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Feature selection is an essential process in datamining applications since it reduces amodel’s complexity. However, feature selection
with various types of costs is still a new research topic. In this paper, we study the cost-sensitive feature selection problem of numeric
datawithmeasurement errors.Themajor contributions of this paper are fourfold. First, a newdatamodel is built to address test costs
and misclassification costs as well as error boundaries. It is distinguished from the existing models mainly on the error boundaries.
Second, a covering-based rough set model with normal distributionmeasurement errors is constructed.With this model, coverings
are constructed from data rather than assigned by users. Third, a new cost-sensitive feature selection problem is defined on this
model. It is more realistic than the existing feature selection problems. Fourth, both backtracking and heuristic algorithms are
proposed to deal with the new problem. Experimental results show the efficiency of the pruning techniques for the backtracking
algorithm and the effectiveness of the heuristic algorithm. This study is a step toward realistic applications of the cost-sensitive
learning.

1. Introduction

Feature selection [1–3] is an essential process in data mining
applications. The main aim of feature selection is to reduce
the dimensionality of the feature space and to improve the
predictive accuracy of a classification algorithm [4, 5]. In
many domains, the misclassification costs [6–9] and the test
costs [10, 11] must be considered in the feature selection
process. Cost-sensitive feature selection [12–14] focuses on
selecting a feature subset with a minimal total cost as well
as preserving a particular property of the decision system
[15, 16].

Test costs andmisclassification costs are twomost impor-
tant types of cost in cost-sensitive learning [17]. The test cost
is money, time, or other resources we pay for collecting a
data item of an object [18, 19]. The misclassification cost is
the penalty we receive while deciding that an object belongs
to class 𝐽 when its real class is 𝐾 [6, 8]. Some works have
considered only misclassification costs [20], or only test costs
[21–23]. However, in many applications, it is important to
consider both types of costs together.

Recently, the cost-sensitive feature selection problem for
nominal datasets was proposed [17]. A backtracking algo-
rithm has been presented to address this problem. However,
this algorithm has been applied to only small datasets and
addressed on only nominal data. In real applications, the data
can be acquired from measurements with different errors.
Themeasurement errors of the data have certain universality.

In this paper, we propose the cost-sensitive feature selec-
tion problem of numerical data withmeasurement errors and
deal with it through considering the trade-off between test
costs and misclassification costs. The major contributions of
this paper are fourfold. First, based on normal distribution
measurement errors, we build a new data model to address
test costs and misclassification costs as well as error bound-
aries. It is distinguished from the existing models [17] mainly
on the error boundaries. Second, we construct a computa-
tional model of the covering-based rough set with normal
distributionmeasurement errors. In fact, normal distribution
[24, 25] is found to be applicable over almost the whole
of science and engineering measurement. With this model,
coverings are constructed from data rather than assigned by
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users. Third, the cost-sensitive feature selection problem is
defined on this new model of covering-based rough set. It is
more realistic than the existing feature selection problems.
Fourth, a backtracking algorithm is proposed to find an
optimal feature subset for small datasets. However, for large
dataset, finding a minimal cost feature subset is NP-hard.
Consequently, we propose a heuristic algorithm to deal with
this problem.

Six open datasets from theUniversity of California-Irvine
(UCI) library are employed to study the performance and
effectiveness of our algorithms. Experiments are undertaken
with open source software cost-sensitive rough sets (Coser)
[26]. Experimental results show that the pruning techniques
of the backtracking algorithm reduce searching operations
by several orders of magnitudes. In addition, the heuristic
algorithm can provide efficient solution to find an optimal
feature subset in most cases. Even if the feature subset is not
optimal, it is still acceptable from a statistical point of view.

The rest of the paper is organized as follows. Section 2
presents data models with test costs and misclassification
costs as well as measurement errors. Section 3 describes
the computational model, namely, covering-based rough set
model with measurement errors. The feature selection with
the minimal cost problem on the new model is also defined
in this section. Then, Section 4 presents a backtracking
algorithm and a heuristic algorithm to address this feature
selection problem. In Section 5, we discuss the experimental
settings and results. Finally, Section 6 concludes and suggests
further research trends.

2. Data Models

Data models are presented in this section. First, we start
from basic decision systems. Then, we introduce normal
distribution errors to test and propose a decision system
with measurement errors. Finally, we introduce a decision
system based on measurement errors with test costs and
misclassification costs.

2.1. Decision Systems. Decision systems are fundamental in
data mining and machine learning. For completeness, a
decision system is defined below.

Definition 1 (see [27]). A decision system (DS) is the 5-tuple:

𝑆 = (𝑈, 𝐶, 𝑑, 𝑉 = {𝑉
𝑎
| 𝑎 ∈ 𝐶 ∪ {𝑑}} ,

𝐼 = {𝐼
𝑎
| 𝑎 ∈ 𝐶 ∪ {𝑑}} ) ,

(1)

where 𝑈 is a universal set of objects, 𝐶 is a nonempty set of
conditional attributes, and𝑑 is the decision attribute. For each
𝑎 ∈ 𝐶∪{𝑑}, 𝐼

𝑎
: 𝑈 → 𝑉

𝑎
.The set𝑉

𝑎
is the value set of attribute

𝑎, and 𝐼
𝑎
is the information function for each attribute 𝑎.

In order to facilitate processing and comparison, the
values of conditional attributes are normalized from their
value into a range from 0 to 1. In fact, there are a number
of normalization approaches. For simplicity, we employ the
linear function 𝑦 = (𝑥 − min)/(max−min), where 𝑥 is the

Table 1: An example of numeric decision system (Liver).

Patient Mcv Alkphos Sgpt Sgot Gammagt Drinks Selector
𝑥
1

0.31 0.23 0.08 0.28 0.09 0.00 𝑦

𝑥
2

0.14 0.38 0.23 0.35 0.06 0.10 𝑦

𝑥
3

0.25 0.40 0.40 0.14 0.17 0.20 𝑦

𝑥
4

0.60 0.46 0.51 0.25 0.11 0.60 𝑛

𝑥
5

0.41 0.64 0.62 0.30 0.02 0.30 𝑛

𝑥
6

0.35 0.50 0.75 0.30 0.02 0.40 𝑛

...
...

...
...

...
...

...
...

