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We study the dynamical behavior of solutions of an n-dimensional nonlinear Schrödinger equation with potential and linear
derivative terms under the presence of phenomenological damping. This equation is a general version of the dissipative Gross-
Pitaevskii equation including terms with first-order derivatives in the spatial coordinates which allow for rotational contributions.
We obtain conditions for the existence of a global attractor and find bounds for its dimension.

1. Introduction

Nonlinear Schrödinger equations have enjoyed a consid-
erable amount of attention during several decades due to
their frequent appearance in the modeling of interesting
physical phenomena inmany different areas (e.g., optics, fluid
mechanics, condensed matter, etc.). Additionally, the rigor-
ous mathematical treatment of these equations has produced
a great deal of new insights and techniques accompanied by
a voluminous bibliography. We refer the reader to excellent
sources as [1–4] for a detailed account of these aspects.

Here, for complex coefficients 𝛼 and 𝛽, our purpose
is to study the long-term dynamics of a general nonlinear
Schrödinger evolution equation with potential of the form

𝑖𝑢
𝑡
− 𝛼Δ𝑢 + 𝛽|𝑢|

2
𝑢 + 𝑓 (𝑥) 𝑢 = V (𝑥) ⋅ ∇𝑢, (1)

where 𝑢(𝑥, 𝑡) and 𝑓(𝑥) are complex-valued functions and
V(𝑥) is a complex vector-valuedmap, all defined on a bounded
open domain 𝑈 ⊂ R𝑛 (for 𝑛 ⩾ 1) with regular boundary
𝜕𝑈. We prove the existence of a global attractor for (1), under
Dirichlet and 𝑈-periodic boundary conditions, assuming
Im(𝛼) > 0 and some additional requirements on 𝑓(𝑥) and
V(𝑥) forwhich existence anduniqueness of solutions are guar-
anteed. Our choice of signs for the terms in this equation was
made such that the hypotheses needed for our analysis make,
if necessary, the imaginary parts of constant and functional
coefficients positive.

Particular instances of (1) have been extensively consid-
ered in the literature, specially in two and three dimensions.
In fact, when the coefficients 𝛼, and 𝛽 and the function
𝑓(𝑥) are real and assuming V(𝑥) = 0, this is the celebrated
time-dependent Gross-Pitaevskii equation (GP) employed
to model nonlinear behavior in several physical systems.
Of special relevance is the mean-field description of Bose-
Einstein condensation achieved in dilute atomic gases, a state
of matter which exhibits peculiar phenomena characteristic
of the superfluid nature of the system.

If for the previous situation in three dimensions we
choose V(𝑥) = 𝑖Ω ∧ 𝑥 ∈ 𝑖R3, where Ω ∈ R3 is an angular
velocity vector, we recover the GP equation with angular
momentum rotational term. Indeed, the right-hand side of
(1) becomes

V ⋅ ∇𝑢 = 𝑖 (Ω ∧ 𝑥) ⋅ ∇𝑢 = 𝑖Ω ⋅ (𝑥 ∧ ∇) 𝑢 = −Ω ⋅ 𝐿𝑢, (2)

where 𝐿 := −𝑖(𝑥 ∧ ∇) is precisely the quantum mechanical
angular momentum operator.This equation has been used to
model physical experiments where the condensate is set into
rotation with an angular frequency ‖Ω‖, making it known as
the Gross-Pitaevskii equation for rotating Bose gases. In this
situation, the observation of quantized vortices has been a
topic of considerable experimental and theoretical studies;
the reader is referred to [5] and references therein for details
on vortices in Bose-Einstein condensates and the recent
review [6] for a treatment that includes numerical aspects
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(see also [7] for the simulation of rotating condensates).
Existence and uniqueness results for solutions of GP equation
with rotation in R𝑛 for dimensions 𝑛 = 2 and 𝑛 = 3

and under different assumptions can be found in [8–10].
Note that rotating and nonnecessarily nonlinear Schrödinger
equations appear also in several other contexts related towave
propagation (see references in [11]).

The general case of fully complex coefficients 𝛼, 𝛽 and
complex-valued functions 𝑓(𝑥), V(𝑥) in (1) can be thought of
as a mixture between the aforementioned GP equation and
a gradient flow which accounts for dissipation in the system
proportional to the rate of change of thewave function𝑢(𝑥, 𝑡).
This is indeed the case if (1) has the particular form

𝑖𝑢
𝑡
= (1 + 𝑖𝛾) [𝛼Δ𝑢 − 𝛽|𝑢|

2
𝑢 − 𝑓 (𝑥) 𝑢 + V (𝑥) ⋅ ∇𝑢] , (3)

for real constants 𝛼, 𝛽, 𝛾, a real-valued function 𝑓(𝑥), and an
imaginary vector field V(𝑥) as in the rotational term explained
earlier. In the physical literature phenomenological damping
has been introduced to study Bose-Einstein condensates
(both in the rotating and nonrotating cases) affected by
complicated sources of dissipation related to their interaction
with the thermal cloud around the condensate. For example,
[12] studies the case of trapped atomic condensates and [13]
analyzes dark matter wave solitons in the same context, while
[14–16] study the formation of vortex lattices in rotating
condensates, including numerical simulations. A theoretical
explanation of the phenomenological damping terms can be
found in [17] (see also [18, 19]).

