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During the last two decades, ContinuousNetworkDesign Problem (CNDP) has receivedmuchmore attention because of increasing
trend of traffic congestion in road networks. In the CNDP, the problem is to find optimal link capacity expansions by minimizing
the sum of total travel time and investment cost of capacity expansions in a road network. Considering both increasing traffic
congestion and limited budgets of local authorities, the CNDP deserves to receive more attention in order to use available budget
economically and to mitigate traffic congestion. The CNDP can generally be formulated as bilevel programming model in which
the upper level deals with finding optimal link capacity expansions, whereas at the lower level, User Equilibrium (UE) link flows
are determined byWardrop’s first principle. In this paper, cuckoo search (CS) algorithm with Lévy flights is introduced for finding
optimal link capacity expansions because of its recent successful applications in solving such complex problems. CS is applied to
the 16-link and Sioux Falls networks and compared with available methods in the literature. Results show the potential of CS for
finding optimal or near optimal link capacity expansions in a given road network.

1. Introduction

The Continuous Network Design Problem (CNDP) deals
with finding optimal capacity expansions for a set of selected
links and the corresponding equilibrium link flows in a given
road network. This well-known transportation problem has
been studied for many years to improve the performance
of transportation road networks and thus mitigate traffic
congestion. Since the multiple objectives exist in the CNDP,
it is considerably typical to formulate it as a bilevel model,
which is difficult to solve. Due to the nonconvexity of
the bilevel solution of the CNDP, it can be recognized as
one of the most challenging problems in transportation
field. The difficulty of the bilevel modeling arises from the
evaluation of the upper level objective function that involves
solving the lower level problem for each set of upper level
decision variables. In the CNDP, upper level problem can
be formulated by minimizing the sum of total travel time
and total investment cost of link capacity expansions in a
given road network, whilst the lower level can be solved as
User Equilibrium (UE) traffic assignment model considering
Wardrop’s first principle [1]. In the CNDP, optimal capacity

expansion plan at the upper level cannot be found without
considering the reactions of the road users to that plan at
the lower level. Although the upper and lower level problems
consist of convex problems, the bilevel solution of the CNDP
may be nonconvex due to both traffic assignment constraints
and nonlinear travel time function. This nonconvexity may
cause serious problems for deterministic algorithms [2].

Thefirst continuous network design formulationwas pro-
posed by Abdulaal and LeBlanc [3].They have formulated the
network design problem with continuous variables subject to
equilibrium assignment as a nonlinear optimization problem.
Hooke-Jeeves (HJ) and Powell’s methods were used in order
to test the proposed model on a medium-sized network. In
their study, the effect of type of investment function was also
investigated. It has been found that the performance of two
methods is approximately same for convex investment cost
function, whilst the HJ is better than the Powell’s method
in the case of using concave investment function. After this
first study, several variations of the CNDP have been studied
and various solutionmethods have been proposed for solving
this problem. Suwansirikul et al. [4] proposed Equilibrium
Decomposition Optimization (EDO) method for finding an
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approximate solution to the CNDP and tested this heuristic
on several networks. Their results showed that the pro-
posed heuristic is more efficient than the HJ algorithm. The
efficiency of the method stems from decomposition of the
original problem into a set of suboptimization problems.
The other advantage of the EDO algorithm was reported
that the computational cost of the proposed model does not
depend on the number of links which are considered for
capacity expansion. Marcotte [5] and Marcotte and Marquis
[6] presented efficient implementations of heuristic methods
in small-sized networks for solving the CNDP where road
users follow Wardrop’s first principle. In addition, a number
of sensitivity-based heuristic algorithms were developed for
the CNDP [7–10]. Furthermore, Friesz et al. [11] used Sim-
ulated Annealing (SA) approach to solve the CNDP for two
different roadnetworks and found that the proposed heuristic
is more efficient than Iterative Optimization Assignment
(IOA), HJ, and EDO algorithms. Afterwards, Friesz et al.
[12] presented amodel for continuousmultiobjective optimal
design of a transportation road network. Results showed that
SA is ideally suited for solving multiobjective versions of the
equilibrium network design problem. Unlike using classical
lower level solution as in most studies, Stochastic User
Equilibrium (SUE) assignment procedure was embedded to
the CNDP in Davis [13]. The generalized reduced gradient
and sequential quadratic programmingmethodswere used to
solve the CNDP. The proposed solution methods were tested
on several example networks, and it has been found that the
differentiable and tractable version of the CNDP could be
created. In order to avoid the disadvantages for the use of
bilevel formulation, Meng et al. [14] formulated the CNDP
as a single level continuously differentiable optimization
problem and applied the augmented Lagrangian method
to solve this problem. Their results showed that the pro-
posed method has the potential for application to large-scale
problems. Chiou [15] used a bilevel programming model to
solve the CNDP. Four variants of gradient-basedmethods are
presented, and numerical comparisons are made with several
test networks. Results showed that the proposed methods
are more effective than the other compared algorithms when
especially congested road networks are considered.