𝑥
344

0.68 0.39 0.15 0.23 0.03 0.80 𝑛

𝑥
345

0.87 0.66 0.35 0.52 0.21 1.00 𝑛

initial value, 𝑦 is the normalized value, and max and min
are the maximal and minimal values of the attribute domain,
respectively.

Table 1 is a decision system of Bupa liver disorder (Liver
for short), in which conditional attributes are normalized
values. Here, 𝐶 = {Mcv, Alkphos, Sgpt, Sgot, Gammagt,
Drinks}, 𝑑 = {Selector}, and 𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

345
}.

Liver contains 7 attributes. The first 5 attributes are all
blood tests which are thought to be sensitive to liver disorders
that might arise from excessive alcohol consumption. The
sixth attribute is the number of alcoholic drinks per day. Each
line in Liver constitutes the record of a single male individual.
The Selector attribute is used to split data into two sets.

2.2. A Decision System with Measurement Errors. In real
applications, datasets often contain many continuous (or
numerical) attributes. There are a number of measurement
methods with different test costs to obtain a numerical data
item. Generally, higher test cost is required to obtain data
with smaller measurement error [28]. The measurement
errors often satisfy normal distribution which is found to be
applicable over almost the whole of science and engineering
measurement. We include normal distribution measurement
errors in our model to expand the application scope.

Definition 2 (see [28]). A decision system with measurement
errors (MEDS) 𝑆 is the 6-tuple:

𝑆 = (𝑈, 𝐶, 𝑑, 𝑉, 𝐼, 𝑛) , (2)

where 𝑈, 𝐶, 𝑑, 𝑉, and 𝐼 have the same meanings as in
Definition 1, 𝑛 : 𝐶 → R+ ∪ {0} is the maximal measurement
error function, and ±𝑛(𝑎) is the error boundary of attribute 𝑎.

Given 𝑥
𝑖
∈ 𝑈, the error boundary of attribute 𝑎 is given

by

𝑛 (𝑎) =
ΔΣ
𝑚

𝑖=1
𝑎 (𝑥
𝑖
)

𝑚
, (3)

where the regulator factor Δ ∈ [0, 1] can adjust the error
boundary.

In applications, one can deal with the abnormal value
of measurement error according to the Pauta criterion of
measurement error theory, which is used to determine
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Table 2: An example of neighborhood boundary vector.

𝑎 Mcv Alkphos Sgpt Sgot Gammagt Drinks
𝑛(𝑎) 0.069 0.087 0.086 0.036 0.026 0.017

Table 3: An example of test cost vector.

𝑎 Mcv Alkphos Sgpt Sgot Gammagt Drinks
tc(𝑎) $26 $17 $34 $45 $38 $5

the abnormal values. That is, if the repeated measurement
data satisfy |𝑥

𝑖
− 𝑥| > 3𝜎, (𝑖 = 1, 2, . . . , 𝑁), the 𝑥

𝑖
would be

considered as an abnormal value and be rejected, where 𝜎 is
the standard deviation, and 𝑥 is the mean of all measurement
values.

Recently, the concept of neighborhood (see, e.g., [29, 30])
has been applied to define different types of covering-based
rough set [31–34]. A neighborhood based on static error
range is defined [35]. Although showing similarities, it is
essentially different from ours. The proposed neighborhood
is considered as the distribution of the data error and the con-
fidence interval. The neighborhood boundaries for different
attributes of the same database are completely different. An
example of neighborhood boundary vector is listed inTable 2.

2.3. A Decision System Based onMeasurement Errors with Test
Costs and Misclassification Costs. In many applications, the
test costmust be taken into account [5]. Test cost is themoney,
time, or other resources that we pay for collecting a data item
of an object [8, 9, 18, 19, 36]. In addition to the test costs, it is
also necessary to consider misclassification costs. A decision
cannot bemade if themisclassification costs are unreasonable
[5]. More recently, researchers have begun to consider both
test costs and misclassification costs [8, 13, 17].

Now, we take into account both test and misclassification
costs as well as normal distribution measurement errors. We
have defined this decision system in [37] as follows.

Definition 3. Adecision systembased onmeasurement errors
with test costs andmisclassification costs (MEDS-TM) 𝑆 is the
8-tuple:

𝑆 = (𝑈, 𝐶, 𝑑, 𝑉, 𝐼, 𝑛, tc,mc) , (4)

where 𝑈, 𝐶, 𝑑, 𝑉, 𝐼, and 𝑛 have the same meanings as
Definition 2, tc : 𝐶 → R+ ∪ {0} is the test cost function, and
mc : 𝑘 × 𝑘 → R+ ∪ {0} is the misclassification cost function,
where 𝑘 = |𝐼

𝑑
|.

Here, we consider only the sequence-independent test-
cost-sensitive decision system. There are a number of test-
cost-sensitive decision systems. A hierarchy of decision sys-
tems consisting of six models was proposed [18]. For any
𝐵 ⊆ 𝐶, the test cost function tc is given by tc(𝐵) = ∑

𝑎∈𝐵
tc(𝑎).

The test cost function can be stored in a vector. An
example of text cost vector is listed in Table 3.

The misclassification cost [38–40] is the penalty that we
receive while deciding that an object belongs to class 𝑖 when

its real class is 𝑗 [8]. The misclassification cost function mc is
defined as follows:

(1) mc : 𝑘 × 𝑘 → R+ ∪ {0} is the misclassification cost
function, which can be represented by amatrixMC =

{mc
𝑘×𝑘

}, where 𝑘 = |𝐼
𝑑
|,

(2) mc[𝑚, 𝑛] is the cost ofmisclassifying an example from
“class𝑚” to “class 𝑛”,

(3) mc[𝑚,𝑚] = 0.

The following example gives us an intuitive understand-
ing of the decision system based onmeasurement errors with
test costs and misclassification costs.

Example 4. Table 1 is a Liver decision system. Tables 2 and
3 are error boundary vector and test cost vector of Liver
decision system, respectively. consider

mc = [
0 2000

200 0
] . (5)

That is, the test costs of Mcv, Alkphos, Sgpt, Sgot, Gammagt,
and Drinks are $26, $17, $34, $45, $38, and $5, respectively.
In Liver dataset, the Selector field is used to split data into
two sets. Here, a false negative prediction (FN), that is, failing
to detect liver disorders, may well have fatal consequences,
whereas a false positive prediction (FP), that is, diagnosing
liver disorders for a patient that does not actually have them,
may be less serious [41]. Therefore, a higher penalty of $2000
is paid for FN prediction and $200 is paid for FP prediction.