From the mathematical side, equations similar to (3), but
with V = 0, have been used to study the behavior of Ginzburg-
Landau vortices in [20] and, in the case of low dissipation,
the asymptotics for perturbation of constant solutions in [21].
Long-time behavior, establishing the existence of attractors
under several assumptions, has also been the topic of several
studies; see, for example, [22] forGinzburg-Landau equations
on bounded domains, [23] for weakly damped nonlinear
Schrödinger equations in R𝑛 with 𝑛 ⩽ 3, and for dissipative
nonlinearities see [24] and references therein. To our knowl-
edge attractors for the dissipative Gross-Pitaevskii equation
with rotation have not been explicitly considered.

Since the arguments needed for our analysis work in the
fully complex coefficients situation, we adopt this broader
setting and, in addition, do not necessarily assume that the
right-hand side of (1) has the particular form of an angular
momentum contribution. This situation corresponds to the
case where the ratio between imaginary and real parts of 𝛼,
𝛽, 𝑓(𝑥), and V(𝑥) in (3) is not a fixed constant 𝛾. In fact,
this can include cases where there are sources of dissipation
which are proportional to some of the individual terms in the
equation, like the nonlinearity or the gradient terms. Such
contributions are important, for example, to study explod-
ing and collapsing Bose-Einstein condensates (see [25] and
references therein for examples of pure nonlinear dissipation
in that context, as well as [26] for simulation of collapse and
explosion).

We point out that numerical studies in [27] show that
cubic or quintic damping terms prevent blowup of solutions

to focusing nonlinear Schrödinger equations without “rota-
tional” term, while just linear damping is not enough below a
certain threshold. This agrees with Theorem 8 on existence
of attractors (that covers such situation if one assumes an
arbitrarily small amount of linear damping) and provides
some justification for the hypotheses under which this result
is proved.

Finally, to summarize the content of the following sec-
tions we mention that, under appropriate assumptions intro-
duced later, Theorem 4 establishes the existence and unique-
ness of solutions to the dissipative GP equation on bounded
open domains, Theorem 8 shows the existence of a compact
global attractor, and Theorem 11 provides bounds for its
Hausdorff and fractal dimensions.

1.1. Precise Setting. To ease notation, for any complex vector
V ∈ C𝑛 with 𝑛 ⩾ 1, we define V

1
:= Re(V) ∈ R𝑛 and V

2
:=

Im(V) ∈ R𝑛. Let 𝑈 ⊂ R𝑛; if 𝑢(𝑥, 𝑡) = 𝑢
1
(𝑥, 𝑡) + 𝑖𝑢

2
(𝑥, 𝑡) :

𝑈 × R+ → C is a complex-valued function, the gradient ∇𝑢
and Laplacian Δ𝑢 (both with respect to spatial coordinates)
are given by∇𝑢 := ∇𝑢

1
+𝑖∇𝑢
2
∈ C𝑛 andΔ𝑢 := Δ𝑢

1
+𝑖Δ𝑢
2
∈ C.

In addition, we extend bilinearly the Euclidean inner product
“⋅” in R𝑛 to a symmetric inner product on C𝑛 denoted for
simplicity by the same dot; that is, for vectors V, 𝑤 ∈ C𝑛, we
have

V ⋅ 𝑤 := (V
1
⋅ 𝑤
1
− V
2
⋅ 𝑤
2
) + 𝑖 (V

1
⋅ 𝑤
2
+ V
2
⋅ 𝑤
1
) . (4)

With this product, the standard Hermitian norm of V ∈ C𝑛

satisfies ‖V‖2 = ‖V
1
‖
2
+ ‖V
2
‖
2
= V ⋅ V, where V := V

1
− 𝑖V
2
.

Given coefficients 𝛼, 𝛽 ∈ C and a constant 𝑝 ⩾ 2,
we consider the following dissipative (fully complex) GP
equation with nonlinearity of order (𝑝 + 1) on a bounded
open domain 𝑈 ⊂ R𝑛, for arbitrary 𝑛 ⩾ 1:

𝑖𝑢
𝑡
− 𝛼Δ𝑢 + 𝛽|𝑢|

𝑝
𝑢 + 𝑓 (𝑥) 𝑢 = V (𝑥) ⋅ ∇𝑢,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

(5)

with unknown 𝑢(𝑥, 𝑡) : 𝑈 ×R+ → C, a scalar function 𝑓(𝑥) :
𝑈 → C, and a vector-valued map V(𝑥) : 𝑈 → C𝑛. Our
hypotheses on the constant coefficients are

𝛼
2
> 0, (H1)

𝛽
2
⩾ 𝑝

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
⩾ 0 (H2)

and on the functional coefficients and initial data are

𝑓 (𝑥) ∈ 𝐿
∞
(𝑈) , (H3)

V (𝑥) ∈ 𝐿∞ (𝑈,C𝑛) , (H4)

𝑢
0
(𝑥) ∈ 𝐿

2
(𝑈) . (H5)

Additionally, we assume that

𝜇
2
:= ess inf
𝑥∈𝑈

𝑓
2
(𝑥) > 0

(H6)

and require that

4𝛼
2
𝜇
2
> ‖V‖2
∞
. (H7)
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Remark 1. Notice that hypothesis (H2) allows for 𝛽 = 0 in
which case there is no nonlinearity term in (5). Indepen-
dently, hypotheses (H1) and (H6) already imply (H7) when
V(𝑥) = 0 and this includes the standard GP equation (i.e., no
rotational term) but with dissipation.

