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We propose filtering the PET sinograms with a constraint curvature motion diffusion. The edge-stopping function is computed in
terms of edge probability under the assumption of contamination by Poisson noise. We show that the Chi-square is the appropriate
prior for finding the edge probability in the sinogram noise-free gradient. Since the sinogram noise is uncorrelated and follows
a Poisson distribution, we then propose an adaptive probabilistic diffusivity function where the edge probability is computed at
each pixel.The filter is applied on the 2D sinogram prereconstruction.The PET images are reconstructed using the Ordered Subset
Expectation Maximization (OSEM). We demonstrate through simulations with images contaminated by Poisson noise that the
performance of the proposed method substantially surpasses that of recently published methods, both visually and in terms of
statistical measures.

1. Introduction

Positron Emission Tomography (PET) is an in vivo nuclear
medicine imaging method that provides functional informa-
tion of the body tissues. The PET image results from recon-
structing very noisy, low resolution raw data, that is, the
sinogram, in which important features are shaped as curved
structures. Enhancing the PET image spurred a wide range of
denoisingmodels and algorithms. Somemethodologies focus
on enhancing the reconstructed PET image directly, where
others prefer enhancing the sinogram prior to reconstruc-
tion.

Although developing an appropriate denoising method
for filtering the PET images has been widely studied in
the last two decades, this problem is still receiving high
attention from researchers trying to improve the diagnosis
accuracy of this image. Existing methods may suffer draw-
backs such as the careful selection of a high number of
parameters, smoothing of the important features boundaries,
or prohibitive computation. Recently, nonlinear diffusion

techniques have been investigated for PET images. Many
researchers did explore the application of the well-known
Perona and Malik anisotropic diffusion [1] in combination
with diverse diffusivity functions on PET images [2–6], as
well as on sinograms [7–9].

In [5], authors introduced a postreconstruction adap-
tive nonlinear diffusion (Perona and Malik) filter based on
varying the diffusion level according to a local estimation of
the image noise. Applying the nonlinear anisotropic filtering
method on the whole body, PET image and the sinogram
were presented in [4, 8, 10], respectively. Results showed that
the anisotropic diffusion filtering algorithm helps improve
the quantitative aspect of PET images.

In the study of [9], combining the anisotropic diffusion
method with the coherence enhancing diffusion method for
filtering the sinogram as a preprocessing step was proposed.
However, the considered cascading approach is time consum-
ing, and the results are highly dependent on the parameters
selection criteria. Zhu et al. [11] built the diffusivity function
using fuzzy rules that were expressed in a linguistic form.
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The mean curvature and the Gauss curvature diffusion
algorithms for filtering the PET images during reconstruction
were investigated in [12]. An anatomically driven anisotropic
diffusion filter (ADADF) as a penalized maximum like-
lihood expectation maximization optimization framework
was proposed in [2]. This filter enhances a single-photon
emission computed tomography images using anatomical
information from magnetic resonance imaging as a priori
knowledge about the activity distribution. Authors in [3]
proposed a reconstruction algorithm for PET with thin
plate prior combined with a forward-and-backward diffusion
algorithm.Themain drawback of the above filter, with respect
to sinogram images is that the diffusion produces important
oscillations in the gradient. This leads to a poorly smoothed
image [11, 12]. Moreover, the adopted diffusivity functions do
not consider the special properties of the sinogram, which are
high level of Poisson noise and curved-shape features.

Happonen and Koskinen [13] proposed filtering the sin-
ogram in a new domain, that is, stackgramdomain, where the
signal along the sinusoidal trajectories can be filtered sep-
arately. They applied this method using the Gaussian and
nonlinear filters. Radon transform is applied for inversemap-
ping of the filtered data from the stackgram domain to the
sinogram domain. The above described method is impracti-
cal for noise reduction of the medical images such as PET,
since the corresponding 3D stackgram requires an enormous
space of computer memory. Furthermore, it is a complex
method not suitable for clinical applications where timely
reconstructien of the PET image is a very important issue.

Most of the above studies considered a global image noise
level. Local or varying noise level has been used in [14], where
a nonlinear diffusion method for filtering MR images with
varying noise levels was presented. The authors assumed
that the MR image can be modeled as a piecewise constant
(slowly varying) function and corrupted by additive zero-
mean Gaussian noise. Pizurica et al. [15] proposed a wavelet
domain denoisingmethod for subband-adaptive and spatially
adaptive image denoising approach. The latter approach is
based on the estimation of the probability that a given co-
efficient contains a significant noise-free component called
“signal of interest.”The authors of [15] found that the spatially
adaptive version of their proposed method yielded better
results than the existing spatially adaptive ones.

In this work, based on the following PET sinogram
characteristics:

(i) the important features in the sinogram are curved
structures with high contrast values and these repre-
sent the regions of interest in the reconstructed PET
image, for example, tumor,

(ii) the weak edges in the sinogram are the edges that
contain low contrast values,

(iii) the noise in the sinogram is a priori identified as a
Poisson noise,

we propose filtering the sinogram by means of a curvature
constrained filter. The amount of diffusion is modulated
according to a probabilistic diffusivity function that suits
images contaminated with Poisson noise, being the known

noise distribution of PET sinograms. Further, considering
the singoram characteristics, we propose a probabilistic edge-
stopping function based on Chi-square prior for the ideal
sinogram gradient with a spatially adaptive algorithm for
calculating the prior odd at each pixel. We show that this
method is improving and denoising sinogram data which
leads to enhanced reconstructed PET image.

The remainder of the paper is organized as follows,
Section 2 briefly reviews the notions of curvature motion,
edge affected diffusion filtering, and self-snakes. The pro-
posed adaptive filtering scheme is introduced in Section 3.
Finally, Section 4 discusses the experimental results, while
the conclusions and future work are given in Section 5.