Similarly, Ban et al. [16] proposed a relaxation method to
solve the CNDP when the lower level is a nonlinear com-
plementary problem. They converted original bilevel model
into a single level formulation by means of adding some con-
straints to the lower level problem, and a relaxation scheme
was proposed to solve it. The proposed solution algorithm
was tested on different test networks, and promising results
were obtained. Karoonsoontawong andWaller [17] presented
SA, Genetic Algorithm (GA), and random search techniques
to solve the CNDP.Their study showed that GA is performed
better than the others on the test networks in terms of
solution quality and convergence. Moreover, they empha-
sized that the algorithm parameters should be calibrated to
achieve best results for different road networks. Gao et al. [18]
converted the bilevel solution of the CNDP into a single level
convex model and proposed a globally convergent algorithm
to solve this problem. They presented a numerical example
to show the effectiveness of the proposed method against the

other existing heuristic algorithms. Xu et al. [19] proposed
SA and GA methods to achieve the optimal solutions of the
CNDP. They tested the proposed methods on small-sized
network for three demand scenarios and found that when
demand is large, SA is more efficient than GA in solving the
CNDP. In addition,muchmore computational time is needed
for GA in comparison with SA in order to achieve same
optimal solution. Unlike the study proposed by Xu et al. [19],
Mathew and Sharma [20] reported that GA model is more
efficient than other compared algorithms available in the
literature for solving the CNDP. They applied the proposed
model to three different road networks, one of which is
considered as a real city network, and found that the GA is
capable of finding high quality solution especially for large
scale road network. Wang and Lo [21] formulated the CNDP
as a single level optimization problem subject to equilibrium
constraints. In order to overcome the nonconvexity of the
CNDP, they transformed the equilibrium constraints into a
set ofmixed-integer constraints and linearized the travel time
function. Their results showed that the proposed method
is capable to find globally optimal solution of the CNDP.
Li et al. [22] presented an applicable global optimization
method for solving the CNDP and converted the CNDP into
a sequence of single level concave programs. Their method
has the potential to find global optimum of large network
design problems. Baskan and Dell’Orco [23] applied artificial
bee colony optimization algorithm to solve the CNDP. The
proposed method is compared with SA and GA algorithms
for small-sized road network and obtained good results
in comparison with other methods in terms of objective
function value and number of UE assignments. In addition,
Baskan [2] and Baskan andCeylan [24] attempted to solve the
bilevel formulation of the CNDP using Harmony Search and
Differential Evolution algorithms, respectively.

From the viewpoint of reserve capacity, Yang and Wang
[25] compared the level of equivalence and effectiveness of
two different objective functions for the CNDP, which are
minimizing the total system cost under a budget constraint
and maximization of network reserve capacity. Numeri-
cal results showed that a combined objective function by
applying different weightings on two objectives can also be
more effective. Following the study made by [25], Ziyou
and Yifan [26] combined the concept of reserve capacity
with the CNDP. A bilevel programming model and heuristic
solution algorithm based on sensitivity analysis are proposed
to solve the reserve capacity problem of optimal signal
control with user equilibrium route choice. They concluded
that it is crucial importance to combine the concept of
reserve capacity with the CNDP in order to provide more
realistic information for transportation planners. Similarly,
Chiou [27] proposed a projected Quasi-Newton method for
simultaneously solving the problem of finding the maximum
possible increase in travel demand and determining optimal
link capacity expansions. Numerical applications are made
on signal-controlled networks where obtained results outper-
form than traditional methods.

The reviewed literature shows that heuristic methods
play an important role for solving the various types of the
CNDP. Therefore, the performance of recently developed
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heuristic algorithms needs to be investigated in order to
obtain probably better solutions to the CNDP. On the other
hand, although some exact algorithms for the CNDP are
available in the literature, they may not be suitable especially
for large scale networks. Therefore, this paper deals with
finding optimal link capacity expansions in a given road
network using cuckoo search (CS) algorithm with Lévy
flights. For this purpose, a bilevel model has been proposed
in which the lower level problem is formulated as UE traffic
assignment mode,l and Frank-Wolfe (FW) method is used to
solve this problem.