Obviously, if tc and mc are not considered, the MEDS-
TM degrades to a decision system with measurement errors
(MEDS) (see, e.g., [28]). Therefore, the MEDS-TM is a
generalization of the MEDS.

3. Covering-Based Rough Set
with Measurement Errors

As a technique to deal with granularity in information
systems, rough set theory was proposed by Pawlak [42]. Since
then, we have witnessed a systematic, worldwide growth of
interest in rough set theory [43–52] and its applications [53,
54]. Recently, there has been growing interest in covering-
based rough set. In this section, we introduce normal dis-
tribution measurement errors to covering-based rough set.
The new model is called covering-based rough set with
measurement errors. Then, we define a new cost-sensitive
feature selection problem on this covering-based rough set.

3.1. Covering-Based Rough Set with Measurement Errors.
The covering-based rough set with measurement errors is a
natural extension of the classical rough set. If all attributes are
error free, the covering-based rough set model degenerates
to the classical one. With the definition of the MEDS, a new
neighborhood is defined as follows.

Definition 5 (see [28]). Let 𝑆 = (𝑈, 𝐶, 𝑑, 𝑉, 𝐼, 𝑛) be a decision
system with measurement errors. Given 𝐵 ⊆ 𝐶 and 𝑥

𝑖
∈ 𝑈,
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the neighborhood of 𝑥
𝑖
with reference tomeasurement errors

on the feature set 𝐵 is defined as

𝑛
𝐵
(𝑥
𝑖
) = {𝑥 ∈ 𝑈 | ∀𝑎 ∈ 𝐵,

󵄨󵄨󵄨󵄨𝑎 (𝑥) − 𝑎 (𝑥
𝑖
)
󵄨󵄨󵄨󵄨 ≤ 2𝑛 (𝑎)} . (6)

That means the value of the measurement error of attribute
𝑎 in [−𝑛(𝑎), +𝑛(𝑎)]. According to Definition 5, we know that
the neighborhood 𝑛

𝐵
(𝑥
𝑖
) is the intersection of multiple basic

neighborhoods. Therefore, we obtain

𝑛
𝐵
(𝑥
𝑖
) = ⋂

𝑎∈𝐵

𝑛
{𝑎}

(𝑥
𝑖
) . (7)

Although showing similarities, the neighborhood defined
in [35] is essentially different from ours in two ways. First, a
fixed boundary of neighborhood is used for different datasets.
In contrast, the boundaries of neighborhood in our model
are computed according to the values of attributes. Then,
the uniform distribution is considered in [35]. In contrast,
we introduce the normal distribution to our model. As
mentioned earlier, the normal distribution is found to be
applicable over almost the whole of science measurement.

Normal distribution is a plausible distribution for mea-
surement errors. In statistics, “3-sigma” rule states that over
99.73% (95.45%) of measurement data will fall within three
(two) standard deviations of the mean [55]. We introduce
this rule to our model and present a new neighborhood
considering both the error distribution and the confidence
interval. The proportion of small measurement errors is
higher than large ones. Any value in the measurement that
exceeds the three standard deviations from the mean should
be discarded. Therefore, the measurement errors with no
more than a difference of 3𝜎 (2𝜎) should be viewed as
a granule. In view of this, we introduce the relationship
between the error boundary and the standard deviation in the
following proposition.

Proposition 6. Let the error boundary 𝑛(𝑎) = 3𝜎 and 𝑃𝑟 be
the confidence level. one has about Pr = 99.73% of cases within
𝑛(𝑎) = ±3𝜎.

According to Proposition 6, we have about Pr = 99.73%
of cases within 𝑛(𝑎) = ±3𝜎. If 𝑛(𝑎) = 2𝜎, we have about
Pr = 95.45%of cases within±𝑛(𝑎). According toDefinition 5,
every item belongs to its own neighborhood.This is formally
given by the following theorem.

Theorem 7. Let 𝑆 = (𝑈, 𝐶, 𝑑, 𝑉, 𝐼, 𝑛) be a decision system with
measurement errors and 𝐵 ⊆ 𝐶. The set {𝑛

𝐵
(𝑥
𝑖
) | 𝑥
𝑖
∈ 𝑈} is a

covering of 𝑈.

Proof. Given for all 𝑥 ∈ 𝑈, for all 𝑎 ∈ 𝐵, |𝑎(𝑥) − 𝑎(𝑥)| = 0,
|𝑎(𝑥) − 𝑎(𝑥)| ≤ 2𝑛(𝑎), 𝑥 ∈ 𝑛

𝐵
(𝑥).

Therefore, for all 𝑥 ∈ 𝑈, 𝑛
𝐵
(𝑥) ̸= 0, and for any 𝐵 ⊆ 𝐶,

⋃
𝑥∈𝑈

𝑛
𝐵
(𝑥) = 𝑈.

Hence, the set {𝑛
𝐵
(𝑥
𝑖
) | 𝑥
𝑖
∈ 𝑈} is a covering of 𝑈. This

completes the proof.

Now, we discuss the lower and upper approximations as
well as the boundary region of rough set in the new model.

Table 4: A subtable of the Liver decision system.

Patient 𝑎
1

𝑎
2

𝑎
3

𝑑

𝑥
1

0.31 0.23 0.08 𝑦

𝑥
2

0.14 0.38 0.23 𝑦

𝑥
3

0.25 0.40 0.40 𝑦

𝑥
4

0.60 0.46 0.51 𝑛

𝑥
5

0.41 0.64 0.62 𝑛

𝑥
6

0.35 0.50 0.75 𝑛

Table 5: An example of adaptive neighborhood boundary vector.

𝑎 𝑎
1

𝑎
2

𝑎
3

Neighborhood boundaries ±0.069 ±0.087 ±0.086

Table 6: The neighborhood of objects on different test sets.