Remark 2. As a consequence of hypothesis (H6), (5) has a
nonzero linear damping term of the form 𝑖𝑓

2
(𝑥)𝑢. Obviously,

such term is always present in the case of GP with phe-
nomenological damping (3) and is not the only source of
dissipation.

For (5) we will consider Dirichlet boundary conditions
on the domain 𝑈 ⊂ R𝑛, which is assumed to have regular
boundary 𝜕𝑈. Explicitly, we suppose that for all 𝑡 ⩾ 0,

𝑢(𝑥, 𝑡)|
𝜕𝑈

= 0, (D1)

Δ𝑢(𝑥, 𝑡)|
𝜕𝑈

= 0. (D2)

Alternatively we also consider 𝑈-periodic boundary condi-
tions when the domain has the form 𝑈 = (0, 𝐿)

𝑛
⊂ R𝑛. This

means that for any pair of points 𝑎, 𝑏 ∈ 𝑈 = [0, 𝐿]
𝑛 which are

equal except at an arbitrary fixed component 𝑗 ∈ {1, . . . , 𝑛}

for which 𝑎
𝑗
= 0 and 𝑏

𝑗
= 𝐿, it holds that

𝜕
𝑘
𝑢 (𝑎, 𝑡) = 𝜕

𝑘
𝑢 (𝑏, 𝑡) , (P)

for all 𝑡 ⩾ 0 and admissible integers 𝑘 ⩾ 0. In this expression,
𝜕
0
𝑢 := 𝑢 and 𝜕𝑘𝑢 denotes any 𝑘-order partial (weak) deriva-

tive admissible for 𝑢.

Remark 3. In the case of 𝑈-periodic boundary conditions,
it is actually assumed that points of the form 𝑎, 𝑏 ∈ [0, 𝐿]

𝑛

described earlier are identified, so in fact any function defined
on 𝑈 must take the same values on those points but, in
contrast to Dirichlet conditions, the precise value does not
have to be fixed.

Existence and uniqueness of solutions to (5) with Dirich-
let (D1)-(D2) or 𝑈-periodic (P) boundary conditions hold
from classical results.

Theorem 4. Given hypotheses (H1)–(H7), under Dirichlet or
𝑈-periodic boundary conditions, there exists a unique solution
𝑢 of (5) such that

𝑢 ∈ C
𝑏
(R
+
, 𝐻
1
(𝑈)) , 𝑢

𝑡
∈ C
𝑏
(R
+
, 𝐻
−1
(𝑈)) , (6)

where 𝐻−1 is the dual space of 𝐻1 and C
𝑏
(R+, 𝐻1(𝑈)) is the

set of continuous bounded functions from R+ into𝐻1(𝑈).

The proof of the previous theorem follows by application
of the standard Faedo-Galerkin method with small modifi-
cations to the proof of [28, Theorems IV.5.1 and IV.6.1]. The
necessary estimates are similar to the ones given later to show
the existence of an absorbing set in 𝐿2(𝑈). It is important to
notice that the estimates use only the 𝐿2-norm of 𝑢

0
, which

exists by (H5).

2. Existence of a Global Attractor

In this section we prove the existence of a compact global
attractorA ⊂ 𝐿

2
(𝑈). That is, a compact subset of 𝐿2(𝑈) such

that if 𝑆(𝑡) denotes the semigroup generated by solutions of
(5), then

(i) 𝑆(𝑡)A = A for all 𝑡 ⩾ 0;
(ii) for every bounded set 𝐵 ⊂ 𝐿

2
(𝑈), it holds that the 𝐿2-

distance 𝑑(𝑆(𝑡)𝐵,A) → 0 as 𝑡 → ∞.

In order to prove the existence of the attractor, we will show
first the existence of an absorbing set in 𝐿

2
(𝑈), that is, a set

B such that any bounded set of 𝐿2(𝑈) enters into B after a
certain time.