The remainder of this paper is organized as follows. In
Section 2, problem formulation for the CNDP is given. In the
next section, the CS algorithm and its solution procedure on
the CNDP are presented. In Section 4, numerical studies are
conducted on two different test networks. Finally, concluding
remarks and future study directions are given in Section 5.

2. Problem Formulation

The following notation is used for the problem formulation:

𝐴 : the set of links, ∀𝑎 ∈ 𝐴,
𝐶
𝑟𝑠
: the set of paths between O-D pair 𝑟𝑠 ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,

𝑅: the set of origins,
𝑆: the set of destinations,
𝐷: the vector of O-D pair demands, 𝐷 = [𝐷

𝑟𝑠
] ∀𝑟 ∈

𝑅, 𝑠 ∈ 𝑆,
𝑓: the vector of path flows, 𝑓 = [𝑓

𝑟𝑠

𝑐
], ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑐 ∈

𝐶
𝑟𝑠
,

𝑔: the vector of investment costs, 𝑔 = [𝑔
𝑎
(𝑦
𝑎
)] ∀𝑎 ∈ 𝐴,

𝐿: the step length,
𝑡: the vector of link travel times, 𝑡 = [𝑡

𝑎
(𝑥
𝑎
, 𝑦
𝑎
)] ∀𝑎 ∈ 𝐴

ℎ: the vector of upper bound for link capacity expan-
sions, ℎ = [ℎ

𝑎
], ∀𝑎 ∈ 𝐴,

𝑥: the vector of equilibrium link flows,𝑥 = [𝑥
𝑎
], ∀𝑎 ∈ 𝐴,

𝑦: the vector of link capacity expansions, 𝑦 = [𝑦
𝑎
], ∀𝑎 ∈

𝐴,
P: the probability matrix,
K: the matrix of local step size,
𝑑
𝑎
: the cost coefficient, ∀𝑎 ∈ 𝐴,
𝑛: the number of nests,
𝑝: the discovering parameter,
𝑍: upper level objective function,
𝑧: lower level objective function,
𝜃
𝑎
: the link capacity, ∀𝑎 ∈ 𝐴,

𝜌: the conversion factor from investment cost to travel
times,

𝛿
𝑟𝑠

𝑎,𝑐
: the link/path incidence matrix variables, ∀𝑟 ∈ 𝑅, 𝑠 ∈

𝑆, 𝑐 ∈ 𝐶
𝑟𝑠
, 𝑎 ∈ 𝐴. 𝛿𝑟𝑠

𝑎,𝑐
= 1 if route 𝑐 between O-D pair

𝑟𝑠 uses link 𝑎, and 𝛿𝑟𝑠
𝑎,𝑐

= 0 otherwise,
𝜆
𝑎
, 𝜑
𝑎
: the parameters of link cost function, ∀𝑎 ∈ 𝐴,

𝑢, V: the parameters of the step length 𝐿,
𝛽: the scale parameter,
Γ: the gamma function,
𝛼: the step size.

2.1. Upper Level Formulation. In the CNDP, the upper level
deals with finding optimal capacity expansion plan for a set
of selected links in a given road network by minimizing
the total system cost and construction cost, while the lower
level determines UE link flows considering given capacity
expansion plan in the upper level. Therefore, the CNDP is
recognized within the framework of a leader-follower, where
the transportation planner is the leader and the user is the
follower [28]. It is assumed that the leader as transportation
planning manager can influence the users’ route choice
behavior but cannot be able to control it.The usersmake their
route choice decision by minimizing their own travel costs
under given service level of transportation road networks
[18]. This interaction can be formulated as follows:

min
𝑦

𝑍 (𝑥, 𝑦) = ∑

𝑎∈𝐴

(𝑡
𝑎
(𝑥
𝑎
, 𝑦
𝑎
) 𝑥
𝑎
+ 𝜌𝑔
𝑎
(𝑦
𝑎
))

s.t. 0 ≤ 𝑦
𝑎
≤ ℎ
𝑎
, ∀𝑎 ∈ 𝐴

𝑥 = 𝑥 (𝑦) ,

(1)

where 𝑥(𝑦) is UE link flow under given capacity expansion
plan and obtained by solving the lower level problem. The
constraint of (1) ensures that the investment cost of link
𝑎 ∀𝑎 ∈ 𝐴 will not exceed the related budget. It is also the
nonnegativity constraint of the upper level decision variables.