𝑥 {𝑎
1
} {𝑎

1
, 𝑎
2
} {𝑎

1
, 𝑎
3
} {𝑎

1
, 𝑎
2
, 𝑎
3
}

𝑥
1

{𝑥
1
, 𝑥
3
, 𝑥
5
, 𝑥
6
} {𝑥

1
, 𝑥
3
} {𝑥

1
} {𝑥

1
}

𝑥
2

{𝑥
2
, 𝑥
3
} {𝑥

2
, 𝑥
3
} {𝑥

2
, 𝑥
3
} {𝑥

2
, 𝑥
3
}

𝑥
3

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
6
} {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
6
} {𝑥

2
, 𝑥
3
} {𝑥

2
, 𝑥
3
}

𝑥
4

{𝑥
4
} {𝑥

4
} {𝑥

4
} {𝑥

4
}

𝑥
5

{𝑥
1
, 𝑥
5
, 𝑥
6
} {𝑥

5
, 𝑥
6
} {𝑥

5
, 𝑥
6
} {𝑥

5
, 𝑥
6
}

𝑥
6

{𝑥
1
, 𝑥
3
, 𝑥
5
, 𝑥
6
} {𝑥

3
, 𝑥
5
, 𝑥
6
} {𝑥

5
, 𝑥
6
} {𝑥

5
, 𝑥
6
}

Definition 8 (see [28]). Let 𝑆 = (𝑈, 𝐶, 𝑑, 𝑉, 𝐼, 𝑛) be a decision
system with measurement errors and 𝑁

𝐵
a neighborhood

relation on 𝑈, where 𝐵 ⊆ 𝐶. We call ⟨𝑈,𝑁
𝐵
⟩ a neighborhood

approximation space. For arbitrary 𝑋 ⊆ 𝑈, the lower
approximation and the upper approximation of𝑋 in ⟨𝑈,𝑁

𝐵
⟩

are defined as

𝑁
𝐵
(𝑋) = {𝑥

𝑖
| 𝑥
𝑖
∈ 𝑈 ∧ 𝑛

𝐵
(𝑥
𝑖
) ⊆ 𝑋} ,

𝑁
𝐵
(𝑋) = {𝑥

𝑖
| 𝑥
𝑖
∈ 𝑈 ∧ 𝑛

𝐵
(𝑥
𝑖
) ∩ 𝑋 ̸= 0} .

(8)

The positive region of {𝑑} concerning 𝐵 ⊆ 𝐶 is defined as
POS
𝐵
({𝑑}) = ⋃

𝑋∈𝑈/{𝑑}
𝑁
𝐵
(𝑋) [42, 56].

Definition 9. Let 𝑆 = (𝑈, 𝐶, 𝑑, 𝑉, 𝐼, 𝑛) be a decision system
with measurement errors, for all 𝑋 ⊆ 𝑈, 𝑁

𝐵
(𝑋) ⊇ 𝑋 ⊇

𝑁
𝐵
(𝑋). The boundary region of𝑋 in ⟨𝑈,𝑁

𝐵
⟩ is defined as

𝐵𝑁
𝐵
(𝑋) = 𝑁

𝐵
(𝑋) − 𝑁

𝐵
(𝑋) . (9)

Generally, a covering is produced by a neighborhood
boundary. The inconsistent object in a neighborhood is
defined as follows.

Definition 10 (see [28]). Let 𝑆 = (𝑈, 𝐶, 𝑑, 𝑉, 𝐼, 𝑛) be a decision
system with measurement errors, 𝐵 ⊆ 𝐶, and 𝑥, 𝑦 ∈ 𝑈. In the
set of 𝑛

𝐵
(𝑥), for all 𝑦 ∈ 𝑛

𝐵
(𝑥) is called an inconsistent object

if 𝑑(𝑦) ̸= 𝑑(𝑥). The set of inconsistent objects in 𝑛
𝐵
(𝑥) is

ic
𝐵
(𝑥) = {𝑦 ∈ 𝑛

𝐵
(𝑥) | 𝑑 (𝑦) ̸= 𝑑 (𝑥)} . (10)

The number of inconsistent objects is denoted as |ic
𝐵
(𝑥)|.
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Table 7: Approximations of object subsets on different test sets.

𝑋 {𝑎
1
} {𝑎

1
, 𝑎
2
} {𝑎

1
, 𝑎
3
} {𝑎

1
, 𝑎
2
, 𝑎
3
}

𝑁
𝐵
(𝑋)
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1
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, 𝑥
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5
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6
}
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}
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1
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
} {𝑥

3
, 𝑥
4
, 𝑥
5
, 𝑥
6
} {𝑥

4
, 𝑥
5
, 𝑥
6
} {𝑥

4
, 𝑥
5
, 𝑥
6
}

Using a specific example, we explain the lower approx-
imations, the upper approximations, the boundary regions,
and the inconsistent objects of the neighborhood.

Example 11. A decision system with neighborhood bound-
aries is given in Tables 4 and 5. Table 4 is a subtable of
Table 1. Let 𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

6
}, 𝐶 = {𝑎

1
, 𝑎
2
, 𝑎
3
}, and 𝐷 =

{𝑑} = {Selector}, where 𝑎
1
= Mcv, 𝑎

2
= Alkphos, and 𝑎

3
=

Sgpt. 𝑛
𝐵
(𝑥) are listed in Table 6, where 𝐵 takes values listed

as column headers, and 𝑥 takes values listed in each row.
According toDefinition 10, the inconsistent object in 𝑛

{𝑎
1
}
(𝑥
1
)

is ic
{𝑎
1
}
(𝑥
1
) = {𝑥

5
, 𝑥
6
}.

In addition, 𝑈 is divided into a set of equivalence
classes by {𝑑}. 𝑈/{𝑑} = {{𝑥

1
, 𝑥
2
, 𝑥
3
}, {𝑥
4
, 𝑥
5
, 𝑥
6
}}. Let 𝑋

1
=

{𝑥
1
, 𝑥
2
, 𝑥
3
} and𝑋

2
= {𝑥
4
, 𝑥
5
, 𝑥
6
}.𝑁
𝐵
(𝑋) and𝑁

𝐵
(𝑋) are listed

in the first part and the second part of Table 7, respectively.
Here, 𝐵 takes values listed as column headers, and 𝑋 takes
values listed in each row.

