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We propose a sequence of highly accurate higher order convergent iterative schemes by embedding the quasilinearization algorithm
within a spectral collocation method. The iterative schemes are simple to use and significantly reduce the time and number of
iterations required to find solutions of highly nonlinear boundary value problems to any arbitrary level of accuracy. The accuracy
and convergence properties of the proposed algorithms are tested numerically by solving three Falkner-Skan type boundary layer
flow problems and comparing the results to the most accurate results currently available in the literature. We show, for instance,
that precision of up to 29 significant figures can be attained with no more than 5 iterations of each algorithm.

1. Introduction

The quasilinearization method (QLM) was originally devel-
oped by Bellman and Kalaba [1] as a generalization of the
Newton-Raphsonmethod to provide lower and upper bound
solutions of nonlinear differential equations.The attraction of
quasilinearization is that the algorithm is easy to understand
and themethod generally converges rapidly if the initial guess
is close to the true solution.

Bellman and Kalaba [1] established that the method con-
verges quadratically. However, the original proof of quadratic
convergence was subject to restrictive conditions of small
step size and convexity or concavity of nonlinear functions,
Maleknejad and Najafi [2]. These conditions were subse-
quently relaxed and the method generalized to be applicable
to a wider class of problems; see, for instance, papers by
Mandelzweig and his coworkers [3–6] and Lakshmikantham
[7, 8]. Parand et al. [9] used the quasilinearization method
to solve Volterra’s model for population growth in a closed
system. Other uses of the quasilinearization method include
application to reaction diffusion equations, Jiang and Vatsala

[10], and to Volterra integro-differential equations, Ahmad
[11], Pandit [12], and Ramos [13].

An often noted disadvantage of quasilinearization is the
instability of the method whenever a poor initial guess is
chosen, Tuffuor and Labadie [14]. To improve the accuracy
and convergence of the quasilinearization method for all
initial guesses, we propose in this paper to embed the QLM
algorithm within the spectral homotopy analysis method
(SHAM) to obtain a sequence of integration schemes with
arbitrary higher order convergence.

The spectral homotopy analysis method was introduced
by Motsa et al. [15, 16] to address some limitations of the
standard homotopy analysis method of Liao [17, 18] by, for
example, improving the rate of convergence and extending
the region of validity of solutions. The SHAM has been used
to solve nonlinear equations that arise in the study of fluid
flow problems and other areas of science and engineering,
Sibanda et al. [19] and Motsa and Sibanda [20].

Abbasbandy [21] and Chun [22] proposed and studied
several methods for nonlinear equations with higher order
convergence by using the Adomian decomposition technique
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[23–25]. Higher order Newton-like iteration formulae for the
computation of the solutions of nonlinear equationswere also
derived in Chun [26] using the homotopy analysis method
and by [27] using the homotopy perturbationmethod. In this
paper we extend the ideas used for the solution of nonlinear
equations to obtain higher order iteration schemes for solving
nonlinear boundary value problems. We propose an exten-
sion of the quasilinearization method by using the spectral
homotopy analysis method within the QLM algorithm to
obtain a sequence of highly accurate and convergent higher
order iterative schemes for solving boundary value problems.
For illustration purposes we have presented three QLM-
SHAMhybrid iteration schemes that are used to solve the Bla-
sius and Falkner-Skan equations.The results are compared to
themost accurate skin friction coefficients currently available
in the literature by Boyd [28] and Ganapol [29]. Ganapol [29]
used an algorithm based on a Maclaurin series with Wynn-
epsilon convergence acceleration and analytical continuation
to obtain highly accurate skin friction coefficients for the
Blasius and Falkner-Skan boundary layer flows. The schemes
derived in this paper however require neither convergence
acceleration nor analytical continuation to remain steady and
accurate for up to 29 digits of precision. In addition, the
present schemes are highly efficient with 29-digit precision
achieved with five or fewer iterations as compared with at
least 104 iterations of Ganapol’s algorithm.

The structure of this paper is as follows. Section 2
gives a general framework for the derivation of the hybrid
quasilinearization-SHAMschemes for the solution of nonlin-
ear differential equations. Section 3 illustrates the application
of the three schemes derived in this paper to the solution of
Blasius and Falkner-Skan equations. In Section 4, the results
are presented and comparison made with the most accurate
skin friction results for Blasius and Falkner-Skan equations
currently available in the literature.

