|
𝑓 (𝑥)

∏
𝑛

𝑖=1
𝜕𝑥

]𝑖
𝑖

,

𝐻 (], 𝑏, 𝑟) =
∏
𝑛

𝑖=1
(𝑏

]𝑖+1

𝑖
/𝑟
𝑖
)

2
𝑛−1
∑
𝑛

𝑖=1
((]
𝑖
+ 1) /𝑟

𝑖
)

∏
𝑛

𝑖=1
Γ ((]
𝑖
+ 1) /2𝑟

𝑖
)

Γ (∑
𝑛

𝑖=1
(]
𝑖
+ 1) /2𝑟

𝑖
)

,

(36)

and |]| = 𝑚 + 1.

Theorem 9. Let 𝑓 ∈ 𝐶𝑚+1(Ω
2𝑟
) satisfy

𝑁
𝑚+1

(]) ≤ 𝐷
]
𝑓 (𝑥) ≤ 𝑀

𝑚+1
(]) , 𝑥 ∈ Ω

2𝑟
. (37)

Then

𝐻(], 𝑏, 𝑟) ∑

|]|=𝑚+1

𝑁
𝑚+1

(])

∏
𝑛

𝑖=1
]
𝑖
!

≤ ∫

Ω2𝑟

𝑓 (𝑥) 𝑑𝑥 − 𝐻 (], 𝑏, 𝑟)
𝑚

∑

𝑗=0

∑

|]|=𝑗

𝐷
]
𝑓 (𝑎)

∏
𝑛

𝑖=1
]
𝑖
!

≤ 𝐻 (], 𝑏, 𝑟) ∑

|]|=𝑚+1

𝑀
𝑚+1

(])

∏
𝑛

𝑖=1
]
𝑖
!

.

(38)

Proof. By Taylor’s formula, we obtain

𝑓 (𝑥) =

𝑚

∑

𝑗=0

1

𝑗!

[

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)

𝜕

𝜕𝑥
𝑖

]

𝑗

𝑓 (𝑎) + 𝑅
𝑚
(𝑥) , (39)

where

𝑅
𝑚
(𝑥) =

1

(𝑚 + 1)!

[

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)

𝜕

𝜕𝑥
𝑖

]

|]|

𝑓 (𝑎 + 𝜃 (𝑥 − 𝑎)) ,

𝜃 ∈ (0, 1) .

(40)

Using

(

𝑛

∑

𝑖=1

𝑞
𝑖
)

𝑗

= 𝑗!∑

|]|=𝑗

𝑛

∏

𝑖=1

𝑞
]𝑖
𝑖

]
𝑖
!

, (41)

we have

𝑓 (𝑥) =

𝑚

∑

𝑗=0

∑

|]|=𝑗

1

∏
𝑛

𝑖=1
]
𝑖
!

𝑛

∏

𝑖=1

[(𝑥
𝑖
− 𝑎
𝑖
)

𝜕

𝜕𝑥
𝑖

]

]𝑖

𝑓 (𝑎)

+ ∑

|]|=𝑚+1

1

∏
𝑛

𝑖=1
]
𝑖
!

×

𝑛

∏

𝑖=1

[(𝑥
𝑖
− 𝑎
𝑖
)

𝜕

𝜕𝑥
𝑖

]

]𝑖

𝑓 (𝑎 + 𝜃 (𝑥 − 𝑎)) .

(42)

Integrating on both sides of the above equality leads to

∫

Ω2𝑟

𝑓 (𝑥) d𝑥

=

𝑚

∑

𝑗=0

∑

|]|=𝑗

1

∏
𝑛

𝑖=1
]
𝑖
!

× ∫

Ω2𝑟

𝑛

∏

𝑖=1

[(𝑥
𝑖
− 𝑎
𝑖
)

𝜕

𝜕𝑥
𝑖

]

]𝑖

𝑓 (𝑎) d𝑥

+ ∑

|]|=𝑚+1

1

∏
𝑛

𝑖=1
]
𝑖
!

× ∫

Ω2𝑟

𝑛

∏

𝑖=1

[(𝑥
𝑖
− 𝑎
𝑖
)

𝜕

𝜕𝑥
𝑖

]

]𝑖

× 𝑓 (𝑎 + 𝜃 (𝑥 − 𝑎)) d𝑥

=

𝑚

∑

𝑗=0

∑

|]|=𝑗

1

∏
𝑛

𝑖=1
]
𝑖
!

𝜕
|]|
𝑓 (𝑎)

∏
𝑛

𝑖=1
𝜕𝑥

]𝑖
𝑖

× ∫

Ω2𝑟

𝑛

∏

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
]𝑖d𝑥

+ ∑

|]|=𝑚+1

1

∏
𝑛

𝑖=1
]
𝑖
!