The positive regions and the boundary regions of 𝑈 on
different test sets can be computed from Table 7:

(1) POS
{𝑎
1
}
({𝑑}) = {𝑥

2
, 𝑥
4
}, 𝐵𝑁
{𝑎
1
}
({𝑑}) = {𝑥

1
, 𝑥
3
, 𝑥
5
, 𝑥
6
},

(2) POS
{𝑎
1
,𝑎
2
}
({𝑑}) = {𝑥

1
, 𝑥
2
, 𝑥
4
, 𝑥
5
}, 𝐵𝑁

{𝑎
1
,𝑎
2
}
({𝑑}) =

{𝑥
3
, 𝑥
6
},

(3) POS
{𝑎
1
,𝑎
3
}
({𝑑}) = {𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
}, 𝐵𝑁
{𝑎
1
,𝑎
3
}
({𝑑})

= 0,
(4) {𝑎

1
, 𝑎
3
} has the same approximating power as 𝐶.

3.2. Minimal Cost Feature Selection Problem. In this work, we
focus on cost-sensitive feature selection based on test costs
andmisclassification costs. Unlike reduction problems, we do
not require any particular property of the decision system to
be preserved.The objective of feature selection is tominimize
the average total cost through considering a trade-off between
test costs and misclassification costs. Cost-sensitive feature
selection problem is called the feature selection with minimal
average total cost (FSMC) problem.

Problem 1. The FSMC problem:

input: 𝑆 = (𝑈, 𝐶, 𝑑, 𝑉, 𝐼, 𝑛, tc,mc),
output: 𝑅 ⊆ 𝐶,
optimization objective: minimize the average total cost
(ATC).

The FSMC problem is a generalization of classical min-
imal reduction problem. On the one hand, several factors
should be considered such as the test costs and misclassifica-
tion costs as well as normal distributionmeasurement errors.

These factors are all intrinsic to data in real applications.
On the other hand, the minimal average total cost is the
optimization objective through considering the trade-off
between the two kinds of costs. Compared with the accuracy,
the average total cost is more general metric in data mining
applications [36]. The following is a five-step process to
compute the average total cost.

(1) Let 𝐵 be a selected feature set. Given for all 𝑥 ∈ 𝑈, we
compute the neighborhood space 𝑛

𝐵
(𝑥).

(2) Let 𝑈󸀠 = 𝑛
𝐵
(𝑥) and let 𝑑(𝑥) be the decision value

of object 𝑥. Let |𝑈󸀠
𝑚
| and |𝑈

󸀠

𝑛
| be the number of 𝑚-

class and 𝑛-class, respectively, where 𝑚, 𝑛 ∈ {𝐼
𝑑
}. Let

the misclassification cost MC
𝑚

= mc[𝑚, 𝑛] × |𝑈
󸀠

𝑚
|

and MC
𝑛
= mc[𝑛,𝑚] × |𝑈

󸀠

𝑛
|, respectively. In order

to minimize the misclassification cost of the set 𝑈󸀠,
we assign one class 𝑑󸀠(𝑥) for all objects in 𝑈

󸀠. Let
mc(𝑈󸀠, 𝐵) be the minimal value of MC

𝑚
and MC

𝑛
.

(3) For any 𝑥 ∈ 𝑈
󸀠, the assigned class 𝑑󸀠(𝑥) = 𝑛-class if

mc(𝑈󸀠, 𝐵) = MC
𝑚
and 𝑑󸀠(𝑥) = 𝑚-class if mc(𝑈󸀠, 𝐵) =

MC
𝑛
, where mc[𝑚, 𝑛] is the cost of classifying an

object of the𝑚-class to the 𝑛-class.
(4) The decision value of the object 𝑥 depends on the

value with the max number of 𝑑󸀠(𝑥). The misclassi-
fication cost of the object 𝑥 is mc∗(𝑥). If 𝑑(𝑥) = 𝑚

and 𝑑
󸀠

(𝑥) = 𝑛, mc∗(𝑥) = mc[𝑚, 𝑛]. Conversely,
mc∗(𝑥) = mc[𝑛,𝑚] if 𝑑(𝑥) = 𝑛 and 𝑑

󸀠

(𝑥) = 𝑚.
Therefore, we compute the average misclassification
cost (AMC) as follows:

mc (𝑈, 𝐵) =
∑
𝑥∈𝑈

mc∗ (𝑥)
|𝑈|

. (11)

(5) The average total cost (ATC) is given by

ATC (𝑈, 𝐵) = tc (𝐵) +mc (𝑈, 𝐵) . (12)

The main aim of feature selection is to determine a min-
imal feature subset from a problem domain while retaining
a suitably high accuracy in representing the original features
[57]. In this context, rather than selecting a minimal feature
subset, we choose a feature subset in order to minimize the
average total cost. The minimal average total cost is given by

ATC (𝑈, 𝐵) = min {ATC (𝑈, 𝐵
󸀠

) | 𝐵
󸀠

⊆ 𝐶} . (13)

The following example gives an intuitive understanding.

Example 12. A decision system with neighborhood bound-
aries is given by Tables 4 and 5. Let 𝐶 = {𝑎

1
, 𝑎
2
, 𝑎
3
}, 𝐵 =

{𝑎
1
, 𝑎
2
}, and𝐷 = {𝑑}. Let tc = [8, 23, 19] and mc = [ 0 180

60 0
].
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Table 8: The neighborhood of objects on 𝐵{𝑎
1
, 𝑎
2
}.

𝑈 𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
1

1 0 1 0 0 0
𝑥
2

0 1 1 0 0 0
𝑥
3

1 1 1 0 0 1
𝑥
4

0 0 0 1 0 0
𝑥
5

0 0 0 0 1 1
𝑥
6

0 0 1 0 1 1

Table 9: The number of different classes.

𝑑 𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑦 2 2 4 0 1 2
𝑛 0 0 0 1 1 1

Table 10: The difference of decision attributes.

𝑈 𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑑
󸀠

(𝑥) Y Y Y N Y Y
𝑑(𝑥) Y Y Y N N N

Step 1. 𝑛
𝐵
(𝑥
𝑖
) is the neighborhood of 𝑥

𝑖
∈ 𝑈, which is listed

in Table 8. If 𝑥
𝑗
∈ 𝑛
𝐵
(𝑥
𝑖
), the value at 𝑖th row and 𝑗th column

is set to 1; otherwise, it is set to 0.