2. Geometry Driven Scale-Space Filtering

This section reviews the formulations for Mean Curvature
Motion (MCM), Edge Affected Variable Conductance Dif-
fusion (EA-VCD) and self-snakes. Also we recall the Gauge
Coordinates notions. Extensive discussion can be find in [16].
Let 𝑓 be a scalar image defined on the spatial image domain
Ω, then the family of diffused versions of 𝑓 is given by

𝑈(𝑓) : 𝑓 (⋅) 󳨀→ 𝑢 (⋅, 𝑡) with 𝑢 (⋅, 0) = 𝑓 (⋅) , (1)

where𝑈 is referred to as the scale-space filter, 𝑢 is denoted by
the scale-space image, and the scale 𝑡 ∈ R+ [6]. The denoised
or enhanced version of 𝑓 is a given 𝑢(⋅, 𝑡) that is the closest
to the unknown noise-free version of 𝑓. In the following we
denote 𝑢(:; 𝑡) by 𝑢

𝑡
.

2.1. Curvature Motion. Mean Curvature Motion (MCM) is
considered as the standard curvature evolution. MCM allows
diffusion solely along the level lines. In Gauge coordinates
(see Section 2.4) the corresponding PDE formulation is (𝑘 is
Euclidian curvature) as follows:

𝑢
𝑡
(⋅, 𝑡) = 𝑢VV = 𝑘 |∇𝑢| = div [ ∇𝑢

|∇𝑢|
] |∇𝑢| . (2)

Hence diffusion solely occurs along the V-axis.

2.2. Edge Affected Variable Conductance Diffusion. Variable
Conductance Filtering (VCD) is based on the diffusion
with a variable conduction coefficient that controls the rate
of diffusion [16]. In the case of Edge Affected-VCD (EA-
VCD), the conductance coefficient is inversely proportional
to the edgeness. Consequently it is commonly referred to
as the edge-stopping function (𝑔), in which the edgeness is
typically measured by the gradient magnitude. The EA-VCD
is governed by

𝑢
𝑡
= div [𝑔 (|∇𝑢|) ∇𝑢] . (3)

The above PDE system together with the initial condition
given in (1) is completed with homogenous von Neumann
boundary condition on the boundary of the image domain.
Note that the Perona and Malik’s antitropic diffusion [1] is an
EA-VCD.
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2.3. Self-Snakes. Self-snakes are a variant of the MCM where
an edge-stopping function is introduced [17].Themain goal is
preventing further shrinking of the level-lines once they have
reached the important image edges. For scalar images, self-
snakes are governed by

𝑢
𝑡
= |∇𝑢| div [𝑔 (|∇𝑢|) ∇𝑢

|∇𝑢|
] . (4)

This equation adopts the same boundary condition as (3).
Furthermore, it can be decomposed into two parts [16, 17]:

𝑢
𝑡
= 𝑔 |∇𝑢| div [ ∇𝑢

|∇𝑢|
] + (∇𝑔) ⋅ ∇𝑢

= 𝑔𝑘 |∇𝑢| + (∇𝑔) ⋅ ∇𝑢.

(5)

The first part describes a degenerate forward diffusion along
the level lines that is orthogonal to the local gradient; it allows
preserving the edges. Additionally, the diffusion is limited
in areas with high gradient magnitude and encouraged
in smooth areas. Actually the first term is the constraint
curvature motion.The second term can be viewed as a shock
filter since it pushes the level-lines towards valleys of high
gradient, acting as Osher’s shock filter.

2.4. Gauge Coordinates. An image can be thought of as a
collection of curves with equal value, the isophotes. At ex-
trema an isophote reduces to a point, at saddle points the iso-
phote is self-intersecting. At the noncritical points; a Gauge
coordinate system [18] is defined by two orthogonal axes V
and𝑤, which correspond to the directions of the tangent and
normal at the isophote. The second order Gauge derivatives
of the image in the VV and 𝑤𝑤 directions have the following
second-order structures:

𝑢VV =
𝑢
𝑥𝑥
𝑢2
𝑦
− 2𝑢
𝑥
𝑢
𝑦
𝑢
𝑥𝑦

+ 𝑢
𝑦𝑦
𝑢2
𝑥

(𝑢2
𝑥
+ 𝑢2
𝑦
)

,

𝑢
𝑤𝑤

=
𝑢
𝑥𝑥
𝑢2
𝑦
+ 2𝑢
𝑥
𝑢
𝑦
𝑢
𝑥𝑦

+ 𝑢
𝑦𝑦
𝑢2
𝑥

(𝑢2
𝑥
+ 𝑢2
𝑦
)

.

(6)

These gauge derivatives can be expressed as a product of
gradients and a 2 × 2matrix with second-order derivatives
[18]:

𝑢
𝑤𝑤

𝑢2
𝑤
= (𝑢
𝑥
, 𝑢
𝑦
) (

𝑢
𝑥𝑥

𝑢
𝑥𝑦

𝑢
𝑥𝑦

𝑢
𝑦𝑦

)(
𝑢
𝑥

𝑢
𝑦

) ,

𝑢VV𝑢
2

𝑤
= (𝑢
𝑥
, 𝑢
𝑦
) (

𝑢
𝑦𝑦

−𝑢
𝑥𝑦

−𝑢
𝑥𝑦

𝑢
𝑥𝑥

)(
𝑢
𝑥

𝑢
𝑦

) .

(7)

For 𝑢
𝑤𝑤

the matrix equals the Hessian𝐻. For 𝑢VV it is det
𝐻 ⋅ 𝐻−1. Note that the expressions are invariant with respect
to the spatial coordinates. The above expression can also be
obtained as follows [16]:

𝑢VV = 𝑢
𝑥𝑥

sin 𝜃2 + 𝑢
𝑦𝑦

cos 𝜃2 − 2𝑢
𝑥𝑦
sin 𝜃 cos 𝜃,

𝑢
𝑤𝑤

= 𝑢
𝑥𝑥

cos 𝜃2 + 𝑢
𝑦𝑦

sin 𝜃2 + 2𝑢
𝑥𝑦
sin 𝜃 cos 𝜃,

(8)

where 𝜃 is given as 𝜃 = arctan(𝑢
𝑦
/𝑢
𝑥
) and 𝑢V = −𝑢

𝑥
̇sin𝜃 +

𝑢
𝑦

̇cos𝜃 = 0.

The two expressions of (6) can be combined linearly in a
PDE setting. In this way, an image 𝑢

0
is evolved according to

a weighted combination of these two invariants:

𝑢
𝑡
= 𝑔
1
(|∇𝑢|) 𝑢VV + 𝑔

2
(|∇𝑢|) 𝑢

𝑤𝑤
(9)

with 𝑢(𝑡 = 0) = 𝑢
0
.