Theorem 5. Assume that hypotheses (H1)–(H7) hold for (5)
under Dirichlet or𝑈-periodic boundary conditions.Then there
exist positive real constants 𝜏

0
and 𝜏
1
such that

(i) the semigroup 𝑆(𝑡) possesses an absorbing ball in 𝐿2(𝑈)
as

󵄩
󵄩
󵄩
󵄩
𝑆(𝑡)𝑢
0

󵄩
󵄩
󵄩
󵄩𝐿
2 ⩽ 𝑟
0

𝑖𝑓 𝑡 ⩾ 𝜏
0
, (7)

where 𝑟
0
:= 1 and 𝜏

0
:= (1/𝐾) log ‖𝑢

0
‖
𝐿
2 , with 𝐾 :=

𝜇
2
− (1/4𝛼

2
)‖V‖2
∞
;

(ii) the semigroup 𝑆(𝑡) possesses an absorbing ball in𝐻1
0
(𝑈)

as
󵄩
󵄩
󵄩
󵄩
𝑆(𝑡)𝑢
0

󵄩
󵄩
󵄩
󵄩𝐻
1

0

⩽ 𝑟
1

𝑖𝑓 𝑡 ⩾ 𝜏
1
, (8)

where 𝑟
1
:= (1/𝛼

2
) 𝑒
(1/2)‖V‖2

∞
(‖V‖2
∞
+ 𝛼
2

2
‖𝑓‖
2

∞
+ 1)

1/2

and 𝜏
1
:= 𝜏
0
+ 𝛼
2
.

From the previous theorem we have that the set

B := {𝑢 ∈ 𝐿
2
(𝑈) : ‖𝑢‖

𝐿
2 ⩽ 𝑟
0
, ‖∇𝑢‖

𝐿
2 ⩽ 𝑟
1
} ⊂ 𝐻

1
(𝑈) (9)

is absorbing for all the bounded sets of 𝐿2(𝑈) provided that
𝑡 ⩾ 𝜏
1
.

Proof. We divide the proof into two steps. Before that, we
recall the following inequality for the convenience of the
reader (see [28, Lemma III.1.1] for a proof).

Lemma 6 (uniform Gronwall’s lemma [29]). Let 𝑓, 𝑔, and ℎ
be locally integrable functions on (𝑡

0
,∞) such that 𝑓󸀠 is locally

integrable on (𝑡
0
,∞) and 𝑓󸀠 ⩽ 𝑓𝑔 + ℎ, for all 𝑡 ⩾ 𝑡

0
. Assume

additionally that there are real positive constants 𝑎
1
, 𝑎
2
, 𝑎
3
such

that for every 𝑡 ⩾ 𝑡
0
,

∫

𝑡+󰜚

𝑡

𝑓 (𝑠) 𝑑𝑠 ⩽ 𝑎
1
, ∫

𝑡+󰜚

𝑡

𝑔 (𝑠) 𝑑𝑠 ⩽ 𝑎
2
,

∫

𝑡+󰜚

𝑡

ℎ (𝑠) 𝑑𝑠 ⩽ 𝑎
3
.

(10)

Then it holds that

𝑓 (𝑡 + 󰜚) ⩽ (

𝑎
1

󰜚

+ 𝑎
3
) 𝑒
𝑎
2
, ∀𝑡 ⩾ 𝑡

0
. (11)



4 International Journal of Differential Equations

2.1. Absorbing Ball in 𝐿2(𝑈). Multiplying (5) by 𝑢, integrating
over 𝑈 ⊂ R𝑛 using integration by parts with any set of the
proposed boundary conditions, and taking the imaginary
part,

1

2

𝑑

𝑑𝑡

‖𝑢‖
2

𝐿
2 + 𝛼2‖

∇𝑢‖
2

𝐿
2 + 𝛽2‖

𝑢‖
𝑝+2

𝐿
𝑝+2

+ ∫

𝑈

𝑓
2
(𝑥) |𝑢|

2
𝑑𝑥

= Im(∫

𝑈

(V ⋅ ∇𝑢) 𝑢𝑑𝑥)

⩽ ‖V ⋅ ∇𝑢‖
𝐿
2‖𝑢‖
𝐿
2

⩽ ‖∇𝑢‖
𝐿
2‖V‖
∞
‖𝑢‖
𝐿
2

⩽ 𝛼
2
‖∇𝑢‖
2

𝐿
2 +

1

4𝛼
2

‖V‖2
∞
‖𝑢‖
2

𝐿
2 .

(12)

After eliminating the third term to the left-hand side of the
previous calculation, we get

𝑑

𝑑𝑡

‖𝑢‖
2

𝐿
2 ⩽ −2𝐾‖𝑢‖

2

𝐿
2 , (13)

where

𝐾 = 𝐾 (𝛼
2
, 𝑓
2
, V) := 𝜇

2
−

1

4𝛼
2

‖V‖2
∞
. (14)

Then, applying Gronwall’s lemma and since (H7) implies that
𝐾 > 0, we obtain

‖𝑢‖
2

𝐿
2 ⩽

󵄩
󵄩
󵄩
󵄩
𝑢
0

󵄩
󵄩
󵄩
󵄩

2

𝐿
2𝑒
−2𝐾𝑡

. (15)

Setting 𝜏
0
:= (1/𝐾) log ‖𝑢

0
‖
𝐿
2 , we have that

‖𝑢(𝑡)‖
𝐿
2 ⩽ 1 =: 𝑟

0
, if 𝑡 ⩾ 𝜏

0
. (16)

This proves the existence of an absorbing ball in 𝐿2(𝑈).