2. Derivation of the Iterative Schemes

In this section we present a framework for the derivation
of general QLM-SHAM iterative schemes for solving one-
dimensional nonlinear differential equations. We consider a
general 𝑛-order nonlinear ordinary differential equation of
the form

𝐿 [𝑦 (𝑥) , 𝑦
(1)
(𝑥) , 𝑦

(2)
(𝑥) , . . . , 𝑦

(𝑛)
]

+ 𝐹 [𝑦 (𝑥) , 𝑦
(1)
(𝑥) , 𝑦

(2)
(𝑥) , . . . , 𝑦

(𝑛)
] = 𝜓 (𝑥) ,

(1)

where 𝜓(𝑥) is a known function of the independent variable
𝑥 and 𝑦(𝑥) is an unknown function. The functions 𝐿 and
𝐹 represent the linear and nonlinear components of the
governing equation, respectively. We assume that (1) is to be
solved for 𝑥 ∈ [𝑎, 𝑏] subject to the boundary conditions

𝐵𝑎 (𝑦 (𝑎) , 𝑦
(1)
(𝑎) , . . . , 𝑦

(𝑛−1)
(𝑎)) = 0,

𝐵𝑏 (𝑦 (𝑏) , 𝑦
(1)
(𝑏) , . . . , 𝑦

(𝑛−1)
(𝑏)) = 0,

(2)

where 𝐵𝑎 and 𝐵𝑏 are linear operators.

Following [22, 27], we assume that the true solution of
(1) is 𝑦𝛼(𝑥) and that 𝑦𝛾(𝑥) is an initial approximation that
is sufficiently close to 𝑦𝛼(𝑥). After expanding 𝐹 using Taylor
series up to first order about 𝑦𝛾, 𝑦

󸀠
𝛾, . . . , 𝑦

(𝑛)
𝛾 we obtain the

following coupled system:

𝐿 [𝑦, 𝑦
(1)
, . . . , 𝑦

(𝑛)
] + 𝐹 [𝑦𝛾, 𝑦

(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 ]

+

𝑛

∑

𝑠=0

(𝑦
(𝑠)
− 𝑦
(𝑠)

𝛾 )
𝜕𝐹

𝜕𝑦
(𝑠)
(⋅ ⋅ ⋅ )

+ 𝐺 (𝑦, . . . , 𝑦
(𝑛)
) = 𝜓 (𝑥)

(3)

𝐺(𝑦, 𝑦
(1)
, . . . , 𝑦

(𝑛)
)

= 𝐹 (𝑦, 𝑦
(1)
, . . . , 𝑦

(𝑛)
) − 𝐹 [𝑦𝛾, 𝑦

(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 ]

−

𝑛

∑

𝑠=0

(𝑦
(𝑠)
− 𝑦
(𝑠)

𝛾 )
𝜕𝐹

𝜕𝑦
(𝑠)
(⋅ ⋅ ⋅ ) ,

(4)

where, for compactness, (⋅ ⋅ ⋅ ) denotes (𝑦𝛾, 𝑦
(1)
𝛾 , . . . , 𝑦

(𝑛)
𝛾 ).

Note that adding (3) and (4) gives (1). Equation (3) can be
rewritten in the form

L1 [𝑦, 𝑦
(1)
, . . . , 𝑦

(𝑛)
] +G1 [𝑦, 𝑦

(1)
, . . . , 𝑦

(𝑛)
]

= Φ (𝑦𝛾, 𝑦
(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 ) ,

(5)

where

L1 [𝑦, 𝑦
(1)
, . . . , 𝑦

(𝑛)
]

= 𝐿 [𝑦, 𝑦
(1)
, . . . , 𝑦

(𝑛)
] +

𝑛

∑

𝑠=0

𝑦
(𝑠) 𝜕𝐹

𝜕𝑦
(𝑠)
(𝑦𝛾, 𝑦

(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 ) ,

(6)

Φ(𝑦𝛾, 𝑦
(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 ) =

𝑛

∑

𝑠=0

𝑦
(𝑠)

𝛾

𝜕𝐹

𝜕𝑦
(𝑠)
(𝑦𝛾, 𝑦

(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 )

− 𝐹 [𝑦𝛾, 𝑦
(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 ] + 𝜓 (𝑥) ,

(7)

G1 [𝑦, 𝑦
(1)
, . . . , 𝑦

(𝑛)
] = 𝐺 [𝑦, 𝑦

(1)
, . . . , 𝑦

(𝑛)
] . (8)

HereG1 is a nonlinear function that is decomposed using the
spectral homotopy analysis method [15, 16]. We define the
following zeroth-order deformation equations:

(1 − 𝑞)L1 [𝑌 (𝑥; 𝑞) − 𝑦0 (𝑥)]= 𝑞ℎ {N1 [𝑌 (𝑥; 𝑞)]− Φ (𝑦𝛾)},

(9)

where 𝑞 ∈ [0, 1] is an embedding parameter, 𝑌(𝑥; 𝑞) are
unknown functions, ℎ is the convergence controlling param-
eter, and the “bar” has been introduced for convenience
to denote the associated function and its 𝑛 derivatives. For
example,

𝑦 ≡ (𝑦, 𝑦
(1)
, 𝑦
(2)
, . . . , 𝑦

(𝑛)
) . (10)
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The nonlinear operatorN1 is defined by

N1 [𝑌 (𝑥; 𝑞)] = L1 [𝑌𝑟 (𝑡; 𝑞)] +G1 [𝑌 (𝑥; 𝑞)] . (11)

By differentiating the zeroth-order equations (11) 𝑚 times
with respect to 𝑞, setting 𝑞 = 0, and finally dividing the
resulting equations by 𝑚! (see, e.g., [17, 30–32]), we obtain
the following𝑚th order deformation equations:

L1 [𝑦𝑚 (𝑥) − (𝜒𝑚 + ℎ) 𝑦𝑚−1 (𝑥)]

= ℎ𝑅𝑚−1 [𝑦0, 𝑦1, . . . , 𝑦𝑚−1] ,

(12)

where
𝑅𝑚−1 [𝑦0, 𝑦1, . . . , 𝑦𝑚−1]

=

1

(𝑚 − 1)!