Equation (9) comprises a diffusionmodulated by𝑔
1
along

the image edges VV (a smoothing term) and a diffusion ad-
justable by𝑔

2
across the image edges𝑤𝑤 (a sharpening term).

Careful modeling of these terms allows efficiently denoising
the PET sinograms, whilst keeping their interesting features.

3. The Probabilistic Curvature Motion Filter

The proposed probabilistic curvature motion filters are based
on the idea of the probabilistic diffusivity function [19], where
the diffusivity function is expressed as the probability that the
observed gradient presents no edge of interest under a suit-
able marginal prior distribution for the noise-free gradient.
In [19], the probabilistic diffusivity function has been defined
as

𝑔pr (𝑥) = 𝐴 (1 − 𝑃 (𝐻
1
| 𝑥)) , (10)

where the normalizing constant 𝐴 is set to 𝐴 = 1/(1 − 𝑃(𝐻
1
|

0)) to ensure that 𝑔pr(0) = 1, the hypothesis𝐻
1
describes the

notion whether an edge element of interest is present given
the considered noise and 𝐻

0
an edge element of interest is

absent. For a noisy gradient model 𝑥 = 𝑦 + 𝑛, we set

𝐻
0
: 𝑦 ≤ 𝜎

𝑛
, 𝐻

1
: 𝑦 > 𝜎

𝑛
(11)

with 𝑦 being the ideal, noise-free, gradientmagnitude, and 𝜎
𝑛

being the standard deviation of the noise 𝑛. In [19] it has been
demonstrated that

𝑔pr (𝑥) = (1 + 𝜇𝜂 (0))
1

1 + 𝜇𝜂 (𝑥)
(12)

with the prior odds defined as

𝜇 =
𝑃 (𝐻
1
)

𝑃 (𝐻
0
)

(13)

and the likelihood ratio

𝜂 (𝑥) =
𝑃 (𝑥 | 𝐻

1
)

𝑃 (𝑥 | 𝐻
0
)
. (14)

Considering a Laplacian prior 𝑝(𝑦) = (𝜆/2)𝑒−𝜆|𝑦|, we have
[19]:

𝜇 = (𝑒𝜆𝜎𝑛 − 1)
−1

, (15)

and the parameter 𝜆 can be estimated as

𝜆 = [0.5 (𝜎2 − 𝜎2
𝑛
)]
−1/2 (16)

with 𝜎2 denoting the variance of the noisy image and 𝜎
𝑛
as

defined above. Due to limited space, the reader is referred to
[19] for the detailed expression of 𝜂(𝑥) in (14).
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It has to be noted that the diffusivity function (12) fits in
the cluster of backward-forward diffusivities, and it has no
free parameters to be set. Moreover, for the considered PET
sinograms, the noise standard deviation, 𝜎

𝑛
, in (16) is esti-

mated as 𝜎2
𝑛

= Var(𝑓Ln), where the image noise, 𝑓Ln, is
reconstructed via wavelet decomposition of 𝑓, from the two
finest resolution levels coefficients, using Daubechies (4)
wavelet.

3.1. Probabilistic Self-Snakes (PSS). It can be demonstrated
that the diffusion of scalar images via EA-VCD can be
decomposed into (5), which can be rewritten as follows [16]:

𝑢
𝑡
= 𝑔 (|∇𝑢|) 𝑢VV + [𝑔 (|∇𝑢|) + 𝑔󸀠 (|∇𝑢|) |∇𝑢|] 𝑢

𝑤𝑤
(17)

consolidating the properties of both the self-snakes and the
EA-VCD into a single diffusion schema.

Considering (9) and the probabilistic diffusivity func-
tion, if we set 𝑔

1
(𝑥) =̇ 𝑔pr(𝑥), and the sharpening term,

𝑔
2
(𝑥) =̇ 𝑔pr(𝑥) + 𝑥𝑔󸀠pr(𝑥), we obtain the probabilistic self-

snakes (PSS) [7]. By its nature, the PSS enhances the weak
edges and/or features in the sinogram. The second term in
(32) allows the sharpening. In this way, weak but important
edges are enhanced whilst the noise is removed efficiently.

PSS proved to be very effective and flexible for the sino-
gram image where the high contrast regions, which represent
a tumor in the reconstructed PET, should be smoothedwisely
without blurring the poor edges [7]. Like EA-VCD, the main
advantage of this filter is that the average gray value of the
image is not altered during the diffusion process which is a
significant issue in the sinogram.

3.2. Adaptive Probabilistic Diffusivity Function Based on a
Chi-Square Prior for a Sinogram. Theprobabilistic diffusivity
function (12) does not take into account the spatially varying
noise levels such as the case for the sinograms. It has a global
threshold parameter, which is related to the image noise
standard deviation 𝑇 = 𝜎

𝑛
. Hence, in such formulation, if

two pixels/voxels have equal gradient magnitude, they will
have the same 𝑔pr(𝑥) values, nomatter the noise level at these
pixels. In this work, the probabilistic diffusivity function is
improved by considering the local statistical noise at each
element. We adopt the ideas of [15] and adapt the estimator
to the local spatial context in the image.

3.2.1. Spatially Adaptive Probabilistic Diffusivity Function.
Themost appropriate way to achieve a spatial adaptation is to
estimate the prior probability of signal presence𝑃(𝐻

1
) adapt-

ively for each pixel instead of fixing it globally. This can be
achieved by conditioning the hypothesis𝐻

1
on a local spatial

activity indicator such as the locally averaged magnitude or
the local variance of the observed gradient.

To estimate the probability that “signal of interest” is
present at the position 𝑖, we consider a local spatial activity
indicator, 𝑧

𝑖
, at each position. 𝑧

𝑖
is defined as the locally aver-

aged gradient magnitude within a relatively small window,
𝑤(𝑖), with a fixed size,𝑁, around the position 𝑖 in the gradient
image.