2.2. Absorbing Ball in 𝐻
1

0
(𝑈). Now we multiply (5) by Δ𝑢,

integrate as before over 𝑈 ⊂ R𝑛 using boundary conditions
(after integration by parts) to simplify, and take the imaginary
part to get

1

2

𝑑

𝑑𝑡

‖∇𝑢‖
2

𝐿
2 + 𝛼2‖

Δ𝑢‖
2

𝐿
2 + Im(∫

𝑈

(V ⋅ ∇𝑢) Δ𝑢𝑑𝑥)

= Im (∫

𝑈

𝑓 (𝑥) 𝑢Δ𝑢𝑑𝑥) + Im (𝛽∫

𝑈

|𝑢|
𝑝
𝑢Δ𝑢𝑑𝑥) .

(17)

Integrating by parts the last term of the previous equality and
using that for any 𝑧, 𝑤 ∈ C it holds that Im(𝑧𝑤) = 𝑧

1
𝑤
2
+

𝑧
2
𝑤
1
, we get

Im(𝛽∫

𝑈

|𝑢|
𝑝
𝑢Δ𝑢𝑑𝑥)

= −𝛽
2
∫

𝑈

|𝑢|
𝑝
‖∇𝑢‖
2
𝑑𝑥

− 𝑝 Im(𝛽∫

𝑈

|𝑢|
𝑝−2

(𝑢∇𝑢) ⋅ Re (𝑢∇𝑢) 𝑑𝑥)

= −𝛽
2
∫

𝑈

|𝑢|
𝑝
‖∇𝑢‖
2
𝑑𝑥

− 𝑝𝛽
1
∫

𝑈

|𝑢|
𝑝−2 Im (𝑢∇𝑢) ⋅ Re (𝑢∇𝑢) 𝑑𝑥

− 𝑝𝛽
2
∫

𝑈

|𝑢|
𝑝−2

‖Re(𝑢∇𝑢)‖2𝑑𝑥

⩽ −𝛽
2
∫

𝑈

|𝑢|
𝑝
‖∇𝑢‖
2
𝑑𝑥

+ 𝑝
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
∫

𝑈

|𝑢|
𝑝−2

‖𝑢∇𝑢‖
2
𝑑𝑥

⩽ − (𝛽
2
− 𝑝

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) ∫

𝑈

|𝑢|
𝑝
‖∇𝑢‖
2
𝑑𝑥,

(18)

where the inequality appears after eliminating the last term
since 𝛽

2
⩾ 0. Replacing this in the original equation, we can

write
1

2

𝑑

𝑑𝑡

‖∇𝑢‖
2

𝐿
2 + 𝛼2‖

Δ𝑢‖
2

𝐿
2 + (𝛽2

− 𝑝
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) ∫

𝑈

|𝑢|
𝑝
‖∇𝑢‖
2
𝑑𝑥

⩽ Im(∫

𝑈

𝑓 (𝑥) 𝑢Δ𝑢𝑑𝑥) − Im(∫

𝑈

(V ⋅ ∇𝑢) Δ𝑢𝑑𝑥)

⩽
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩∞

‖𝑢‖
𝐿
2‖Δ𝑢‖

𝐿
2 + ‖V‖

∞
‖∇𝑢‖
𝐿
2‖Δ𝑢‖

𝐿
2

⩽

1

2𝛼
2

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

∞
‖𝑢‖
2

𝐿
2 +

𝛼
2

2

‖Δ𝑢‖
2

𝐿
2

+

1

2𝛼
2

‖V‖2
∞
‖∇𝑢‖
2

𝐿
2 +

𝛼
2

2

‖Δ𝑢‖
2

𝐿
2 .

(19)

Simplifying, using 𝛽
2
⩾ 𝑝|𝛽

1
| and working with 𝑡 ⩾ 𝜏

0
so that

‖𝑢‖
𝐿
2 ⩽ 𝑟
0
, we arrive at

𝑑

𝑑𝑡

‖∇𝑢‖
2

𝐿
2 ⩽

1

𝛼
2

(𝑟
2

0

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

∞
+ ‖V‖2
∞
‖∇𝑢‖
2

𝐿
2) . (20)

To apply the uniformGronwall lemma, it is necessary to have
an upper bound on ∫𝑡+󰜚

𝑡
‖∇𝑢‖
2

𝐿
2𝑑𝑠. From (12), we have

1

2

𝑑

𝑑𝑡

‖𝑢‖
2

𝐿
2 + 𝛼2‖

∇𝑢‖
2

𝐿
2 + 𝛽2‖

𝑢‖
𝑝+2

𝐿
𝑝+2

+ ∫

𝑈

𝑓
2
(𝑥) |𝑢|

2
𝑑𝑥

⩽ ‖∇𝑢‖
𝐿
2‖V‖
∞
‖𝑢‖
𝐿
2

⩽

𝛼
2

2

‖∇𝑢‖
2

𝐿
2 +

1

2𝛼
2

‖V‖2
∞
‖𝑢‖
2

𝐿
2 .