𝜕
𝑚−1

{G1 [𝑌 (𝑥; 𝑞)] − Φ (𝑦𝛾)}

𝜕𝑞
𝑚−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑞=0

,

𝜒𝑚 = {
0, 𝑚 ⩽ 1,

1, 𝑚 > 1.

(13)

After obtaining solutions for (12), the approximate solution
for 𝑦(𝑥) is determined as the series solution

𝑦 (𝑥) =

∞

∑

𝑚=0

𝑦𝑚 (𝑥) . (14)

The SHAM solution is said to be of order 𝑀 if the previous
series is truncated at𝑚 = 𝑀, that is, if

𝑦 (𝑥) =

𝑀

∑

𝑚=0

𝑦𝑚 (𝑥) . (15)

The initial approximation 𝑦0 required for solving the
sequence of linear higher order deformation equations (12)
is chosen as the solution that results from solving the linear
part of (5) subject to the given boundary conditions (2).That
is, we solve

L1 [𝑦0, 𝑦
(1)

0 , . . . , 𝑦
(𝑛)

0 ] = Φ (𝑦𝛾, 𝑦
(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 ) . (16)

We note that with L1 as defined in (6), (16) cannot be
solved exactly by means of analytical techniques. Numerical
methods such as finite differences, finite element method,
and spectral method can be used to solve equations of the
form (16). Thus, if only the initial approximation is used to
approximate the solution 𝑦(𝑥) of the governing nonlinear
differential equation (1), that is, if 𝑦(𝑥) ≈ 𝑦0(𝑥), the (𝑟 + 1)th
approximation of (1) is a solution of

L1 [𝑦𝑟+1, 𝑦
(1)

𝑟+1, . . . , 𝑦
(𝑛)

𝑟+1] = Φ (𝑦𝛾, 𝑦
(1)

𝛾 , . . . , 𝑦
(𝑛)

𝛾 ) (17)

which, on using the definitions (6) and (7), can be written as

𝐿 [𝑦𝑟+1, 𝑦
(1)

𝑟+1, . . . , 𝑦
(𝑛)

𝑟+1]

+

𝑛

∑

𝑠=0

(𝑦
(𝑠)

𝑟+1 − 𝑦
(𝑠)

𝑟 )
𝜕𝐹

𝜕𝑦
(𝑠)
(𝑦𝑟, 𝑦

(1)

𝑟 , . . . , 𝑦
(𝑛)

𝑟 )

+ 𝐹 [𝑦𝑟, 𝑦
(1)

𝑟 , . . . , 𝑦
(𝑛)

𝑟 ] = 0.

(18)

We note that the iterative scheme (18) is, in fact, the quasilin-
earization method of Bellman and Kalaba [1]. For𝑀 = 1, we
have

𝑦 (𝑥) ≈ 𝑦0 (𝑥) + 𝑦1 (𝑥) , (19)

where 𝑦1 is obtained as a solution of

L1 [𝑦1, 𝑦
(1)

1 , . . . , 𝑦
(𝑛)

1 ]

= ℎL1 [𝑦0, 𝑦
(1)

0 , . . . , 𝑦
(𝑛)

0 ] + ℎ𝑅0 [𝑦0, 𝑦
(1)

0 , . . . , 𝑦
(𝑛)

0 ] .

(20)

This produces the iteration scheme

L1 [𝑦𝑟+1, . . . , 𝑦
(𝑛)

𝑟+1]

= Φ [𝑦𝑟, 𝑦
(1)

𝑟 , . . . , 𝑦
(𝑛)

𝑟 ] + ℎL1 [𝑦0,𝑟+1, . . . , 𝑦
(𝑛)

0,𝑟+1]

+ ℎ𝑅0 [𝑦0,𝑟+1, . . . , 𝑦
(𝑛)

0,𝑟+1] ,

(21)

where

L1 [𝑦𝑟+1, 𝑦
(1)

𝑟+1, . . . , 𝑦
(𝑛)

𝑟+1] = 𝐿 [𝑦𝑟+1, 𝑦
(1)

𝑟+1, . . . , 𝑦
(𝑛)

𝑟+1]

+

𝑛

∑

𝑠=0

𝑦
(𝑠)

𝑟+1

𝜕𝐹

𝜕𝑦
(𝑠)
(𝑦𝑟, 𝑦

(1)

𝑟 , . . . , 𝑦
(𝑛)

𝑟 )

(22)

and 𝑦0,𝑟+1 is the solution of

𝐿 [𝑦0,𝑟+1, 𝑦
(1)

0,𝑟+1, . . . , 𝑦
(𝑛)

0,𝑟+1] +

𝑛

∑

𝑠=0

𝑦
(𝑠)

0,𝑟+1

𝜕𝐹

𝜕𝑦
(𝑠)
(𝑦𝑟, 𝑦

(1)

𝑟 , . . . , 𝑦
(𝑛)

𝑟 )

= Φ (𝑦𝑟, 𝑦
(1)

𝑟 , . . . , 𝑦
(𝑛)

𝑟 ] .