Starting from the prior odd, (13), we replace the ratio of
“global” probabilities by a locally adaptive prior, 𝑃(𝐻

1
|

𝑧
𝑖
)/𝑃(𝐻

0
| 𝑧
𝑖
); that is, 𝑃(𝐻

1
) and 𝑃(𝐻

0
) are conditioned on

the local spatial indicator

𝑃 (𝐻
1
| 𝑧
𝑖
)

𝑃 (𝐻
0
| 𝑧
𝑖
)
=
𝑃 (𝑧
𝑖
| 𝐻
1
)

𝑃 (𝑧
𝑖
| 𝐻
0
)
⋅
𝑃 (𝐻
1
)

𝑃 (𝐻
0
)
= 𝜉
𝑖
(𝑧
𝑖
) ⋅ 𝜇, (18)

where (𝜉) is the local likelihood ratio:

𝜉
𝑖
(𝑧
𝑖
) =

𝑃 (𝑧
𝑖
| 𝐻
1
)

𝑃 (𝑧
𝑖
| 𝐻
0
)

𝜇 =
𝑃 (𝐻
1
)

𝑃 (𝐻
0
)
. (19)

Considering Bayes’ rule, the probability that an “edge of
interest” is present at position 𝑖, 𝑃(𝐻

1
| 𝑥
𝑖
), is given as

𝑃 (𝐻
1
| 𝑥
𝑖
) =

𝜇𝜂
𝑖
(𝑥
𝑖
) 𝜉
𝑖
(𝑧
𝑖
)

1 + 𝜇𝜂
𝑖
(𝑥
𝑖
) 𝜉
𝑖
(𝑧
𝑖
)
. (20)

The spatially adaptive probabilistic diffusivity function can
then be formulated as

𝑔apr (𝑥𝑖, 𝑧𝑖) = 𝐴 (1 − 𝑃 (𝐻
1
| 𝑥
𝑖
, 𝑧
𝑖
)) ,

𝑔apr (𝑥𝑖, 𝑧𝑖) = (1 + 𝜇𝜂 (0)) (
1

1 + 𝜇𝜂
𝑖
(𝑥
𝑖
) 𝜉
𝑖
(𝑧
𝑖
)
)

(21)

with

𝜂
𝑖
(𝑥
𝑖
) =

𝑃 (𝑥
𝑖
| 𝐻
1
)

𝑃 (𝑥
𝑖
| 𝐻
0
)
. (22)

We ensure that 𝑔(0) = 1, because the minimum of 𝑃(𝐻
1
| 𝑥)

is at 𝑥 = 0 and thus (1 − 𝑃(𝐻
1
| 𝑥)) peaks at 𝑥 = 0.

Intuitively, the proposed method considers an “observed
gradient” at a given location as how probable this location
presents useful information compared to its neighborhood,
based on

(1) the likelihood ratio via 𝜂
𝑖
(𝑥
𝑖
),

(2) a measurement from the local surrounding via 𝜉
𝑖
(𝑧
𝑖
),

(3) the global prior odd via 𝜇.

The local spatial activity indicator 𝑧
𝑖
is defined as

𝑧
𝑖
=

1

𝑁
∑
𝑙∈𝑤(𝑖)

𝑥
𝑙
, (23)

where 𝑥
𝑙
is the gradient magnitude at location 𝑙 ∈ 𝑤(𝑖).

Assume that all the elements within the small window
are equally distributed and conditionally independent. With
these simplifications, the conditional probability of 𝑧

𝑖
given

𝐻
1
in a window 𝑤(𝑖) of size 𝑁, which is denoted as 𝑃

𝑁
(𝑧
𝑖
|

𝐻
1
), is given by 𝑁 convolutions of 𝑃(𝑥

𝑖
| 𝐻
1
) with itself as

follows:

𝑃
𝑁
(𝑧
𝑖
| 𝐻
1
) = 𝑃 (𝑥

𝑖
| 𝐻
1
)Conv

𝑁
𝑃 (𝑥
𝑖
| 𝐻
1
) , (24)

while the conditional probability 𝑃
𝑁
(𝑧
𝑖
| 𝐻
0
) of 𝑧
𝑖
given 𝐻

0

is given by𝑁 convolutions of 𝑃(𝑥
𝑖
| 𝐻
0
) with itself:

𝑃
𝑁
(𝑧
𝑖
| 𝐻
0
) = 𝑃 (𝑥

𝑖
| 𝐻
0
)Conv

𝑁
𝑃 (𝑥
𝑖
| 𝐻
0
) . (25)
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Figure 1: The Adaptive probabilistic diffusivity function 𝑔apr( ) versus the original probabilistic diffusivity function 𝑔pr( ). (a) Diffusivity
functions along the edge (𝑔(𝑥)). (b) Diffusivity functions across the edge ([𝑥𝑔(𝑥)]󸀠).

Due to limited space, the reader is referred to [19] for the
detailed expression of 𝑃(𝑥

𝑖
| 𝐻
0
), 𝑃(𝑥

𝑖
| 𝐻
1
), and 𝜂(𝑥

𝑖
).

Figure 1 illustrates the original probabilistic diffusivity
function and adaptive probabilistic diffusivity function. The
adaptive function has lower values, as shown in Figure 1(a),
which allows better preservation of important edges than
the original function. The negative peaks of the proposed
function occur usually at larger gradient magnitude than
the original one, which indicates stronger edge enhancement
capability. This property indicates a quick smoothing of the
nearly uniform areas while maintaining and enhancing the
strong edges.

3.2.2. A Chi-Square Prior for Noise-Free Sinogram Gradient.
The noise in the sinogram is a priori identified as a Poisson
noise [12, 20]. The magnitude of Poisson noise varies across
the image, as it depends on the image intensity. This makes
removing such noise very difficult. In the original probabilis-
tic diffusivity function (Section 3), the Laplacian prior was
imposed for the ideal image gradient that is contaminated
with Gaussian noise. In order to take into account the
sinogram’s noise distribution in the filtering scheme, in
this section we aim at redefining the diffusivity function
for handling Poisson noise. This can be accomplished by
finding an appropriate prior for the ideal noise-free sinogram
gradient.

In the following, we argue that we can represent Poisson
distribution by a Gaussian distribution as Gauss(0, √2𝑚).
Afterwards, we demonstrate that the gradient magnitude of
the noise-free sinogram follows a Chi-square distribution,
and finally we reformulate the probabilistic diffusivity func-
tion based on a Chi-square prior for the noise-free sinogram
gradient.