Step 2. Since the set of 𝑛
𝐵
(𝑥
𝑖
) ⊆ POS

𝐵
({𝑑}), the

mc(𝑛
𝐵
(𝑥
𝑖
), 𝐵) = 0, where 𝑖 = 1, 2, 4, 5. The set of 𝑛

𝐵
(𝑥
3
) =

{𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
6
} has two kinds of classes, which should be

adjusted to one class. Since mc(𝑛
𝐵
(𝑥
3
), 𝐵) = min(60 ×

1, 180 × 3), for any 𝑥 ∈ 𝑈
󸀠, 𝑑(𝑥) = “𝑦”. In the same way,

in order to minimize the cost of mc(𝑛
𝐵
(𝑥
6
), 𝐵) = min(60 ×

2, 180 × 1), we adjust all classes of elements in 𝑛
𝐵
(𝑥
6
) to “𝑦”.

Step 3. We can obtain the new class of each test. We count
the number of different classes of each test, which is listed in
Table 9.

Step 4. From Table 9, we select 𝑑
𝑚

with the maximal of
𝑑
󸀠

(𝑥
𝑖
) as the class value of 𝑥

𝑖
. The original decision attribute

values 𝑑(𝑥) and 𝑑󸀠(𝑥) are listed in Table 10. From this Table,
we know 𝑑(𝑥

5
) ̸= 𝑑
󸀠

(𝑥
5
) and 𝑑(𝑥

6
) ̸= 𝑑
󸀠

(𝑥
6
). Therefore, the

average misclassification cost mc(𝑈, 𝐵) = (60 + 60)/6 = 20.

Step 5. The average total cost is ATC(𝑈, 𝐵) = (8 + 23) + 20 =

51.

In order to search a minimal cost feature subset, we can
define a problem to deal with this issue. Under the context of
MEDS-TM, this problem will be called cost-sensitive feature
selection problem or the minimal cost feature selection
(FSMC) problem. Compared with the minimal test cost
reduct (MTR) problem (see, e.g., [15, 16]), the FSMC problem
should not only consider the test costs but also take the mis-
classification costs into account. When the misclassification
costs are too large compared with test costs, the total test cost
equals the total cost. In this case, the FSMCproblemcoincides
with the MTR problem.

4. Algorithms

Wepropose the 𝛿-weighted heuristic algorithm to address the
minimal cost feature selection problem. In order to evaluate
the performance of a heuristic algorithm, an exhaustive
algorithm is also needed. Exhaustive searches are also known
as backtracking algorithms which look for every possible way
to search for an optimal result. In this section, we review our
exhaustive algorithm and propose a heuristic algorithm for
this new feature selection problem.

4.1. The Backtracking Feature Selection Algorithm. We have
proposed an exhaustive algorithm in [37] that is based on
the backtracking.The backtracking algorithm can reduce the
search space significantly through three pruning techniques.
The backtracking feature selection algorithm is illustrated in
Algorithm 1. In order to invoke this backtracking algorithm,
several global variables should be explicitly initialized as
follows:

(1) 𝑅 = 0 is a feature subset with minimal average total
cost,

(2) cmc = mc(𝑈, 𝑅) is currently minimal average total
cost,

(3) backtracking(𝑅, 0).

A feature subset with the ATC will be stored in 𝑅 at the
end of the algorithm execution. Generally, the search space
of the feature selection algorithm is 2|𝐶|. In order to deal with
this issue, there are a number of algorithms such as particle
swarm optimization algorithms [58], genetic algorithms [1],
and backtracking algorithms [59] in real applications.

In Algorithm 1, three pruning techniques are employed
to reduce the search space in feature selection. Firstly, Line
1 indicates that the variable 𝑖 starts from 𝑙 instead of 0.
Whenever we move forward through the recursive proce-
dure, the lower bound is increased. And then, the second
pruning technique is shown in Lines 3 through 5. In the real
applications, the misclassification costs are nonnegative. In
this way, the feature subsets 𝐵 will be discarded if the test
cost of 𝐵 is larger than the current minimal average total cost
(cmc).This technique can prunemost branches. Finally, Lines
6 through 8 indicate that if the new feature subset produce
a high cost along with decreasing misclassification cost, the
current branch will never produce the feature subset with the
minimal total cost.

4.2. The 𝛿-Weighted Heuristic Feature Selection Algorithm. In
order to deal with the minimal feature selection problem, we
design the 𝛿-weighted heuristic feature selection algorithm.
The algorithm framework is listed in Algorithm 2 containing
twomain steps. First, the algorithm adds the current best fea-
ture 𝑎 to 𝐵 according to the heuristic function 𝑓(𝐵, 𝑎

𝑖
, 𝑐(𝑎
𝑖
))

until 𝐵 becomes a superreduct. Then, delete the feature 𝑎

from 𝐵 guaranteeing 𝐵 with the current minimal total cost.
In Algorithm 2, lines 5 and 7 contain the key code of the
addition. Lines 10 to 14 show the steps of deletion.

According to Definition 10, the number of inconsistent
objects |ic

𝐵
(𝑥)| in neighborhood 𝑛

𝐵
(𝑥) is useful in evaluating
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Input: (𝑈, 𝐶, 𝑑, {𝑉
𝑎
}, {𝐼
𝑎
}, 𝑛, tc,mc), select tests 𝑅, current level test index lower bound 𝑙

Output: A set of features 𝑅 with ATC and cmc, they are global variables
Method: backtracking
(1) for (𝑖 = 𝑙; 𝑖 < |𝐶|; 𝑖 + +) do
(2) 𝐵 = 𝑅 ∪ {𝑎

𝑖
}

//Pruning for too expensive test cost
(3) if (tc(𝐵) > cmc) then
(4) continue;
(5) end if

//Pruning for non-decreasing total cost and decreasing misclassification cost
(6) if ((ATC(𝑈, 𝐵) ≥ ATC(𝑈, 𝑅)) and (mc(𝐵) < mc(𝑅)) then
(7) continue;
(8) end if
(9) if (ATC(𝑈, 𝐵) < cmc)) then
(10) cmc = ATC(𝑈, 𝐵); //Update the minimal total cost
(11) 𝑅 = 𝐵; //Update the set of features with minimal total cost
(12) end if
(13) backtracking (𝐵, 𝑖 + 1);
(14) end for

Algorithm 1: A backtracking algorithm to the FSMC problem.