2.2. Lower Level Formulation. In the CNDP models, the
user’s route choice behavior is generally characterized by the
UE assignment that is to find the equilibrium link flows. In
this paper, Wardrop’s first principle is followed, which states
that the travel times of all used paths between the same
Origin-Destination (O-D) pair are equal and less than any
unused paths [21]. It is well-known that the increase in capac-
ity of any link in a given road network without considering
the response of network users may actually increase traffic
congestion rather than reducing it. Due towell-knownBraess’
paradox, prediction of traffic flows is crucial importance to
the CNDP.TheUE assignment problem can be formulated as
follows:

min
𝑥

𝑧 = ∑

𝑎∈𝐴

∫

𝑥
𝑎

0

𝑡
𝑎
(𝑤, 𝑦
𝑎
) 𝑑𝑤

s.t. ∑

𝑐∈𝐶

𝑓
𝑟𝑠

𝑐
= 𝐷
𝑟𝑠
, ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶

𝑟𝑠

𝑥
𝑎
= ∑

𝑟𝑠

∑

𝑐∈𝐶
𝑟𝑠

𝑓
𝑟𝑠

𝑐
𝛿
𝑟𝑠

𝑎,𝑐
, ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶

𝑟𝑠

𝑓
𝑟𝑠

𝑐
≥ 0, ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶

𝑟𝑠
,

(2)
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where the constraints of (2) are definitional, conservation of
the flow constraints, and nonnegativity, respectively. Since
UE traffic assignment is a convex optimization problem,
it can be numerically solved by various methods. For this
purpose, the most widely used solution method is the
Frank-Wolfe (FW) algorithm [29]. It has been developed for
solving quadratic optimization problems and is also highly
convenient for determining equilibrium link flows in road
networks [30].

3. Cuckoo Search Algorithm

3.1. Cuckoo Breeding Behavior. The CS is an optimization
algorithm proposed by Yang and Deb [31, 32] and recently
improved for multiobjective optimization [33]. Before the
description of the CS algorithm, it may be helpful to briefly
review the fascinating breed behavior of some cuckoo species.
TheCS is inspired by some cuckoo species by laying their eggs
in the nests of host birds of other species. In this case, if a host
bird realizes that the eggs are not their own, these alien eggs
are either taken away or the nest is abandoned by host bird,
and a new nest is built elsewhere. Some cuckoo species such
as parasitic cuckoos have evolved in such a way that female
cuckoos are very specialized in the mimicry in colours and
pattern of the eggs of a few chosen host species.This behavior
reduces the probability of their eggs being abandoned and
thus increases their hatching probability [34]. Additionally, a
cuckoo chick can imitate the call of host chicks to gain access
to more feeding opportunities [35]. Furthermore, the timing
of egg laying of some cuckoo species is also amazing. Parasitic
cuckoos often choose a nest where the host bird has just laid
its own eggs. In general, the cuckoo eggs hatch slightly earlier
than the host eggs. Once the first cuckoo chick is hatched,
the first instinctive action by cuckoo chicks is to evict the
host eggs by blindly propelling the eggs out of the nest, which
increases the cuckoo chick’s share of food provided by the
host bird [34]. As summarized previously, the CS algorithm
idealizes cuckoo’s breeding behavior and thus can be applied
to various optimization problems.

3.2. Lévy Flights. As it is well-known, random searching is
crucial importance in meta-heuristic algorithms. The Lévy
flight is a random process which consists of taking a series
of consecutive random steps [36]. From the mathematical
point of view, two consecutive steps need to be performed
to generate random numbers with Lévy flights: (i) the
generation of steps and (ii) the choice of a random direction.
To do this, one of the most efficient methods is to use the so-
called Mantegna algorithm where the step length 𝐿 can be
determined as follows:

𝐿 =
𝑢

|V|1/𝛽
, (3)

where 𝛽 is the scale parameter and its recommended range
is [1, 2]. The 𝛽 value is set to 1.5 in this study. 𝑢 and V are
obtained from normal distribution as

𝑢 ∼ 𝑁(0, 𝜎
2

𝑢
) , V ∼ 𝑁(0, 𝜎

2

V) , (4)

where 𝜎
𝑢
and 𝜎V are calculated using the following:

𝜎
𝑢
= {

Γ (1 + 𝛽) sin(𝜋𝛽/2)
Γ [(1 + 𝛽)/2] 𝛽2(𝛽−1)/2

}

1/𝛽

, 𝜎V = 1, (5)

where Γ denotes gamma function.