In the literature, several studies demonstrated that the
Poisson distribution (of probability mass 𝑃(𝑆) = 𝑚𝑆𝑒−𝑚/𝑆!,
with 𝑆 being the number of occurrences of an event and 𝑚
being the expected number of occurrences during a given

interval) approaches a Gaussian density function in the case
of high number of counts [21, 22]. Moreover, Miller et al. [21]
showed that the Gaussian approximation is surprisingly ac-
curate, even for a fairly small number of counts. To illustrate
this, we use the logarithmic function to simplify the proof:

ln𝑃 (𝑆) = ln(𝑚𝑆𝑒−𝑚

𝑆!
) . (26)

Using Stirling’s formula (for large 𝑆 as we are assuming here)
𝑆! ≈ 𝑆𝑆 ⋅ 𝑒−𝑆√2𝜋𝑆, we have

𝑃 (𝑆) ≈
𝑒−(𝑆−𝑚)

2

/2𝑚

√2𝜋𝑚
. (27)

Assuming that the sinogram gradient is approximated
by absolute difference of neighboring pixel values on a 2-
connected grid, we demonstrate that the gradient of Poisson
random variables follows a Skellam distribution. Then, we
show that the Skellam distribution can be approximated as
a Gaussian distribution.

Let 𝑠1 and 𝑠2 be two statistically independent adjacent
pixels in the observed sinogram be with a Gaussian dis-
tribution 𝑠1 ∼ Gauss(𝑚

1
, 𝜎
𝑠1
) and 𝑠2 ∼ Gauss(𝑚

2
, 𝜎
𝑠2
),

respectively. The distribution of the difference, 𝑎 = 𝑠1 − 𝑠2,
of two statistically independent random variables 𝑠1 and 𝑠2,
each having Poisson distributions with different expected
values𝑚

1
and𝑚

2
, is denoted as the Skellam distribution [23]

and can be given as

PD (𝑎;𝑚
1
, 𝑚
2
) = 𝑒−(𝑚1+𝑚2)(

𝑚
1

𝑚
2

)
𝑎/2

𝐼
|𝑎|
(2√𝑚

1
𝑚
2
) , (28)

where 𝐼
𝑘
(𝑍) is the modified Bessel function of the first kind.

The difference between two Poisson variables has the
following properties: (i) 𝜎2

𝑠1𝑠2
= 𝜎2
𝑠1

+ 𝜎2
𝑠2

= 2𝜎2 and (ii)
𝑚 = 𝑚

𝑠1𝑠2
= 𝑚
𝑠1

− 𝑚
𝑠2

= 0. Considering these prop-
erties, the cross-correlation, and the delta function, the
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(c) Chi-square and Laplacian prior for the noise free histogram

Figure 2: Chi-square prior versus Laplacian prior. (a) Histogram of the noise-free gradient. (b) Histogram of the noisy gradient magnitude.
(c) Laplacian and Chi-square priors for the noisy-free gradient, estimated from the noisy data.

approximated distribution of the sinogram gradient can be
given as Gauss(0, √2𝑚).

Based on the assumption that the sinogram gradient
follows the Gauss(0, √2𝑚) distribution, we can show that the
distribution of this gradient leads a Chi-square distribution
as follows:

∇𝑆
(𝑖,𝑗)

∼ Gauss (0, √2𝑚) ,

󵄨󵄨󵄨󵄨󵄨∇𝑆(𝑖,𝑗)
󵄨󵄨󵄨󵄨󵄨

√2𝑚
∼ Gauss (0, 1) ,

󵄨󵄨󵄨󵄨󵄨∇𝑆(𝑖,𝑗)
󵄨󵄨󵄨󵄨󵄨
2

2𝑚
∼ 𝜒2.

(29)

The Chi-square distribution is defined by the following
probability density function:

𝑃 (𝑦) =
𝑦𝜁/2−1 ⋅ 𝑒−𝑦/2

2𝜁/2𝛾 (𝜁/2)
, (30)

where 𝛾(𝜁/2) denotes the Gamma function and 𝜁 is a positive
integer that specifies the number of degrees of freedom. For
the noise gradient model 𝑥 = 𝑦 + 𝑛, the Chi-square with 2

degrees of freedom (2 degrees because we are dealing with
2D images) is given as

𝑃 (𝑦) =
1

2
⋅ 𝑒−(1/2)|𝑦|. (31)

Based on the above, the prior odd, (15), can be reformu-
lated considering Chi-square prior instead of Laplacian prior
and the noise 𝑛 ∼ Gauss(0, 2𝜎2

𝑛
). Note that the Chi-square

with 2 degrees of freedom is almost a special case of Laplacian
prior with a rate parameter (scale parameter) 𝜆 = 1/2. This
parameter determines the “scale” or statistical dispersion of
the probability distribution. It indicates that the distribution
of the ideal gradient is independent of a rate parameter since
the Poisson noise is a pixel dependent (i.e., depends on the
number of counts). Therefore, it is more natural to use Chi-
square prior for estimating the ideal gradient of Poisson data
rather than Laplacian prior with a parameter, 𝜆, which is
based on the variances of the image and noise gradients as
indicated by (16).

In Figure 2, we illustrate the estimation of the Laplacian
andChi-square priors for the noise-free gradient. Figures 2(a)
and 2(b) show the histograms of the gradient magnitudes
for the noise-free and noisy images, respectively. The noise-
free gradient histogram is typically sharply peaked at zero
since the noise-free images typically contain large portions
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of relatively uniform regions that produce negligible gradient
values. Sharp edges and textured regions produce some
relatively large gradients, building in this way long tails of the
gradient histogram. From the noisy histogram of Figure 2(b),
we estimate the parameter of the prior for the noise-free
sinogram gradient. The results are illustrated in Figure 2(c),
which shows the estimated Laplacian (dotted curve) andChi-
square (continues curve) priors in comparison to the ideal,
noise-free histogram.

3.2.3. Algorithm:The Adaptive Probabilistic Curvature Motion
Filter Based on Chi-Square Prior. In summary the general
equation of the proposed Adaptive Modified Probabilistic
Curvature Motion (AMPCM) filter is given by

𝑢
𝑡
= 𝑔apr (|∇𝑢|) 𝑢VV + [𝑔apr (|∇𝑢|) + 𝑔󸀠apr (|∇𝑢|) |∇𝑢|] 𝑢𝑤𝑤.