(21)
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Now, eliminating the last two positive terms at the left-hand
side, using 𝑡 ⩾ 𝜏

0
again, and integrating, we find that

∫

𝑡+󰜚

𝑡

‖∇𝑢‖
2

𝐿
2𝑑𝑠 ⩽ 𝑟

2

0
(

󰜚

𝛼
2

2

‖V‖2
∞
+

1

𝛼
2

) =: 𝑎
1
. (22)

There are also obvious bounds given by

∫

𝑡+󰜚

𝑡

1

𝛼
2

‖V‖2
∞
𝑑𝑠 ⩽

󰜚

𝛼
2

‖V‖2
∞
=: 𝑎
2
,

∫

𝑡+󰜚

𝑡

1

𝛼
2

𝑟
2

0

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

∞
𝑑𝑠 ⩽

󰜚

𝛼
2

𝑟
2

0

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

∞
=: 𝑎
3
.

(23)

With this, Lemma 6 immediately implies

󵄩
󵄩
󵄩
󵄩
∇𝑢 (𝑡 + 󰜚)

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 ⩽ 𝑟
2

0
(

1

𝛼
2

2

‖V‖2
∞
+

1

𝛼
2
󰜚

+

󰜚

𝛼
2

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

∞
) 𝑒
(󰜚/𝛼
2
)‖V‖2
∞
.

(24)

Choosing 󰜚 = 𝛼
2
and assuming 𝑡 ⩾ 𝜏

1
:= 𝜏
0
+𝛼
2
, the previous

inequality becomes

‖∇𝑢(𝑡)‖
𝐿
2 ⩽

𝑟
0

𝛼
2

𝑒
(1/2)‖V‖2

∞
(1 + ‖V‖2

∞
+ 𝛼
2

2

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

∞
)

1/2

=: 𝑟
1
.

(25)

This proves the existence of an absorbing ball in𝐻1
0
(𝑈).

To show the existence of a compact global attractor in
𝐿
2
(𝑈), we will make use of the following result (see [28,

Theorem I.1.1]) with𝐻 = 𝐿
2
(𝑈). ◻

Theorem 7. Suppose that 𝑆(𝑡) is a continuous semigroup
acting on a metric space H such that there exists a bounded
absorbing setB and for every bounded set 𝐵 ⊂ H there exists
𝑡
0
> 0 such that ⋃

𝑡⩾𝑡
0

𝑆(𝑡)𝐵 is relatively compact in H. Then
the 𝜔-limit set

𝜔 (B) := ⋂

𝑠⩾0

⋃

𝑡⩾𝑠

𝑆(𝑡)B (26)

is a compact global attractor for the semigroup 𝑆(𝑡) inH.

Theorem 8. Under hypotheses (H1)–(H7) for (5), supple-
mented with Dirichlet or 𝑈-periodic boundary conditions,
there exists a compact global attractorA ⊂ 𝐿

2
(𝑈).

Proof. Wewill make use ofTheorem 7. Since we have already
shown the existence of the inertial set, we only need to prove
that for any bounded set 𝐵 ∈ 𝐿

2
(𝑈), there exists 𝑡

0
> 0 such

that the set ⋃
𝑡⩾𝑡
0

𝑆(𝑡)𝐵 is relatively compact in 𝐿
2
(𝑈). As a

consequence ofTheorem 5, we have proved the existence of a
ball

B := {𝑢 ∈ 𝐿
2
(𝑈) : ‖𝑢‖

𝐿
2 ⩽ 𝑟
0
, ‖∇𝑢‖

𝐿
2 ⩽ 𝑟
1
} ⊂ 𝐻

1
(𝑈) ,

(27)

such that for any bounded set 𝐵 ⊂ 𝐿
2
(𝑈), it holds that

𝑆(𝑡)𝐵 ⊂ B for 𝑡 ⩾ 𝜏
1
. Since B is bounded in 𝐻

1
(𝑈) and

the embedding of 𝐻1(𝑈) in 𝐿
2
(𝑈) is compact, we conclude

that the set

⋃

𝑡⩾𝜏
1

𝑆 (𝑡) 𝐵 (28)

is relatively compact in 𝐿2(𝑈). This finishes the proof.

Remark 9. We point out here that when no dissipation is
assumed in (5), which requires in particular 𝛼

2
= 𝛽
2
= 0,

𝑓
2
(𝑥) = 0, and V

1
(𝑥) = 0, a very different situation may

occur. For example, for the nondissipative Gross-Pitaevskii
equation with rotation, it has been proved in [10, Theorem
2.2] that there are conditions on 𝑓

1
(𝑥) and V

2
(𝑥) such that (5)

has initial data 𝑢
0
(𝑥) for which solutions present finite time

blowup in dimensions 𝑛 = 2 or 𝑛 = 3; that is, there is a finite
time 𝜏

∗
> 0 such that

lim
𝑡→𝜏
∗

‖∇𝑢(𝑡)‖
𝐿
2 = ∞. (29)

This can happen, for example, with an axial-symmetric
parabolic potential for 𝑛 = 2, 3 in the case of a focusing
(𝛽
1
> 0) and energy subcritical nonlinearity of appropriate

order (more precisely 4/𝑛 ⩽ 𝑝 < 4/(𝑛−2)with𝑝 even). In our
situation, the hypotheses employed (in particular the kind of
dissipation) eliminate the possibility of such phenomena.