(23)

For𝑀 = 2, we have

𝑦 (𝑥) ≈ 𝑦0 (𝑥) + 𝑦1 (𝑥) + 𝑦2 (𝑥) , (24)

where 𝑦2 is obtained as a solution of

L1 [𝑦2, 𝑦
(1)

2 , . . . , 𝑦
(𝑛)

2 ]

= (1 + ℎ)L1 [𝑦1, 𝑦
(1)

1 , . . . , 𝑦
(𝑛)

1 ]

+ ℎ𝑅1 [𝑦0, 𝑦
(1)

0 , . . . , 𝑦
(𝑛)

0 ; 𝑦1, 𝑦
(1)

1 , . . . , 𝑦
(𝑛)

1 ] .

(25)

This produces the iteration scheme

L [𝑦𝑟+1] = Φ [𝑦𝑟] + ℎL1 [𝑦0,𝑟+1] + (1 + ℎ)L1 [𝑦1,𝑟+1]

+ ℎ {𝑅0 [𝑦0,𝑟+1] + 𝑅1 [𝑦0,𝑟+1, 𝑦1,𝑟+1]} ,

(26)

where 𝑦1,𝑟+1 is obtained as the solution of

L1 [𝑦1,𝑟+1] = ℎL1 [𝑦0,𝑟+1] + ℎ𝑅0 [𝑦0,𝑟+1] . (27)
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In general, for any𝑀 > 1, we have
𝑦 (𝑥) = 𝑦0 (𝑥) + 𝑦1 (𝑥) + ⋅ ⋅ ⋅ + 𝑦𝑀 (𝑥) , (28)

where 𝑦𝑀(𝑥) is obtained as a solution of
L1 [𝑦𝑀] = (1 + ℎ)L1 [𝑦𝑀−1] + ℎ𝑅𝑀−1 [𝑦0, 𝑦1, . . . , 𝑦𝑀−1] .

(29)
Thus, a general scheme when the SHAM is truncated at order
𝑀 (where𝑀 ≥ 1), hereinafter referred to as scheme-𝑀, can
be obtained as
L1 [𝑦𝑟+1, 𝑦

(1)

𝑟+1, . . . , 𝑦
(𝑛)

𝑟+1]

= Φ [𝑦𝑟, 𝑦
(1)

𝑟 , . . . , 𝑦
(𝑛)

𝑟 ]

+

𝑀−1

∑

𝑝=0

(𝜒𝑝+1 + ℎ)L1 [𝑦𝑝,𝑟+1, 𝑦
(1)

𝑝,𝑟+1, . . . , 𝑦
(𝑛)

𝑝,𝑟+1]

+ ℎ

𝑀−1

∑

𝑝=0

𝑅𝑝 [𝑦0,𝑟+1, 𝑦1,𝑟+1, . . . , 𝑦𝑝,𝑟+1] ,

(30)

where each 𝑦𝑝,𝑟+1 is obtained as the solution of

L1 [𝑦𝑝,𝑟+1]

=

{
{

{
{

{

(𝜒𝑝 + ℎ)L1 [𝑦𝑝−1,𝑟+1]

+ℎ𝑅𝑝−1 [𝑦0,𝑟+1, 𝑦1,𝑟+1, . . . , 𝑦𝑝−1,𝑟+1] when 𝑝 ≥ 1,

Φ [𝑦𝑟, 𝑦
(1)
𝑟 , . . . , 𝑦

(𝑛)
𝑟 ] when 𝑝 = 0.

(31)

3. Solution of the Falkner-Skan Equation

In this section we demonstrate how the numerical schemes
derived in the previous section may be used to solve the
Falkner-Skan equation:

𝑓
󸀠󸀠󸀠
(𝜂) + 𝛽𝑓 (𝜂) 𝑓

󸀠󸀠
(𝜂) + 𝛽1 (1 − 𝑓

󸀠
(𝜂)
2
)

= 0, 𝜂 ∈ [0,∞) ,

(32)

subject to the boundary conditions

𝑓 (0) = 𝑓
󸀠
(0) = 0, lim

𝜂→∞
𝑓 (𝜂) = 1. (33)

It is convenient to first define

𝐹 (𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
) = 𝛽𝑦𝑦

󸀠󸀠
− 𝛽1(𝑦

󸀠
)

2
, Ψ = −𝛽1,

(34)

so that

Φ(𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
) = 𝛽𝑦𝑦

󸀠󸀠
− 𝛽1(𝑦

󸀠
)

2
− 𝛽1,

(35)

L1 (𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
, 𝑦
󸀠󸀠󸀠
) = 𝑦
󸀠󸀠󸀠
+ 𝑎0,𝛾𝑦