(32)

Let 𝑔
1
(𝑥
𝑖
, 𝑧
𝑖
) =̇ 𝑔apr(𝑥𝑖, 𝑧𝑖), as given by (21), and the sharpen-

ing term 𝑔
2
(𝑥) =̇ 𝑔

1
(𝑥
𝑖
, 𝑧
𝑖
) + 𝑥𝑔󸀠

1
(𝑥
𝑖
, 𝑧
𝑖
); the overall algorithm

is given as shown in Algorithm 1.

Algorithm 1. Adaptive Modified Probabilistic Curvature Mo-
tion Filter Algorithm

(i) Build the Probabilistic Diffusivity Function:

(a) compute the prior odd based on the Chi-Square
prior:

𝑃 (𝑦) =
1

2
⋅ 𝑒−(1/2)|𝑦|,

𝜇 = (𝑒(1/2)𝜎𝑛 − 1)
−1

.

(33)

(ii) Build the spatially adaptive diffusivity function
𝑔apr(𝑥𝑖, 𝑧𝑖), for each pixel 𝑖 = 1, . . . , size

𝑓
:

(a) compute the local spatial activity indicator

𝑧
𝑖
=

1

𝑁
∑
𝑙∈𝑤(𝑖)

𝑀
𝑙
, (34)

(b) compute the likelihood ratio for each window:

𝑃
𝑁
(𝑧
𝑖
| 𝐻
1
) = 𝑃 (𝑀

𝑖
| 𝐻
1
)Conv

𝑁
𝑃 (𝑀
𝑖
| 𝐻
1
) ,

𝑃
𝑁
(𝑧
𝑖
| 𝐻
0
) = 𝑃 (𝑀

𝑖
| 𝐻
0
)Conv

𝑁
𝑃 (𝑀
𝑖
| 𝐻
0
) ,

(35)

(c) compute the normalizing constant 𝐴:

𝐴 = 1 + 𝜇𝜂 (0) (36)

(d) compute 𝑃(𝐻
1
| 𝑥
𝑖
) as defined by (20)

(iii) compute the diffusivity function 𝑔(𝑥
𝑖
, 𝑧
𝑖
) :

𝑔
1
(𝑥
𝑖
, 𝑧
𝑖
) = 𝐴 (1 − 𝑃 (𝐻

1
| 𝑥
𝑖
, 𝑧
𝑖
)) ,

𝑔
2
(𝑥
𝑖
, 𝑧
𝑖
) = 𝑔
1
(𝑥
𝑖
, 𝑧
𝑖
) + 𝑥𝑔󸀠

1
(𝑥
𝑖
, 𝑧
𝑖
) .

(37)

(iv) Filter the sinogram, 𝑢
0
= 𝑓, based on (8)

recursion, for 𝑡 = 0, . . ., (number of iterations 1):

𝑢 (𝑥, 𝑦, 𝑡 + Δ𝑡)

= 𝑢 (𝑥, 𝑦, 𝑡)

+
1

Δ𝑡
[𝑔
1
⋅ sin2𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦, 𝑡)

+ 𝑔
2
⋅ cos2𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦, 𝑡)

+ 𝑔
1
⋅ sin2𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦, 𝑡)

+ 𝑔
2
⋅ cos2𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦, 𝑡)

+ 𝑔
1
⋅ cos2𝜃 ⋅ 𝑢 (𝑥, 𝑦 + 1, 𝑡)

+ 𝑔
2
⋅ sin2𝜃 ⋅ 𝑢 (𝑥, 𝑦 + 1, 𝑡)

+ 𝑔
1
⋅ cos2𝜃 ⋅ 𝑢 (𝑥, 𝑦 − 1, 𝑡)

+ 𝑔
2
⋅ sin2𝜃 ⋅ 𝑢 (𝑥, 𝑦 − 1, 𝑡)

− 2 ⋅ 𝑔
1
⋅ 𝑢 (𝑥, 𝑦, 𝑡) − 2 ⋅ 𝑔

2
⋅ 𝑢 (𝑥, 𝑦, 𝑡)

+
𝑔
2

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦 + 1, 𝑡)

−
𝑔
1

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦 + 1, 𝑡)

+
𝑔
2

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦 − 1, 𝑡)

−
𝑔
1

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦 − 1, 𝑡)

−
𝑔
2

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦 − 1, 𝑡)

+
𝑔
1

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦 − 1, 𝑡)

−
𝑔
2

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦 + 1, 𝑡)

+
𝑔
1

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦 + 1, 𝑡)] .

(38)

4. Experiments and Discussion

For the analysis of the proposed denoising approaches, we
use a simulated thorax PET phantom, containing three hot
regions of interest (tumors) of activities 1.18, 1.8, and 1.57. 100
realizations (noisy sinograms) with added noise of 1 × 106

coincident events have been generated. Each sinogram has a
size of 256×256pixels and its spacing is 2×2 (mm/pixel), with
128 detectors and 128 projection angles. Figure 3(a) illustrates
the noise-free sinogram, and Figure 3(b) illustrates a noisy
realization.

For reconstructing the PET images, we adopt theOrdered
Subset Expectation Maximization (OSEM) reconstruction
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(a) (b)

(c) (d)

Figure 3: Experimental dataset. (a) Noise-free simulated sinogram. (b) Noisy sinogram. ((c)-(d)) Corresponding reconstructions.

algorithm [24]. One way to represent the imaging system is
with the following linear relationship:

𝑓 = 𝐻𝑓PET + 𝑛, (39)

where𝑓 is the set of observations (sinogram),𝐻 is the known
system model (projection matrix), 𝑓PET is the unknown
image, and 𝑛 is the noise. The goal of reconstruction is to
use the data values 𝑓 (projections through the unknown
object) to find the image𝑓PET.Under the Poisson assumption,
counts of all the detectors around the object are considered
as independent Poisson variables. OSEM groups projection
data into an ordered sequence of subsets and progressively
processes every subset of projections in each iteration process
[24]. The OSEM method results are highly affected by the
number of iterations and subsets used. The iterations should
be ended before the noise becomes too dominant and not
too early to avoid losing important information. In our
experiments, the parameters of the OSEM algorithm are set
as follows: we use 16 subsets and run them for 4 iterations.
Such PET reconstructions are illustrated in Figures 3(c) and
3(d) for the noise-free and noisy sinograms, respectively.