Input: (𝑈, 𝐶, 𝑑, {𝑉
𝑎
}, {𝐼
𝑎
}, 𝑛, tc,mc)

Output: A feature subset with minimal total cost
Method:
(1) 𝐵 = 0;

//Addition
(2) 𝐶𝐴 = 𝐶;
(3) while (POS

𝐵
(𝐷) ̸=POS

𝐶
(𝐷)) do

(4) for each 𝑎 ∈ 𝐶𝐴 do
(5) Compute 𝑓(𝐵, 𝑎, 𝑐(𝑎󸀠));
(6) end for
(7) Select 𝑎󸀠 with the maximal 𝑓(𝐵, 𝑎󸀠, 𝑐(𝑎󸀠));
(8) 𝐵 = 𝐵 ∪ {𝑎

󸀠

}; 𝐶𝐴 = 𝐶𝐴 − {𝑎
󸀠

};
(9) end while

//Deletion
(10) while (ATC(𝑈, 𝐵) > ATC(𝑈, 𝐵 − {𝑎})) do
(11) for each 𝑎 ∈ 𝐵 do
(12) Compute ATC(𝑈, 𝐵 − {𝑎});
(13) end for
(14) Select 𝑎󸀠 with the minimal ATC(𝑈, 𝐵 − {𝑎

󸀠

});
(15) 𝐵 = 𝐵 − {𝑎

󸀠

};
(16) end while
(17) return 𝐵;

Algorithm 2: An addition-deletion cost-sensitive feature selection algorithm.

the quality of a neighborhood block. Now, we introduce the
following concepts.

Definition 13 (see [35]). Let 𝑆 = (𝑈, 𝐶,𝐷, 𝑉, 𝐼, 𝑛) be a decision
systemwithmeasurement errors, 𝐵 ⊆ 𝐶, and 𝑥 ∈ 𝑈.The total
number of such objects with respect to 𝑈 is

nc
𝐵
(𝑆) = Σ

𝑥∈𝑈

󵄨󵄨󵄨󵄨ic𝐵 (𝑥)
󵄨󵄨󵄨󵄨 , (14)

and the positive region is

pc
𝐵
(𝑆) = Σ

𝑥∈POS
𝐶
(𝐷)

󵄨󵄨󵄨󵄨ic𝐵 (𝑥)
󵄨󵄨󵄨󵄨 . (15)

According to Definition 13, we know that 𝐵 is a
superreduct if and only if pc

𝐵
(𝑆) = 0. Now, we propose the

𝛿-weighted heuristic information function:

𝑓 (𝐵, 𝑎
𝑖
, 𝑐 (𝑎
𝑖
)) = (pc

𝐵
(𝑆) − pc

𝐵∪{𝑎
𝑖
}
(𝑆)) (1 +

𝛿

𝑐 (𝑎
𝑖
)
) ,

(16)

where 𝑐(𝑎
𝑖
) is the test cost of the attribute 𝑎

𝑖
, and 𝛿 ≥ 0 is a

user-specified parameter. In this heuristic information func-
tion, the attributes with lower cost have bigger significance.
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Table 11: Database information.

No. Name Domain |𝑈| |𝐶| 𝐷 = {𝑑}

1 Liver Clinic 345 6 Selector
2 Wdbc Clinic 569 30 Diagnosis
3 Wpbc Clinic 198 33 Outcome
4 Diab Clinic 768 8 Class
5 Iono Physics 351 34 Class
6 Credit Commerce 690 15 Class

We can adjust the significance of test cost through different 𝛿
settings. If 𝛿 = 0, test costs are essentially not considered.

5. Experiments

In this section, we try to answer the following questions
by experimentation. The first two questions concern the
backtracking algorithm, and the others concern the heuristic
algorithm.

(1) Is the backtracking algorithm efficient?
(2) Is the heuristic algorithm appropriate for theminimal

cost feature selection problem?
(3) How does the minimal total cost change for different

misclassification cost settings?

5.1. Data Generation. Experiments are carried out on six
standard datasets obtained from the UCI repository: Liver,
Wdbc, Wpbc, Diab, Iono, and Credit. The first four datasets
are from medical applications whereWpbc andWdbc are the
Wisconsin breast cancer prognosis and diagnosis datasets,
respectively. The Liver and Diab are liver disorder and
diabetes datasets, respectively. The iono stands for the Iono-
sphere, which is from physics applications.TheCredit dataset
is from commerce applications.

Table 11 shows a brief description of each dataset. Most
datasets from the UCI library [60] have no intrinsic mea-
surement errors, test costs, and misclassification costs. In
order help to study the performance of the feature selection
algorithm, we will create these data for experimentations.

Step 1. Each dataset should contain exactly one decision
attribute and have no missing value. To make the data easier
to handle, data items are normalized from their value into a
range from 0 to 1.

Step 2. Weproduce the 𝑛(𝑎) for each original test according to
(3). The 𝑛(𝑎) is computed according to the value of databases
without any subjectivity.

Three kinds of neighborhood boundaries of different
databases are shown in Table 12.These neighborhood bound-
aries are themaximal, theminimal, and the average neighbor-
hood boundaries of all attributes, respectively. The precision
of 𝑛(𝑎) can be adjusted through Δ setting, and we set Δ to be
0.01 in our experiments.

Table 12: Generated neighborhood boundaries for different
databases.

Dataset Minimal Maximal Average
Liver 0.022 0.130 ±0.058

Wdbc 0.012 0.080 ±0.046

Wpbc 0.022 0.112 ±0.062

Diab 0.018 0.118 ±0.062

Iono 0.090 0.174 ±0.122

Credit 0.002 0.112 ±0.044

Table 13: Number of steps for the backtracking algorithm.

Dataset Search
space

Minimal
steps

Maximal
steps

Average
steps

Liver 2
6 8 34 21.27

Wdbc 2
30 18 113 54.95

Wpbc 2
33 10 76 44.34

Diab 2
8 28 102 58.50

Iono 2
34 107 2814 663.41

Credit 2
15 105 2029 618.14

Step 3. We produce test costs, which are always represented
by positive integers. For any 𝑎 ∈ 𝑈, 𝑐(𝑎) is set to a random
number in [12, 55] subject to the uniform distribution.