× ∫

Ω2𝑟

𝑛

∏

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
]𝑖 𝜕
|]|
𝑓 (𝑎 + 𝜃 (𝑥 − 𝑎))

∏
𝑛

𝑖=1
𝜕𝑥

]𝑖
𝑖

d𝑥

= 𝐼
1
+ 𝐼
2
,

(43)

where

𝐼
1
=

𝑚

∑

𝑗=0

∑

|]|=𝑗

1

∏
𝑛

𝑖=1
]
𝑖
!

𝜕
|]|
𝑓 (𝑎)

∏
𝑛

𝑖=1
𝜕𝑥

]𝑖
𝑖

∫

Ω2𝑟

𝑛

∏

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
]𝑖d𝑥, (44)

𝐼
2
= ∑

|]|=𝑚+1

1

∏
𝑛

𝑖=1
]
𝑖
!

∫

Ω2𝑟

𝑛

∏

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
]𝑖 𝜕
|]|
𝑓 (𝑎 + 𝜃 (𝑥 − 𝑎))

∏
𝑛

𝑖=1
𝜕𝑥

]𝑖
𝑖

d𝑥.

(45)
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By Lemma 4 and (44), one has

𝐼
1
=

𝑚

∑

𝑗=0

∑

|]|=𝑗

1

∏
𝑛

𝑖=1
]
𝑖
!

𝜕
|]|
𝑓 (𝑎)

∏
𝑛

𝑖=1
𝜕𝑥

]𝑖
𝑖

×

∏
𝑛

𝑖=1
(𝑏

]𝑖+1

𝑖
/𝑟
𝑖
)

2
𝑛−1
∑
𝑛

𝑖=1
((]
𝑖
+ 1) /𝑟

𝑖
)

∏
𝑛

𝑖=1
Γ ((]
𝑖
+ 1) /2𝑟

𝑖
)

Γ (∑
𝑛

𝑖=1
(]
𝑖
+ 1) /2𝑟

𝑖
)

=

𝑚

∑

𝑗=0

∑

|]|=𝑗

𝐷
]
𝑓 (𝑎)

∏
𝑛

𝑖=1
]
𝑖
!

𝐻 (], 𝑏, 𝑟) .

(46)

From (37) and

𝐼
2
= ∑

|]|=𝑚+1

1

∏
𝑛

𝑖=1
]
𝑖
!

∫

Ω2𝑟

𝑛

∏

𝑖=1

(𝑥
𝑖
− 𝑎
𝑖
)
]𝑖
𝐷

]
𝑓 (𝑎 + 𝜃 (𝑥 − 𝑎)) d𝑥,

(47)

we have

∑

|]|=𝑚+1

𝑁
𝑚+1

(])

∏
𝑛

𝑖=1
]
𝑖
!

𝐻 (], 𝑏, 𝑟) ≤ 𝐼
2
≤ ∑

|]|=𝑚+1

𝑀
𝑚+1

(])

∏
𝑛

𝑖=1
]
𝑖
!

𝐻 (], 𝑏, 𝑟) .

(48)

Consequently, the proof of Theorem 9 is complete.

Corollary 10. Let |]| = 𝑚 + 1, and let 𝑓 ∈ 𝐶
𝑚+1
(Ω
4
) with

(37). Then, for 𝑡 ∈ (0, 1] one has

𝐻(], 𝑡) ∑

|]|=𝑚+1

𝑁
𝑚+1

(])

∏
𝑛

𝑖=1
]
𝑖
!

≤ ∫

Ω4(𝑡)

𝑓 (𝑥) 𝑑𝑥 − 𝐻 (], 𝑡)
𝑚

∑

𝑗=0

∑

|]|=𝑗

𝐷
]
𝑓 (𝑎)

∏
𝑛

𝑖=1
]
𝑖
!

≤ 𝐻 (], 𝑡) ∑

|]|=𝑚+1

𝑀
𝑚+1

(])

∏
𝑛

𝑖=1
]
𝑖
!

,

(49)

where

𝐻(], 𝑡) =
𝜌
𝑛+𝑚+1

𝑛 + 𝑚 + 1

∏
𝑛

𝑖=1
[1 + (−1)

]𝑖
]

2
𝑛−1

×

∏
𝑛

𝑖=1
Γ ((]
𝑖
+ 1) /2)

Γ (∑
𝑛

𝑖=1
(]
𝑖
+ 1) /2)

𝑡
𝑛+𝑚+1

.

(50)

5. An Application

Now, we list some special cases ofΩ
2𝑟
as follows.