3. Dimension of the Attractor

In this section we provide an estimate for the dimension
of the attractor by the method of evolution of infinitesimal
𝑚-dimensional volume elements in the phase space 𝐿2(𝑈)
under the flow induced by the action of the semigroup 𝑆(𝑡) of
Theorem 5 (see [28, Chapter V] for details). For this estimate
we will explicitly assume that the bounded open domain𝑈 ⊂

R𝑛 is at least of classC1; that is, 𝑈 has a boundary 𝜕𝑈 with a
structure of an (𝑛 − 1)-dimensional manifold of classC1.

Given an orthonormal basis 𝜑
1
(𝑡), . . . , 𝜑

𝑚
(𝑡) for a time-

dependent 𝑚-dimensional subspace of 𝐿2(𝑈), it is possible
(cf. [28, Appendix, Corollary 4.1]) to find constants 𝑐

1
, 𝑐
2
⩾ 0,

depending on 𝑛, 𝑘 and the shape of 𝑈 ⊂ R𝑛 but independent
of the size |𝑈|, the value 𝑚, and of the chosen orthonormal
basis, such that

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
∇𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 ⩾

1

|𝑈|
2/𝑛

(𝑐
1
𝑚
1+2/𝑛

− 𝑐
2
𝑚) . (30)

Moreover, if the functions 𝜑
𝑖
∈ 𝐻
1

0
(𝑈), it is possible to choose

𝑐
2
= 0. This holds for Dirichlet boundary conditions.
In order to study the evolution of infinitesimal volume

elements, we linearize (5) around a solution 𝑢(𝑡) = 𝑆(𝑡)𝑢
0
,

with 𝑢
0
∈ A as follows:

𝑖𝜙
𝑡
= 𝐹
󸀠
(𝑢) 𝜙 := 𝛼Δ𝜙 − 𝛽 (𝑝 + 1) |𝑢|

𝑝
𝜙 − 𝑓 (𝑥) 𝜙 + V ⋅ ∇𝜙,

𝜙 (0) = 𝜉.

(31)
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Then, noting that Re(𝜙
𝑡
) = Im(𝐹

󸀠
(𝑢)𝜙), the evolution of the

𝑚-dimensional volume elements is given by (cf. [30, Section
13.2])

𝑉
𝑚
(𝑡) = 𝑉

𝑚
(0) exp [Im(∫

𝑡

0

Tr (𝐹󸀠 (𝑢) 𝑃
𝑚
(𝑠)) 𝑑𝑠)] , (32)

where 𝑃
𝑚
is the orthogonal projection of 𝐿2(𝑈) over the sub-

space spanned by the first 𝑚 eigenvectors of the Laplacian.
The asymptotic growth rate of 𝑉

𝑚
(𝑡) is given by

lim
𝑡→∞

1

𝑡

∫

𝑡

0

Im [Tr (𝐹󸀠 (𝑢) 𝑃
𝑚
(𝑠))] 𝑑𝑠. (33)

Since we need the maximal growth rate, we compute the
supremum over all 𝑢

0
∈ A and over all the 𝑚-dimensional

projectors as follows:

sup
𝑢
0
∈A

sup
𝑃
𝑚

lim sup
𝑡→+∞

1

𝑡

∫

𝑡

0

Im [Tr (𝐹󸀠 (𝑢) 𝑃
𝑚
(𝑠))] 𝑑𝑠 =: Tr

𝑚
(A) .

(34)

In order to have exponential decay, we look for the
smallest𝑚 such that the number Tr

𝑚
(A) is negative. In detail,

let𝜑
1
(𝑡), . . . , 𝜑

𝑚
(𝑡) be an orthonormal basis for𝑃

𝑚
𝐿
2
(𝑈); then

Im [Tr (𝐹󸀠 (𝑢) 𝑃
𝑚
)] =

𝑚

∑

𝑖=1

Im [⟨𝐹
󸀠
(𝑢) 𝜑
𝑖
, 𝜑
𝑖
⟩
𝐿
2
(𝑈)
] , (35)

with

Im [⟨𝐹
󸀠
(𝑢) 𝜑
𝑖
, 𝜑
𝑖
⟩
𝐿
2
(𝑈)
]

= −𝛼
2

󵄩
󵄩
󵄩
󵄩
∇𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 − 𝛽2

(𝑝 + 1) ∫

𝑈

|𝑢|
𝑝󵄨
󵄨
󵄨
󵄨
𝜑
𝑖

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥

− ∫

𝑈

𝑓
2
(𝑥)

󵄨
󵄨
󵄨
󵄨
𝜑
𝑖

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 + Im(∫

𝑈

(V ⋅ ∇𝜑
𝑖
) 𝜑
𝑖
𝑑𝑥) .