Step 4. The misclassification costs are always represented by
nonnegative integers. We produce the matrix of misclassifi-
cation costs mc as follows:

(1) mc[𝑚,𝑚] = 0.

(2) mc[𝑚, 𝑛] andmc[𝑛,𝑚] are set to a randomnumber in
[100, 1000], respectively.

5.2. Efficiencies of the Two Algorithms. First, we study the
efficiency of the backtracking algorithm. Specifically, exper-
iments are undertaken with 100 different test cost settings.
The search space and the number of steps for the backtracking
algorithm are listed in Table 13. From the results, we note that
the pruning techniques significantly reduce the search space.
Therefore, the pruning techniques are very effective.

Second, from Table 13, we note that the number of steps
does not simply rely on the size of the dataset.Wpbc is much
larger than Credit; however, the number of steps is smaller.
For some medium sized datasets, the backtracking algorithm
is an effective method to obtain the optimal feature subset.

Third, we compare the efficiency of the heuristic algo-
rithm and the backtracking algorithm. Specifically, experi-
ments are undertaken with 100 different test cost settings
on six datasets listed in Table 11. For the heuristic algorithm,
𝜆 is set to 1. The average and maximal run times for both
algorithms are shown in Figure 1, where the unit of run time
is on millisecond. From the results, we note that the heuristic
algorithm is more stable in terms of run-time.

In a word, when we do not consider the run time, the
backtracking algorithm is an effective method for many
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Figure 1: Run time comparison: (a) maximal time and (b) average time.
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datasets. In real applications, when the run times of the back-
tracking algorithm are unacceptable, the heuristic algorithm
must be employed.

5.3. Effectiveness of the Heuristic Algorithm. We let 𝛿 =

1, 2, . . . , 9. The precision of 𝑛(𝑎) can be adjusted through Δ

setting, andwe letΔ to be 0.01 on all datasets exceptWdbc and
Wpbc. The Δ = 0.01 gets small neighborhood for Wdbc and
Wpbc datasets; hence, we let Δ = 0.05 for the two datasets. As
mentioned earlier, the parameter Δ plays an important role.
The data of our experiments come from real applications,
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Figure 3: Average exceeding factor.

and the errors are not given by the dataset. In this paper, we
consider only some possible error ranges.

The algorithm runs 100 times with different test cost
settings and different 𝛿 setting on all datasets. Figure 2 shows
the results of finding optimal factors. From the results, we
know that the test cost plays a key role in this heuristic
algorithm. As shown in Figure 2, the performance of the
algorithm is completely different for different settings of
𝛿. Data for 𝛿 = 0 are not included in the experiment
results because respective results are incomparable to others.
Figure 3 shows the average exceeding factors. These display
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Figure 4: Test cost and average total cost: (a) Liver; (b)Wdbc; (c)Wpbc; (d) Diab; (e) Iono; (f) Credit.
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Table 14: The optimal feature subset based on different misclassifi-
cation costs.

MisCost1 MisCost2 Test costs Total cost Feature subset
50 500 3.00 3.70 [1, 3, 27]

100 1000 4.00 4.35 [1, 3, 15, 29]

150 1500 4.00 4.53 [1, 3, 15, 29]

200 2000 4.00 4.70 [1, 3, 15, 29]

250 2500 4.00 4.88 [1, 3, 15, 29]

300 3000 5.00 5.00 [1, 12, 15, 27]

the overall performance of the algorithm from a statistical
perspective.

From the results, we observe the following:

(1) the quality of the results is related to different datasets.
It is because that the error range and heuristic infor-
mation are all computed according to the values of
dataset,

(2) the results of the finding optimal factor are acceptable
on most of datasets except Wdbc. The better results
can be obtained through the smaller Δ; however, the
number of selected features will be smaller,

(3) the average exceeding factor is less than 0.08 in most
cases. In other words, the results are acceptable.

5.4. The Results for Different Cost Settings. In this section,
we study the changes of the minimal total cost for different
misclassification cost settings. Table 14 is the optimal feature
subset based on different misclassification costs for Wdbc
dataset.The ratio of twomisclassification costs is set 10 in this
experiment.

As shown in this table, when the misclassification costs
are low, the algorithm avoids undertaking expensive tests.

When the misclassification cost is too large compared
with the test cost, the FSMC problem coincides with the
MTR problem. Therefore, FSMC problem is a generalization
of MTR problem.

In the last row of Table 14, the test cost of the subset [24,
31, 45, 55] equals the total cost; therefore, themisclassification
cost is 0, and this feature subset is a reduct.

The changes of test costs versus the average minimal total
cost are also shown in Figure 4. In real world, we could not
select expensive tests when misclassification costs are low.
Figure 4 shows this situation clearly. From the results, we
observe the following.

(1) As shown in Figures 4(a), 4(b), 4(e), and 4(f), when
the test costs remain unchanged, the total costs
increase linearly along with the increasing misclassi-
fication costs.

(2) If the misclassification costs are small enough, we
may give up the test. Figure 4(d) shows that when the
misclassification costs are $30 and $300, the test cost
is zero, and the total cost is the most expensive.

(3) As shown in Figures 4(a) and 4(c), the total costs
increase along with the increasing misclassification

costs. The total costs remain the same when the total
costs equal test costs.

6. Conclusions

In this paper, we built a new covering-based rough set model
with normal distribution measurement errors. A new cost-
sensitive feature selection problem is defined based on this
model. This new problem has a wide application area for
two reasons. One is that the resource that one can afford is
often limited.The other is that data with measurement errors
under considered is ubiquitous. A backtracking algorithm
and a heuristic algorithm are designed. Experimental results
indicate the efficiency of the backtracking algorithm and the
effectiveness of the heuristic algorithm.

With regard to future research, much work needs to be
undertaken. First, other realistic data models with neighbor-
hood boundaries can be built. Second, the current implemen-
tation of the algorithm deals only with binary class problems
that is the principal limitation. In the future, the extending
algorithm needs to be proposed to cope with multivariate
class problems. A third point to be considered in future
research is that one can borrow ideas from [61–63] to design
other exhaustive and heuristic algorithms. In summary, this
study suggests new research trends concerning covering-
based rough set theory, feature selection problem, and cost-
sensitive learning.
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