󸀠󸀠
+ 𝑎1,𝛾𝑦

󸀠
+ 𝑎2,𝛾𝑦, (36)

𝑅𝑚−1 [𝑦0, 𝑦1, . . . , 𝑦𝑚−1] = 𝛽

𝑚−1

∑

𝑗=0

𝑦𝑗𝑦
󸀠󸀠

𝑚−1−𝑗 − 𝛽1

𝑚−1

∑

𝑗=0

𝑦
󸀠

𝑗𝑦
󸀠

𝑚−1−𝑗

+ 𝛽1 (1 − 𝜒𝑚) + 2𝛽1𝑦
󸀠

𝛾𝑦
󸀠

𝑚−1

− 𝛽 (𝑦𝛾𝑦
󸀠󸀠

𝑚−1 + 𝑦
󸀠󸀠

𝛾 𝑦𝑚−1) ,

(37)

where

𝑎0,𝛾 = 𝛽𝑦𝛾, 𝑎1,𝛾 = −2𝛽1𝑦
󸀠

𝛾, 𝑎2,𝛾 = 𝛽𝑦
󸀠󸀠

𝛾 . (38)

Using (35)–(37) the first three iterative schemes correspond-
ing to𝑀 = 0, 1, 2may now be defined as follows.

3.1. Scheme-0. In this scheme we set

L1 (𝑦𝑟+1, 𝑦
󸀠

𝑟+1, 𝑦
󸀠󸀠

𝑟+1, 𝑦
󸀠󸀠󸀠

𝑟+1) = Φ (𝑦𝑟, 𝑦
󸀠

𝑟, 𝑦
󸀠󸀠

𝑟 ) (39)

subject to

𝑦𝑟+1 (0) = 𝑦
󸀠

𝑟+1 (0) = 0, 𝑦
󸀠

𝑟+1 (∞) = 1. (40)

It is worth noting that Scheme-0 is, in fact, equivalent to the
original QLM algorithm; see Mandelzweig and Tabakin [5]
and Mandelzweig [6].

3.2. Scheme-1. For this scheme we set

L1 (𝑦𝑟+1, 𝑦
󸀠

𝑟+1, 𝑦
󸀠󸀠

𝑟+1, 𝑦
󸀠󸀠󸀠

𝑟+1)

= Φ (𝑦𝑟, 𝑦
󸀠

𝑟, 𝑦
󸀠󸀠

𝑟 ) + ℎL1 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1, 𝑦
󸀠󸀠󸀠

0,𝑟+1)

+ ℎ𝑅0 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1) ,

(41)

subject to

𝑦𝑟+1 (0) = 𝑦
󸀠

𝑟+1 (0) = 0, 𝑦
󸀠

𝑟+1 (∞) = 1, (42)

where

𝑅0 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1)

= 𝛽𝑦0,𝑟+1𝑦
󸀠󸀠

0,𝑟+1 − 𝛽1𝑦
󸀠2

0,𝑟+1 + 𝛽1 + 2𝛽1𝑦
󸀠

𝑟𝑦
󸀠

0,𝑟+1

− 𝛽 (𝑦𝑟𝑦
󸀠󸀠

0,𝑟+1 + 𝑦
󸀠󸀠

𝑟 𝑦0,𝑟+1) ,

(43)

and 𝑦0,𝑟+1 is the solution of

L1 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1, 𝑦
󸀠󸀠󸀠

0,𝑟+1) = Φ (𝑦𝑟, 𝑦
󸀠

𝑟, 𝑦
󸀠󸀠

𝑟 ) (44)

subject to

𝑦0, 𝑟+1 (0) = 𝑦
󸀠

0,𝑟+1 (0) = 0, 𝑦
󸀠

0,𝑟+1 (∞) = 1. (45)

3.3. Scheme-2. The complexity of the defining equations
increases with the order of the scheme. For Scheme-2 we have

L1 (𝑦𝑟+1, 𝑦
󸀠

𝑟+1, 𝑦
󸀠󸀠

𝑟+1, 𝑦
󸀠󸀠󸀠

𝑟+1)

= Φ (𝑦𝑟, 𝑦
󸀠

𝑟, 𝑦
󸀠󸀠

𝑟 ) + ℎL1 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1, 𝑦
󸀠󸀠󸀠

0,𝑟+1)

+ (1 + ℎ)L1 (𝑦1,𝑟+1, 𝑦
󸀠

1,𝑟+1, 𝑦
󸀠󸀠

1,𝑟+1, 𝑦
󸀠󸀠󸀠

1,𝑟+1)

+ ℎ𝑅0 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1)

+ ℎ𝑅1 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1; 𝑦1,𝑟+1, 𝑦
󸀠

1,𝑟+1, 𝑦
󸀠󸀠

1,𝑟+1) ,

(46)
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subject to

𝑦𝑟+1 (0) = 𝑦
󸀠

𝑟+1 (0) = 0, 𝑦
󸀠

𝑟+1 (∞) = 1, (47)

where

𝑅1 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1; 𝑦1,𝑟+1, 𝑦
󸀠

1,𝑟+1, 𝑦
󸀠󸀠

1,𝑟+1)