3.3. Cuckoo Search. The CS algorithm is inspired by some
species of cuckoos because of their special lifestyle and
fascinating breeding behavior [37]. These species tend to lay
their eggs in the nests which belong to other host birds.
Regarding this parasite behavior of some species of cuckoos,
some of host birds either throw out these alien eggs or
abandon their nests and build new nests elsewhere.

The following three rules are utilized in the CS algorithm:
(i) selection of the best by keeping the best nests or solutions
(ii) replacement of host eggs with respect to the quality of the
new solutions or cuckoo eggs produced based randomization
with Lévy flights and (iii) discovering of some cuckoo eggs
by the host birds and replacing according to the quality of the
local random walks [38].The algorithm steps of CS are based
on these rules and given in Algorithm 1.

One of the most important steps in the algorithm is
the use of Lévy flights for random searching. The Lévy
flight is a type of random walk and described by a series
of instantaneous jumps chosen from a probability density
function which has a power law tail [39, 40]. The step size
𝛼, which controlled random search process in Lévy flight,
is generally selected between [0, 1] interval. Setting 𝛼 =

0.1 may produce efficient results especially for small-sized
optimization problems [40]. The other important parameter
in the CS algorithm is 𝑝 which is used by discovering
of cuckoo eggs by the host birds. Besides Yang and Deb
[32] emphasized that the convergence rate of the algorithm
was not strongly affected by the 𝑝 value; they suggested
setting 𝑝 = 0.25. The flowchart of the CS algorithm for the
CNDP is given in Figure 1 and corresponding solution steps
can be summarized as given in Figure 1.

Initialize the CS Parameters. The CS parameters, which are
number of nests (𝑛), step size (𝛼), discovering probability (𝑝),
and maximum number of generations (MNG), are set to 10,
0.1, 0.25, and 1000, respectively. These values are selected in
accordance with the recommendation by Yang and Deb [32].

Generation of Initial Population. At generation 𝑡, the nests,
nest𝑡 = [nest𝑡

𝑖
], where 𝑖 ∈ {1, 2, . . . , 𝑛}, are filled with

randomly generated capacity expansions for a set of selected
links in a given road network by considering upper and lower
bounds, and UE link flows are determined for each nest (i.e.,
set of link capacity expansions) by using (2). After that, their
corresponding objective function values are calculated using
(1).

Generate New Nests by Lévy Flights. The vector of new nest
is generated from randomly selected ith nest by Lévy flights
using the following:

new nest𝑡
𝑖
= nest𝑡

𝑖
+ 𝛼𝐿 (nest𝑡

𝑖
− nest𝑡best) , (6)
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Generate initial population of n nests 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑛

for i = 1 : n
Calculate fitness value 𝐹

𝑖
= 𝑓(𝑦

𝑖
)

end for
while (stopping criterion is not satisfied)

Generate a cuckoo egg (𝑦
𝑗
) by Lévy flights from random nest

Calculatefitness value 𝐹
𝑗
= 𝑓(𝑦

𝑗
)

Choose a random nest i
if 𝐹
𝑗
> 𝐹
𝑖
then

𝑦
𝑖
← 𝑦
𝑗

𝐹
𝑖
← 𝐹
𝑗

end if
Abandon a fraction 𝑝

𝑎
of the worst nests

Build new nests by Lévy flights
Evaluate fitness of new nests and keep best nest

end while

Algorithm 1: Cuckoo search algorithm.

link capacity expansions

Solve the lower level problem and obtain the UE link
flows (x)

Calculate fitness value for each nest using (1)

Step 1: initialize required parameters 
Solve the lower level problem for the new nest and 

obtain the UE link flows (x)

Calculate fitness value for the new nest using (1)

Compare fitness values and keep the best nest 

Step 4: discovery of alien eggs
Determine new nests through probability and local 

step size matrices using (8)

Solve the lower level problem for new nests and 
calculate fitness values using (1)

New nest for randomly selected ith nest is generated 

Compare fitness values for each nest and the best nest 
enters to the next generation 

Step 5: termination

Output
Optimal link capacity 

expansions

Y

by L ́evy flights using (6)

Step 3: generate new nests by L ́evy flights

t = t + 1

N

Step 2: generation of the initial population, t = 1

∙ Upper bound for capacity expansion (ha)
∙ Investment function and cost coefficient (da)

∙ O-D demand matrix and network parameters

t = MGN?