For the experimental assessment of the proposed diffu-
sion filtering, we use two sets of evaluation measures. The
first set stems from measuring the quality of the filtering
techniques on the sinogram, whilst the second set originates
from validating the quality of the PET reconstruction, after
filtering the sinogram observations. As ground-truth infor-
mation, the former uses the noise-free sinogram, while the
latter needs prior identification of the important areas by a
medical professional.

A fundamental issue with scale-spaces induced by dif-
fusion processes, as the ones proposed in this paper, is
the automatic selection of the most salient scale. For PET
sinogram denoising application, we use an earlier proposed
optimal scale selection approach [25], where the maximum
correlation method has been adopted:

𝑡opt = argmax [Ĉmp (𝑡)]

= argmax[𝜎 [𝑢
𝑡
] +

𝜎 [𝑛
𝑜
(𝑡
0
)]

𝜎 [𝑢
𝑡
0

]
𝜎 [𝑛
𝑜
(𝑡)]]

(40)
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(a) AMPCM (b) PSS

(c) P-M (d) NAF

Figure 4: Optimal enhanced scale (𝑢
𝑡opt

) of the noisy sinogram of Figure 3(b).

with 𝑛
𝑜
being the so-called outlier noise estimated using

wavelet-based noise estimation. 𝑡
0
is the zeroth scale; thus

𝑢
𝑡
0

= 𝑓 and 𝑛(𝑡
0
) represents the initial amount of noise.

4.1. Sinogram Denoising Evaluation. In this work, we are in-
terested in comparing the proposedAMPCMfilterwith filter-
ing approaches from the literature: the Probabilistic self-
snakes (PSS) [7], Perona and Malik filter (P-M) [1], and the
Noise-Adaptive Nonlinear Diffusion Filtering (NAF) [14].

The Lorentzian diffusivity function 𝑔(𝑋) = 1/(1+𝑋2/𝑘2)
is used for applying the P-Mfilter.This functionwas proposed
by Perona andMalik [1] and widely used in the literature.The
contrast parameter 𝑘 is calculated based on the value given
by a percentage of the cumulative histogram of the gradient
magnitude [16]. The same diffusivity constant is used for all
filters (𝑑

𝑡
= 0.2).

Figure 4 illustrates the optimal enhanced scale of the
sinograms for all the considered filtering methods. The fil-
tered sinogram by AMPCM and PSS shows better enhanced
results especially the curvy shape features.

For the qualitative assessment of the denoised sinogram,
𝑢
𝑡opt

, with respect to the noise-free image 𝐼, we adopt the
following measures [25]:

DQ1 The Peak Signal to Noise Ratio (PSNR) is a statistical
measure of error, used to determine the quality of the
filtered images. It represents the ratio of a signal power
to the noise power corrupting. Obviously, one sees
that the higher the PSNR, the better the quality:

PSNR (𝑡opt) = 10 log
10

Card (Ω)

∑
𝑝∈Ω

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼 (𝑝) − 𝑢

𝑡opt
(𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨

. (41)

DQ2 The correlation (C
𝑚𝜌
) between the noise-free and the

filtered image.Thehigher this correlation is, the better
the quality is:

C
𝑚𝜌

(𝑡opt) = 𝜌 [𝐼, 𝑢
𝑡opt

] . (42)
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(a) AMPCM (b) AD-AMPCM

(c) PSS (d) AD-PSS

(e) P-M (f) AD-PM

Figure 5: Mean of the filtered sinograms (left column). Absolute difference between the mean of the filtered sinograms and the noise-free
image (right column).
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Table 1: Denoising quality measures.

Method 𝑓 AMPCM PSS P-M NAF
PSNR (𝑡opt) 15.1 30.8 29.73 22.8 29.1
NV (𝑡opt) 0.11 0.02 0.0223 0.225 0.0261
C
𝑚𝜌

(𝑡opt) 0.92 0.9955 0.9950 0.9956 0.9911

DQ3 The calculated variance of the noise (NV) describes
the remaining noise level. Therefore, it should be as
small as possible:

NV (𝑡opt) = Var (
󵄨󵄨󵄨󵄨󵄨󵄨
𝐼 − 𝑢
𝑡opt

󵄨󵄨󵄨󵄨󵄨󵄨
) . (43)

We are interested in comparing the maximum of each meas-
ure for different filtering approaches.

Table 1 lists the abovemeasures for each of the considered
filtering approaches.The best performance (maximum of the
measure) is displayed in bold. As it can be seen the best
performing filtering is achievedwhen using the AMPCMand
PSS. Furthermore, we notice that for all measures, AMPCM
and PSS outperform the NAF and (P-M) filters. The perfor-
mance of the smoothing algorithms proposed in this paper
is remarkable in discriminating a true edge from image noise
(see Figure 4). We also notice the improved performance of
the probabilistic curvaturemotion algorithms as compared to
the standard diffusion algorithms. Table 2 gives the number
of iterations to reach the optimal scale 𝑡opt as defined in (40).

The absolute difference between the mean of the filtered
sinograms and the noise-free one is another indication of
the behavior and stability of the filtering methods. The mean
results of the filtered realizations by the PSS and AMPCM
filters are close to the ideal image, as shown in Figure 5.
Comparing the mean results between the AMPCM and PSS
with the other methods clearly demonstrates the effect of the
sharpening/enhancing term which yields a better enhanced
edges. On the other hand, P-M keeps edges unsmoothed,
which is appearing as sharper edges in Figure 5. Figure 5
shows more noise remained, represented as larger values in
the absolute difference images of P-M andNAF. Furthermore,
using AMPCM and PSS, the absolute difference approaches
zero (black image), indicating that the noise has been effec-
tively and adaptively reduced from the noisy sinograms.

The heavy noise is clearly eliminated without destroying
the texture (curves) by the probabilistic curvature motion
filter. From the above and other various examples, we have
observed that the proposed algorithm has ability to eliminate
the Poisson noise. No stair-casing has been observed, nor
severe blurring is introduced. Figure 4(c) shows that P-M
filter performs well for relatively low levels of noise, while
it results in poor quality of images for high noise levels.
However, Perona’s operator does not work well when applied
to very noisy images because the noise introduces important
oscillations of the gradient.