= 𝛽 (𝑦0,𝑟+1𝑦
󸀠󸀠

1,𝑟+1 + 𝑦1,𝑟+1𝑦
󸀠󸀠

0,𝑟+1) − 2𝛽1𝑦
󸀠

0,𝑟+1𝑦1,𝑟+1

+ 2𝛽1𝑦
󸀠

𝑟𝑦
󸀠

1,𝑟+1 − 𝛽 (𝑦𝑟𝑦
󸀠󸀠

1,𝑟+1 + 𝑦
󸀠󸀠

𝑟 𝑦1,𝑟+1) ,

(48)

and 𝑦1,𝑟+1 is the solution of

L1 (𝑦1,𝑟+1, 𝑦
󸀠

1,𝑟+1, 𝑦
󸀠󸀠

1,𝑟+1, 𝑦
󸀠󸀠󸀠

1,𝑟+1)

= ℎL1 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1, 𝑦
󸀠󸀠󸀠

0,𝑟+1)

+ ℎ𝑅0 (𝑦0,𝑟+1, 𝑦
󸀠

0,𝑟+1, 𝑦
󸀠󸀠

0,𝑟+1) ,

(49)

with

𝑦1,𝑟+1 (0) = 𝑦
󸀠

1,𝑟+1 (0) = 0, 𝑦
󸀠

1,𝑟+1 (∞) = 0. (50)

Equations (39), (41), and (46) describing the three solution
schemes can be solved numerically using standard meth-
ods such as finite difference, finite elements, and spline
collocation methods. In this study we use the Chebyshev
spectral collocation method to solve the iteration schemes,
(see [33–36]). To allow for numerical implementation of
the pseudospectral method, the physical region [0,∞) is
truncated to [0, 𝐿] where 𝐿 is chosen to be sufficiently large.
The truncated region is further transformed to the space
[−1, 1] using the transformation

𝜉 =

2

𝐿∞

𝜂 − 1. (51)

As with any other numerical approximation method, some
sort of discretization is introduced in the interval [−1, 1]. We
choose the Gauss-Lobatto collocation points to define the
nodes in [−1, 1] as

𝜉𝑗 = cos(
𝜋𝑗

𝑁

) , 𝑗 = 0, 1, . . . , 𝑁, (52)

where (𝑁 + 1) is the number of collocation points. The
essence of the Chebyshev spectral collocation method is
the idea of introducing a differentiation matrix 𝐷. The
differentiation matrix maps a vector of the function values
Y = [𝑦(𝜉0), . . . , 𝑦(𝜉𝑁)]

𝑇 at the collocation points to a vector
Y󸀠 defined as

Y󸀠 =
𝑁

∑

𝑘=0

𝐷𝑗𝑘𝑓 (𝜉𝑘) = 𝐷Y, (53)

In general, a derivative of order 𝑝 for the function 𝑦(𝜂) can
be expressed as

𝑦
(𝑝)
(𝜂) = D𝑝Y, (54)

whereD = 2𝐷/𝐿∞. The matrix𝐷 is of size (𝑁 + 1) × (𝑁 + 1)

and its entries are defined as

𝐷𝑗𝑘 =

𝑐𝑗

𝑐𝑘

(−1)
𝑗+𝑘

𝜏𝑗 − 𝜏𝑘

, 𝑗 ̸= 𝑘; 𝑗, 𝑘 = 0, 1, . . . , 𝑁,

𝐷𝑘𝑘 = −

𝜏𝑘

2 (1 − 𝜏
2
𝑘
)

, 𝑘 = 1, 2, . . . , 𝑁 − 1,

𝐷00 =
2𝑁
2
+ 1

6

= −𝐷𝑁𝑁,

(55)

with

𝑐𝑘 = {
2 𝑘 = 0,𝑁

1 −1 ≤ 𝑘 ≤ 𝑁 − 1.

(56)

Thus, applying the spectral method to the iteration Scheme-
0 (39) and the corresponding boundary conditions gives the
following matrix system:

A𝑟Y𝑟+1 = Φ𝑟 (57)

with boundary conditions

𝑦𝑟+1 (𝜉𝑁) = 0,

𝑁

∑

𝑘=0

D𝑁𝑘𝑦𝑟+1 (𝜉𝑘) = 0,

𝑁

∑

𝑘=0

D0𝑘𝑦𝑟+1 (𝜉𝑘) = 1,

(58)

where

A𝑟 = D3 + a0,𝑟D
2
+ a1,𝑟D + a2,𝑟, (59)

where Φ𝑟 corresponds to the function Φ(𝑦, 𝑦, 𝑦
󸀠󸀠
) when

evaluated at the collocation points and a𝑖,𝑟 (𝑖 = 0, 1, 2) is a
diagonal matrix corresponding to the vector of 𝑎𝑖,𝑟.