(36)

Now, we estimate each of the last three terms separately. For
the first, since 𝛽

2
⩾ 0, we can simply write

−𝛽
2
(𝑝 + 1)∫

𝑈

|𝑢|
𝑝󵄨
󵄨
󵄨
󵄨
𝜑
𝑖

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 ⩽ 0, (37)

for the second, we have

−∫

𝑈

𝑓
2
(𝑥)

󵄨
󵄨
󵄨
󵄨
𝜑
𝑖

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 ⩽ −𝜇
2

󵄩
󵄩
󵄩
󵄩
𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 = −𝜇

2
< 0, (38)

and for the last term,

Im∫

𝑈

(V ⋅ ∇𝜑
𝑖
) 𝜑
𝑖
𝑑𝑥 ⩽ ∫

𝑈

󵄨
󵄨
󵄨
󵄨
V ⋅ ∇𝜑

𝑖

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝜑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

⩽ ∫

𝑈

‖V‖ 󵄩󵄩󵄩
󵄩
∇𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝜑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

⩽ ‖V‖
∞
∫

𝑈

󵄩
󵄩
󵄩
󵄩
∇𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
𝜑
𝑖

󵄨
󵄨
󵄨
󵄨
𝑑𝑥

⩽ ‖V‖
∞

󵄩
󵄩
󵄩
󵄩
∇𝜑
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
2

󵄩
󵄩
󵄩
󵄩
𝜑
𝑖

󵄩
󵄩
󵄩
󵄩𝐿
2

⩽

𝛼
2

2

󵄩
󵄩
󵄩
󵄩
∇𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 +

‖V‖2
∞

2𝛼
2

.

(39)

Replacing these bounds in (35), we get for the imaginary part
of the trace

Im [Tr (𝐹󸀠 (𝑢) 𝑃
𝑚
)]

⩽ −

𝛼
2

2

𝑚

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
∇𝜑
𝑖

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 − 𝑚𝜇2

+ 𝑚

‖V‖2
∞

2𝛼
2

⩽ −

𝛼
2
𝑐
1

2|𝑈|
2/𝑛

𝑚
1+2/𝑛

+ 𝑚(

𝛼
2
𝑐
2

2|𝑈|
2/𝑛

+

‖V‖2
∞

2𝛼
2

− 𝜇
2
)

⩽ −𝜅
1
𝑚
1+2/𝑛

+ 𝜅
2
,

(40)

where we have used (30) and a Young inequality to obtain the
required constants 𝜅

𝑖
given by

𝜅
1
:= (

𝛼
2
𝑐
1

𝑛 + 2

) |𝑈|
−2/𝑛

,

𝜅
2
:=

2|𝑈|
−1

(𝑛 + 2)

(

𝛼
2
𝑐
1

2

)

𝑛/2

(

𝛼
2
𝑐
2

2|𝑈|
2/𝑛

+

‖V‖2
∞

2𝛼
2

− 𝜇
2
)

1+𝑛/2

.

(41)

Remark 10. Notice, however, that in (40) the use of a Young
inequality requires

𝜇
2
<

𝛼
2
𝑐
2

2|𝑈|
2/𝑛

+

‖V‖2
∞

2𝛼
2

, (42)

which produces a well-defined positive real constant 𝜅
2
. In

particular, for Dirichlet boundary conditions (where 𝑐
2
can

be taken to be zero), in addition to hypothesis (H7), this
requirement reads ‖V‖

∞
> 2𝛼
2
𝜇
2
. It is also possible to replace

𝜇
2
by zero in the expression for 𝜅

2
and the bound is still fine

but not as sharp. See Remark 12 if (42) does not hold.
This provides an estimate for the dimension of the

attractor A. In fact, similarly to what is done in [28, Section
VI.7] using Proposition V.2.1 and Theorem V.3.3 there (see
also [30, Theorem 2.4]), we have the following theorem.

Theorem 11. Under the assumptions of Theorem 8 and if (42)
holds, let𝑚 ∈ N be such that

𝑚 − 1 < (

2𝜅
2

𝜅
1

)

𝑛/(𝑛+2)

⩽ 𝑚. (43)

Then the infinitesimal 𝑚-dimensional volume elements in
phase space 𝐿2(𝑈) decay exponentially as 𝑡 → ∞. More-
over, the global attractor A has finite Hausdorff dimension
dim
𝐻
(A) ⩽ 𝑚 and finite fractal dimension dim

𝐹
(A) ⩽ 2𝑚.
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Explicitly, we have that

𝑚 ∼ 2
𝑛/(𝑛+2)

[(

𝛼
2
𝑐
1

4 |𝑈|

)

(𝑛−2)/(𝑛+2)

(

𝛼
2
𝑐
2

2|𝑈|
2/𝑛

+

‖V‖2
∞

2𝛼
2

− 𝜇
2
)]

𝑛/2

.

(44)

Remark 12. Actually, a bound on the Hausdorff dimension is
already obtained by finding the minimum value of 𝑚 ∈ N

in (40), such that Im[Tr(𝐹󸀠(𝑢)𝑃
𝑚
)] < 0 (see aforementioned

references). Therefore, dim
𝐻
(A) is strictly smaller than (44)

without the 2𝑛/(𝑛+2) factor. This also shows that if (42) does
not hold, the Hausdorff dimension is strictly less than 1.

As a final conclusion, we stress the fact that the vector
coefficient V(𝑥) of the “rotational” term does indeed increase
the dimension of the attractor in a factor roughly propor-
tional to ‖V‖𝑛

∞
, where 𝑛 is the dimension of the ambient space.

This should be compared with the role played by this term
in proving finite time blowup for the nondissipative focusing
case in [10], alluded in Remark 9.
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