4.2. PET Reconstruction Evaluation. In this section, we use
the smoothed sinograms, 𝑢

𝑡
, for PET reconstruction via the

OSEM algorithm.The reconstructed PET image is denoted as

Table 2: Optimal number of Iterations.

AMPCM PSS P-M NAF
16 16 22 21
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Figure 6: The contrast recovery curves for reconstructed PET by
OSEM.

𝑓PET(𝑡). For evaluating the effect of sinogram predenoising
on the PET reconstruction, we use the contrast recovery
method which aims to measure the quality of 𝑓PET(𝑡) by
measuring the contrast recovery of the interesting objects
(ROIs) in the image.The contrast recovery is computed based
on the contrast gain. The latter measures how much the
ROIs (i.e., tumor) in the PET image are discriminated from
the background by sharp edges and on the variance of the
contrast gain for different realizations. Further, the contrast
gain evaluates the stability of the applied algorithm. The
contrast recovery curve is estimated using the set of regions
of interest that were identified by a medical professional.This
curve is widely used in the literature for evaluating the quality
of the reconstructed PET images [26].

In Figure 3(c), there are 3 white spots that represent
tumors. We calculate the contrast gain CG

𝑖
for each real-

ization 𝑓𝑖PET, 𝑖 ∈ [1,𝑁] (𝑁 = 100 denotes the number
of realizations), and its overall variance 𝜎2CG. Let 𝑅 =
{𝑟
1
, 𝑟
2
, . . . , 𝑟no} (no = 3 in our case) be the set of identified

ROIs, and let 𝐵 be a representative background tissue area
then

CG
𝑖
(𝑡) =

1

no
∑
𝑟∈𝑅

[
1

Card (𝑟)
∑
𝑝∈𝑟

𝑓(𝑖)PET (𝑝, 𝑡) − 𝐶bkg] ,

𝜎2CG (𝑡) =
1

𝑁

𝑁

∑
𝑖=1

(CG
𝑖
(𝑡) − CG) ,

(44)

where 𝑝 denotes a pixel, 𝑡 the scale number, and CG the
contrast mean, CG = (1/𝑁)∑

𝑁

𝑗=1
CG
𝑗
(𝑡)2. 𝐶bkg represent
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(Var-image (noisy PET))

(a) Reconstructed after AMPCM (b) Variance image of (a).

(c) Mean results of the filtered reconstruction (d) Difference between (c) and noise-free image

Figure 7: Evaluation of the PET reconstruction using enhanced sinograms.

the mean intensities inside background, defined as 𝐶bkg =

(1/Card(𝐵))∑
𝑝∈𝐵

𝑓(𝑖)PET(𝑝, 𝑡).
Plotting the contrast gain in function of the variance given

the smoothness parameter, which is in this work, the scale
parameter 𝑡 yields the contrast recovery curve [26].

In order to perform, under the same conditions, the
comparison of the contrast curves of the different diffusion
scheme, one should identify the scales, 𝑡, emanating from
different diffusion schemes, having similar information con-
tent. For this, we use the scale synchronization proposed by
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Niessen et al. [27], being a Shannon-Wiener entropy used to
compare nonlinear scale-space filters:

R [𝑓PET (𝑡)] ≜
𝜎2 (𝑓PET (0)) − 𝜎2 (𝑓PET (𝑡))

𝜎2 (𝑓PET (0)) − 𝜎2 (M (𝑓PET))
, (45)

where M represents the averaging operator that maps an
image 𝑓PET onto a constant image, where each pixel equals
the average feature vector.

The contrast gain and the variance were computed for 6
scales, for each filtering methods, with similar information
content, selected based on Niessen et al. [27] approach.
Figure 6 shows the contrast recovery curves for the con-
sidered dif-fusion schemes AMPCM, PSS, P-M, and CCM-
Sapiro [17]. The best quality PET reconstruction is situated
in the upper, that is, high contrast gain, left, that is, high
stability, area of the plot. The figure shows that AMPCM has
better contrast recovery of the interesting objects (ROIs) in
the reconstructed PET images.

Figure 7 illustrates the reconstructed PET starting from
the enhanced sinogram, by the AMPCM, along with the
variance images of the reconstructed PET, the mean of
the reconstructed PET images, and the absolute difference
between the mean of the filtered PET and the noise-free
image. We immediately notice that the background seems
much flatter when adopting the OSEM reconstruction.

Experiments results show that combining the probabilis-
tic diffusivity function with the curvature motion diffusion
produces a powerful nonlinear filtering method that is
appropriate for the unique characteristics of the PET images.
The AMPCM filter preserves the boundaries of the curvy
shape features and wisely smooths the regions of interest as
well as the other regions. Figure 7 demonstrates that the edge
enhancement around image data is significantly improved.
The effect of edge strengthening is evenmore pronounced for
weaker edges in PET images or in image areas affected by a
high level of noise.

5. Conclusions

Adaptive probabilistic curvature motion filter (AMPCM)
for enhancing PET images is developed and discussed in
this work. The filter is applied on the 2D sinogram pre-
reconstruction. For considering the special characteristics of
the sinogram data, a Chi-square is used as a marginal prior
for noise-free sinogram gradient in the diffusivity function.

The qualitative evaluation results results show that,
among other diffusivity functions, the probabilistic adap-
tive function seems more effective in smoothing all the
homogenous regions that contain high level of noise. Further,
AMPCM retain in an accurate way the location of the edges
that defines the shape of the represented structures in the
sinogram. It preserves the boundaries of the curvy shape
features and wisely smooths the regions of interest as well as
the other regions. The application of the proposed diffusion
scheme results in well-smoothed images and preserves the
edges. It gains the advantages of the curvature motion
diffusion and the shock filter. Further, it deals better with the

problem of poor and discontinuous edges which are common
in PET sinograms.

Applied as a preprocessing step before PET reconstruc-
tion, we demonstrated via qualitative measures (the contrast
curve, the variance, and the mean images) that the adaptive
probabilistic diffusion function has a great capability and
stability to detect and enhance the important features in the
reconstructed PET image, whichmake it a reliable and practi-
cal approach as it has no free parameters to be optimized. All
parameters are image based and are automatically estimated
and proved to give the best results.
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