The boundary conditions (58) are imposed on the first,
𝑁th, and (𝑁 + 1)th rows of 𝐴𝑟 and Φ𝑟 to obtain a system of
the form

(

(

D0,0 D0,1 ⋅ ⋅ ⋅ D0,𝑁−1 D0,𝑁

Ar

D𝑁,0 D𝑁,1 ⋅ ⋅ ⋅ D𝑁,𝑁−1 D𝑁,𝑁
0 0 ⋅ ⋅ ⋅ 0 1

)

)

(

(

(

(

(

(

(

(

(

(

(

𝑦𝑟+1 (𝜉0)

𝑦𝑟+1 (𝜉1)

...

𝑦𝑟+1 (𝜉𝑁−2)

𝑦𝑟+1 (𝜉𝑁−1)

𝑦𝑟+1 (𝜉𝑁)

)

)

)

)

)

)

)

)

)

)

)

=
(

(

(

1

Φ𝑟 (𝜉1)

...
Φ𝑟 (𝜉𝑁−2)

0

0

)

)

)

.

(60)
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Table 1: Comparison between the computed values of the skin friction 𝑓󸀠󸀠(0) for the Blasius flow (𝛽 = 1/2, 𝛽1 = 0).

iter. 𝑓
󸀠󸀠
(0) Error

SHAM
1 0.361245275076317576714175486031 0.02918793886112127777699542402
10 0.332060294018222201221920675183 0.00000295780302590228474061317
20 0.332057337274670714006530763206 0.00000000105947441506935070120
30 0.332057336215760109582560249181 0.00000000000056381064538018717
40 0.332057336215196653344046405966 0.00000000000000035440686634396
60 0.332057336215196298937262729762 0.00000000000000000000008266775

Scheme-0
1 0.36124527510805664031836423508 0.02918793889286034138118417307
2 0.33293906079206190667160822082 0.00088172457686560773442815881
3 0.33205878995514977263006366166 0.00000145373995347369288359965
4 0.33205733621994973222724960736 0.00000000000475343329006954535
5 0.33205733621519629893723540415 0.00000000000000000000005534214
6 0.33205733621519629893718006201 0.00000000000000000000000000000

Scheme-1
1 0.33849743020925601396026175681 0.00644009399405971502308169480
2 0.33205889444389263880627992358 0.00000155822869633986909986157
3 0.33205733621519633877777093517 0.00000000000000003984059087316
4 0.33205733621519629893718006201 0.00000000000000000000000000000

Scheme-2
1 0.33398877527020321822942828158 0.00193143905500691929224821957
2 0.33205733679309573625968418056 0.00000000057789943732250411855
3 0.33205733621519629893718006201 0.00000000000000000000000000000

[29]: 0.33205733621519629893718006201 (104 iterations)

Table 2: Comparison between the computed values of the skin friction 𝑓󸀠󸀠(0) for the Pohlhausen flow (𝛽 = 0, 𝛽1 = 1).

iter. 𝑓
󸀠󸀠
(0) Error

SHAM
1 1.15819390472196206795661617787 0.00349336634271053893831861687
5 1.15470068226816961126259064868 0.00000014388891808224429308768
10 1.15470053837716000145607336675 0.00000000000209152756222419425
20 1.15470053837925152901716901667 0.00000000000000000000112854434
25 1.15470053837925152901829759222 0.00000000000000000000000003121
30 1.15470053837925152901829756100 0.00000000000000000000000000000

Scheme-0
1 1.1581939047219620679566161779 0.0034933663427105389383186169
2 1.1547034510528929300844093465 0.0000029126736414010661117855
3 1.1547005383817023293095010719 0.0000000000024508002912035109
4 1.1547005383792515290182994735 0.0000000000000000000000019125
5 1.1547005383792515290182975610 0.0000000000000000000000000000

Scheme-1
1 1.1544901934962778016810840055 0.0002103448829737273372135555
2 1.1547005383778620432865956388 0.0000000000013894857317019222
3 1.1547005383792515290182975610 0.0000000000000000000000000000

EXACT: 1.1547005383792515290182975610
[29]: 1.1547005383792515290182975610 (104 iterations)
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Table 3: Comparison between the computed values of the skin friction 𝑓󸀠󸀠(0) for the Homann flow (𝛽 = 2, 𝛽1 = 1).

iter. 𝑓
󸀠󸀠
(0) Error

SHAM
1 1.335633919867798255673072885920 0.023696225987993120191426715220
10 1.311933330446726656235176983180 0.000004363433078479246469187519
20 1.311937690198936556741381203220 0.000000003680868578740264967481
30 1.311937693875056506843830283790 0.000000000004748628637815886910
40 1.311937693879797836016540925840 0.000000000000007299465105244860
50 1.311937693879805123127203300860 0.000000000000000012354442869842
60 1.311937693879805135459418974120 0.000000000000000000022227196583
70 1.311937693879805135481601938190 0.000000000000000000000044232511

Scheme-0
1 1.3356339198662404626942038769 0.0236962259864353272125577062
2 1.3121878643609977795027970207 0.0002501704811926440211508500
3 1.3119377351892323008775816635 0.0000000413094271653959354928
4 1.3119376938798066169255039256 0.0000000000000014814438577549
5 1.3119376938798051354816461707 0.0000000000000000000000000000