∙ Parameters of link travel cost function (𝜆a, 𝜑a)

Generate nestt = [nestti ] with randomly distributed

∙ CS parameters (n, 𝛼, p)

Figure 1: Flowchart of the CS for the CNDP.

where new nest𝑡
𝑖
is the new nest generated by Lévy flights;

nest𝑡
𝑖
is randomly selected nest from population; nest𝑡best is

the best nest obtained so far; 𝛼 is step size; and 𝐿 is the Lévy
flights vector or step length as in Mantegna’s algorithm. After
determining the new nest, the objective function values of
two nests are calculated using (1), and the best nest is kept.

Discovery of Alien Eggs.The alien eggs discovery is performed
for all of the eggs using the probabilitymatrix.The probability
matrix is produced as

𝑝
𝑖𝑗
= {

1, if rand(0, 1) < 𝑝

0, otherwise,
(7)
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where 𝑝
𝑖𝑗
is discovering probability for the jth variable of the

ith nest. The value of 𝑝 is compared with the output of a
uniform random number generator, rand(0, 1), to determine
whether local random walk is considered or not. After deter-
mining discovering probabilities, new nests are produced
using the following:

new nest𝑡 = nest𝑡 + K ∗ P, (8)

where P is the probability matrix and K is the matrix of local
step size, which is produced by using the following:

K = rand ( ) ∗ (nests [permute 1 [𝑖]] [𝑗]

− nests [permute 2 [𝑖]] [𝑗]) ,
(9)

where rand( ) is random number generator in [0, 1] interval
and permute 1 and permute 2 are different rows permutation
functions applied to the nests matrix [41]. Finally, the existing
and new objective function values are compared for each nest
and the best nest enters to the next generation according to
the simple rule as given in the following:

nest𝑡+1
𝑖

= {
nest𝑡
𝑖
, if 𝐹 (nest𝑡

𝑖
) < 𝐹 (new nest𝑡

𝑖
)

new nest𝑡
𝑖
, otherwise.

(10)

Termination.The generation of new nests and the discovering
of the alien eggs steps are repeated until a predetermined
stopping criterion is satisfied or maximum number of gen-
erations is reached.

4. Numerical Studies

4.1. 16-Link Network. In order to test the performance of the
CS algorithm in solving the CNDP, it is first applied to the 16-
link network which is most widely used test network bymany
researchers. This network consists of 16 links and 6 nodes as
shown in Figure 2. For this network, two demand scenarios
are considered as given in Table 1. Results obtained by the CS
algorithm for different demand cases are compared with the
results produced by other methods available in the literature.
The compared methods for all numerical applications are
given in Table 2. The link travel time function is defined as
given in (11). Link parameters and demand data are adopted
from Suwansirikul et al. [4]. Consider the following:

𝑡
𝑎
(𝑥
𝑎
, 𝑦
𝑎
) = 𝜆
𝑎
+ 𝜑
𝑎
(

𝑥
𝑎

𝜃
𝑎
+ 𝑦
𝑎

)

4

. (11)

The upper level objective function for the 16-link network is
defined as

min
𝑦

𝑍 (𝑥, 𝑦) = ∑

𝑎∈𝐴

(𝑡
𝑎
(𝑥
𝑎
, 𝑦
𝑎
) 𝑥
𝑎
+ 𝑑
𝑎
𝑦
𝑎
)

s.t. 0 ≤ 𝑦
𝑎
≤ ℎ
𝑎
, ∀𝑎 ∈ 𝐴,

(12)

where 𝑑
𝑎
is the cost coefficient.The upper bound (ℎ

𝑎
) was set

to 10 and 20 for scenarios 1-2 for fair comparison with other

Table 1: Travel demand scenarios for the 16-link network.

Scenario D16 D61 Total demand
1 5 10 15
2 10 20 30

1

2 4

53

6

1

12
14

16

1310
15

11
9

5

3

47

8

6
2

Figure 2: 16-link network.

algorithms. Results obtained by all algorithms for scenario 1
are presented in Tables 3 and 4.

Since the CS algorithm is a stochastic search method,
the results obtained from this algorithm are selected as the
best output of trials made by different random numbers. As
can be seen from Table 4, the CS algorithm achieved to the
value of 199.32 as its best output. Among all the compared
algorithms, the SAproduces the best solution but needsmuch
more computational efforts than other algorithms in solving
traffic assignment problem. It is clear that the CS produces
better results with less computational efforts in comparison
with other methods except SA, CG, and QNEW for scenario
1. However, they need much computational efforts than
the CS algorithm in solving traffic assignment problem.
Additionally, results show that the objective function values
produced by all compared algorithms are very close to
each other, but optimal capacity expansion vectors are not
similarly consistent.This result shows us again that theCNDP
has multiple optimal solutions.