(1) If we take 𝑟
1
= 𝑟
2
= ⋅ ⋅ ⋅ = 𝑟

𝑛
= 1/2, the body Ω

2𝑟

becomes a closed region between the 𝑛-dimensional
pyramid and the rectangle 𝑥

𝑖
= 𝑎
𝑖
for 𝑖 = 1, 2, . . . , 𝑛.

(2) If we take 𝑟
1
= 𝑟
2
= ⋅ ⋅ ⋅ = 𝑟

𝑛
= 1, the body Ω

2𝑟
is

a closed region between the 𝑛-dimensional ellipsoid
Ω
1
(𝑎, 𝑏) and the rectangle 𝑥

𝑖
= 𝑎
𝑖
for 𝑖 = 1, 2, . . . , 𝑛.

(3) If we take 𝑟
1
= 𝑟
2
= ⋅ ⋅ ⋅ = 𝑟

𝑛
= 1 and 𝑏

1
= 𝑏
2
= ⋅ ⋅ ⋅ =

𝑏
𝑛
= 𝜌, the body Ω

2𝑟
is a closed region between the

𝑛-dimensional ball Ω
3
(𝑎, 𝜌) and the rectangle 𝑥

𝑖
= 𝑎
𝑖

for 𝑖 = 1, 2, . . . , 𝑛.

In the calculation of the uniform 𝑛-dimensional vol-
ume, static moment, the moment of inertia, the centrifu-
gal moment, and so on, have important applications. See
[21, 22].

To show the applicability of the above main results, we
now estimate the value of a triple integral

𝐼 =∭

𝑉

sin(𝑥
2

𝑎
2
+

𝑦
2

𝑏
2
+

𝑧
2

𝑐
2
)

5/2

d𝑥 d𝑦 d𝑧, (51)

where 𝑉 is the ellipsoid

𝑥
2

𝑎
2
+

𝑦
2

𝑏
2
+

𝑧
2

𝑐
2
≤ 1. (52)

Choosing 𝑛 = 3, 𝑏
1
= 𝑎, 𝑏
2
= 𝑏, and 𝑏

3
= 𝑐 in (25), the Jacobian

determinant is

𝐽 = 𝑎𝑏𝑐𝑠
2 sin𝜑

1
, (53)

𝐼 = ∫

2𝜋

0

d𝜑
2
∫

𝜋

0

d𝜑
1
∫

1

0

𝑎𝑏𝑐 𝑠
2 sin𝜑

1
sin 𝑠5d𝑠

= 4𝜋𝑎𝑏𝑐∫

1

0

𝑠
2 sin 𝑠5d𝑠.

(54)

Using Taylor’s formula, it follows that

sin𝑥 =
𝑚

∑

𝑘=1

(−1)
𝑘−1 𝑥

2𝑘−1

(2𝑘 − 1)!

+ (−1)
𝑚 𝑥
2𝑚+1

(2𝑚 + 1)!

cos (𝜃𝑥) ,

0 < 𝜃 < 1.

(55)

Specially, we have

sin𝑥 =
3

∑

𝑘=1

(−1)
𝑘−1 𝑥

2𝑘−1

(2𝑘 − 1)!

−

𝑥
7

7!

cos 𝜃
1
𝑥,

sin𝑥 =
6

∑

𝑘=1

(−1)
𝑘−1 𝑥

2𝑘−1

(2𝑘 − 1)!

+

𝑥
13

13!

cos 𝜃
2
𝑥,

(56)

where 0 < 𝜃
1
, 𝜃
2
< 1 and 0 < 𝑥 < 1. Therefore,

6

∑

𝑘=1

(−1)
𝑘−1 𝑥

2𝑘−1

(2𝑘 − 1)!

≤ sin𝑥 ≤
3

∑

𝑘=1

(−1)
𝑘−1 𝑥

2𝑘−1

(2𝑘 − 1)!

. (57)
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By (54) and the above inequality, we have

6

∑

𝑘=1

(−1)
𝑘−1

(2𝑘 − 1)!

∫

1

0

𝑠
10𝑘−3d𝑠

≤ ∫

1

0

𝑠
2 sin 𝑠5d𝑠 ≤

3

∑

𝑘=1

(−1)
𝑘−1

(2𝑘 − 1)!

∫

1

0

𝑠
10𝑘−3d𝑠,

6

∑

𝑘=1

(−1)
𝑘−1

(2𝑘 − 1)! (10𝑘 − 2)

≤ ∫

1

0

𝑠
2 sin 𝑠5d𝑠 ≤

3

∑

𝑘=1

(−1)
𝑘−1

(2𝑘 − 1)! (10𝑘 − 2)

,

61249255037

131964940800

𝜋𝑎𝑏𝑐 ≤ 𝐼 ≤

3509

7560

𝜋𝑎𝑏𝑐.

(58)
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