Scheme-1
1 1.3064680181439000004910779728 0.0054696757359051349905681979
2 1.3119375731135522096139489286 0.0000001207662529258676972421
3 1.3119376938798051354785690801 0.0000000000000000000030770906
4 1.3119376938798051354816461707 0.0000000000000000000000000000

Scheme-2
1 1.3136564701352183697646278650 0.0017187762554132342829816943
2 1.3119376938938730064725895040 0.0000000000140678709909433333
3 1.3119376938798051354816461707 0.0000000000000000000000000000

[29]: 1.3119376938798051354816461707 (104 iterations)

Starting from a suitable initial guess 𝑦0(𝜂), the iteration
scheme (60) can be used to iteratively give approximate
solutions of the governing equation (32) for Scheme-0. The
application of the pseudospectral method for Scheme-1 and
Scheme-2 can be done in a similar manner. The initial
approximation used in all the algorithms is

𝑦0 (𝜂) = 𝜂 + 𝑒
−𝜂
+ 1. (61)

The number of collocation points used in all the results
presented here is𝑁 = 200 with 𝐿∞ = 20.

4. Results and Discussion

In this section we present solutions of the Falkner-Skan equa-
tion (32) using the QLM-SHAM hybrid iteration schemes.
Numerical simulations were conducted for the following
special classes of the F-S equations:

(i) Blasius flow: 𝛽 = 1/2, 𝛽1 = 0,
(ii) Pohlhausen flow: 𝛽 = 0, 𝛽1 = 1,
(iii) Homann flow: 𝛽 = 2, 𝛽1 = 1.

To assess the accuracy and performance of our schemes,
the numerical results were compared to the recently reported
results of Ganapol [29]. To date, these results are the most

accurate results for the Blasius and Falkner-Skan class of
equations. Ganapol [29] reported highly accurate results
between 10 and 30 decimal places using a robust algorithm
based onMaclaurin series with convergence acceleration and
analytical continuation techniques.

The comparison between the present findings and the
results in the literature is made for the skin friction which is
proportional to 𝑓󸀠󸀠(0). Table 1 shows a comparison between
the computed skin friction values of the Blasius equation
using the three QLM-SHAM iteration schemes. The results
are comparedwith the results reported inGanapol [29] which
are accurate to 29 decimal places. We observe that all the
iteration schemes rapidly converge to the results of [29] to
all 29 decimal places. Full convergence is achieved after 6
iterations when using Scheme-0, 4 iterations when using
Scheme-1, and after 3 iterations when using Scheme-2. It
is worth noting that the results of [29] were achieved after
104 decimal places. Prior to Ganapol [29], the most accurate
Blasius skin friction results had been published to 17 decimal
places by Boyd [28] as 𝑓󸀠󸀠(0) = 0.33205733621519630. This
result was obtained after 5 iterations using Scheme-0 and
3 iterations for both Schemes-1 and -2. The value reported
after 52 iterations in [29] is 𝑓󸀠󸀠(0) = 0.3320573362151965.
It is clear that the proposed iteration schemes converge
significantly faster than the method of [29]. That the results
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of Boyd [28] and Ganapol [29] were obtained only after a few
iterations validates both the higher order convergence and the
accuracy of the present solution methods.

Table 2 shows the computed values of 𝑓
󸀠󸀠
(0) using

Schemes-0 and -1 for the Pohlhausen flow (𝛽 = 0, 𝛽1 = 1).
For this particular flow, the exact value of 𝑓󸀠󸀠(0) is known
to be 2/√3. The iteration Scheme-0 matches the exact result
after only 5 iterations and Scheme-1 converges after only 3
iterations.Themethod used in Ganapol [29] converged to the
exact result after 104 iterations. This again demonstrates the
superior convergence of the present method.

Table 3 gives the numerical simulations of the skin fric-
tion results for theHomann flow.We observe that the 29-digit
results reported in [29] are achieved in 5 iterations, 4 itera-
tions, and 3 iterations for Scheme-0, -1, and -2, respectively.
This result indicates that adding an additional level in the
QLM-SHAM schemewould further significantly increase the
convergence of the iteration scheme. We further note from
Tables 1–3 that all three schemes converge significantly much
faster than the spectral homotopy analysismethod on its own.

5. Conclusion

In this study we presented three hybrid QLM-SHAM itera-
tion schemes for the solution of Falkner-Skan type boundary
layer equations. We have shown through numerical exper-
imentation that the proposed numerical schemes signifi-
cantly enhance the convergence rate of the quasilinearization
method. By comparison with the most accurate solutions
of the Falkner-Skan equations currently available in the
literature, we have shown that the schemes are highly accurate
and efficient in terms of the number of iterations required
to determine the solution to the required level of accuracy.
The schemes presented provide robust tools for the efficient
solution of nonlinear equations by offering superior accuracy
to many existing methods. In addition, the approach used
in deriving these schemes provides a suitable framework for
extension to higher level schemes by adding more terms of
the SHAM component of the method.
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