In order to evaluate the sensitivity of the CS algorithm
under different demand levels, scenario 2 is considered, and
results are given in Tables 5 and 6. It can be clearly seen that
the CS algorithm is able to produce the best solution among
14 algorithms, as well as with significant less computational
efforts. In order to validate the obtained results for scenarios
1 and 2, the equilibrium link flows and travel times are given
in Table 7.

4.2. Sioux Falls Network. In order to show the ability of theCS
algorithm on realistic test network, the city of Sioux Falls is
used which is probably the most used network for the CNDP.
It consists of 24 nodes and 76 links. The link parameters of
the network and travel demands between 552 O-D pairs are
adopted from Suwansirikul et al. [4]. The link travel time
function is used as given in (11).The dashed links 16, 17, 19, 20,
25, 26, 29, 39, 48, and 74 of Sioux Falls network are candidates
for capacity expansion as shown in Figure 3. The upper level
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Table 2: The compared algorithms on all test networks.

Methods Sources
Hooke-Jeeves algorithm (HJ) Abdulaal and LeBlanc [3]
Equilibrium Decomposed Optimization (EDO) Suwansirikul et al. [4]
Modular In-core Nonlinear Optimization System (MINOS) Suwansirikul et al. [4]
Genetic Algorithm (GA) Mathew and Sharma [20]
Iterative Optimization Assignment algorithm (IOA) Allsop [42]
Simulated Annealing algorithm (SA) Friesz et al. [11]
Sensitivity Analysis Based algorithm (SAB) Yang and Yagar [43]
Augmented Lagrangian algorithm (AL) Meng et al. [14]
Path based Mixed Integer Linear Program (MILP) Wang and Lo [21]
Link based Mixed Integer Linear Program (LMILP) Luathep et al. [44]
Penalty with MultiCutting plane method (PMC) Li et al. [22]
Gradient projection method (GP) Chiou [15]
Conjugate gradient projection method (CG) Chiou [15]
Quasi-Newton projection method (QNEW) Chiou [15]
PARATAN version of gradient projection method (PT) Chiou [15]
Cuckoo search (CS) algorithm with Lévy flights This paper

Table 3: Comparison of results from solving the 16-link network for
scenario 1.

MINOS HJ EDO IOA SA AL
𝑦
1

0 0 0 0 0 0
𝑦
2

0 0 0 0 0 0
𝑦
3

0 1.2 0.13 0 0 0.0062
𝑦
4

0 0 0 0 0 0
𝑦
5

0 0 0 0 0 0
𝑦
6

6.58 3.00 6.26 6.95 3.1639 5.2631
𝑦
7

0 0 0 0 0 0.0032
𝑦
8

0 0 0 0 0 0
𝑦
9

0 0 0 0 0 0
𝑦
10

0 0 0 0 0 0
𝑦
11

0 0 0 0 0 0.0064
𝑦
12

0 0 0 0 0 0
𝑦
13

0 0 0 0 0 0
𝑦
14

0 0 0 0 0 0
𝑦
15

7.01 3.00 0.13 5.66 0 0.71701
𝑦
16

0.22 2.80 6.26 1.79 6.7240 6.7561
...

...
...

...
...

...
...

Z 211.25 215.08 201.84 210.86 198.10378 202.9913
...

...
...

...
...

...
...

# — 54 10 9 18300 2700
Note: Z describes the objective function value, and # denotes the number of
Frank-Wolfe iterations performed.

objective function for the Sioux Falls network is formulated
as in the following:

min
𝑦

𝑍 (𝑥, 𝑦) = ∑

𝑎∈𝐴

(𝑡
𝑎
(𝑥
𝑎
, 𝑦
𝑎
) 𝑥
𝑎
+ 0.001𝑑

𝑎
𝑦
2

𝑎
)

s.t 0 ≤ 𝑦
𝑎
≤ ℎ
𝑎
, ∀𝑎 ∈ 𝐴.

(13)

Table 4: Comparison of results from solving the 16-link network for
scenario 1 (continued).

SAB GP CG QNEW MILP CS
𝑦
1

0 0 0 0 0 0
𝑦
2

0 0 0 0 0 0
𝑦
3

0 0 0 0 0 0
𝑦
4

0 0 0 0 0 0
𝑦
5

0 0 0 0 0 0
𝑦
6

5.8352 5.8302 6.1989 6.0021 4.41 5.1894
𝑦
7

0 0 0 0 0 0
𝑦
8

0 0 0 0 0 0
𝑦
9

0 0 0 0 0 0
𝑦
10

0 0 0 0 0 0
𝑦
11

0 0 0 0 0 0
𝑦
12

0 0 0 0 0 0
𝑦
13

0 0 0 0 0 0
𝑦
14

0 0 0 0 0 0
𝑦
15

0.9739 0.87 0.0849 0.1846 0 0
𝑦
16

6.1762 6.1090 7.5888 7.5438 7.70 7.6076
...

...
...

...
...

...
...

Z 204.7 202.24 199.27 198.68 199.781 199.32
...

...
...

...
...

...
...

# 6 14 7 12 — 3
Note: Z describes the objective function value, and # denotes the number of
Frank-Wolfe iterations performed.

The results obtained by the CS algorithm on the Sioux Falls
network are compared with those generated by other existing
methods, and they are given in Tables 8 and 9. From these
tables, it can be observed that the CS algorithm is able
to produce the best solution among the compared major
algorithms except SA.Although the SA slightly outperformed
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Table 5: Comparison of results from solving the 16-link network for
scenario 2.

MINOS HJ EDO IOA SA AL SAB
𝑦
1

0 0 0 0 0 0 0.0189
𝑦
2

4.61 5.40 4.88 4.55 0 4.6153 2.2246
𝑦
3

9.86 8.18 8.59 10.65 10.1740 9.8804 9.3394
𝑦
4

0 0 0 0 0 0 0
𝑦
5

0 0 0 0 0 0 0
𝑦
6

7.71 8.10 7.48 6.43 5.7769 7.5995 9.0466
𝑦
7

0 0 0.26 0 0 0.0016 0
𝑦
8

0.59 0.90 0.85 0.59 0 0.6001 0.0175
𝑦
9

0 0 0 0 0 0.001 0
𝑦
10

0 0 0 0 0 0 0
𝑦
11

0 0 0 0 0 0 0
𝑦
12

0 0 0 0 0 0.1130 0.0816
𝑦
13

0 0 0 0 0 0 0
𝑦
14

1.32 3.90 1.54 1.32 0 1.3184 0.0198
𝑦
15

19.14 8.10 0.26 19.36 0 2.7265 2.1429
𝑦
16

0.85 8.40 12.52 0.78 17.2786 17.5774 18.9835
...

...
...

...
...

...
...

...
Z 557.14 557.22 540.74 556.61 528.497 532.71 536.084
...

...
...

...
...

...
...

...
# — 134 12 13 24300 4000 45
Note: Z describes the objective function value, and # denotes the number of
Frank-Wolfe iterations performed.

than CS, the objective function values obtained by both
algorithms are quite close. In addition, the CS algorithm
produced good results with much less computational efforts
in solving the traffic assignment problem in comparison with
SA. It should be noted that AL, HJ, and GA algorithms have
the potential to produce good results for solving the CNDP,
but they require much more computational efforts in solving
traffic assignment problem than CS.

As presented in the previous numerical application, the
equilibrium link flows and travel times produced by the CS
on the Sioux Falls network are given in Tables 10 and 11 in
order to give an opportunity to the readers for validating the
obtained result by the CS algorithm.

5. Conclusions

In this paper, the CS algorithm with Lévy flights has been
introduced to solve the CNDP, which is formulated as a
bilevel programming model. In the upper level, the objective
function is defined as the sum of total travel time and
investment cost of link capacity expansions. The lower level
is formulated as UE static traffic assignment problem, and
Frank-Wolfe method is used to solve it.

The proposedmodel is first tested on the 16-link network,
which is widely used network for solving the CNDP. Two
scenarios are considered in order to evaluate the sensitivity
of the CS algorithm to different demand levels. Results

Table 6: Comparison of results from solving the 16-link network for
scenario 2 (continued).

GP CG QNEW MILP LMILP PMC CS
𝑦
1

0.1013 0.1022 0.0916 0 0 0 0
𝑦
2

2.1818 2.1796 2.1521 4.41 2.722 4.6905 4.6144
𝑦
3

9.3423 9.3425 9.1408 10.00 9.246 9.9778 9.9419
𝑦
4

0 0 0 0 0 0 0
𝑦
5

0 0 0 0 0 0 0
𝑦
6

9.0443 9.0441 8.8503 7.42 8.538 7.5554 7.3821
𝑦
7

0 0 0 0 0 0 0
𝑦
8

0.008 0.0074 0.0114 0.54 0 0.6333 0.5922
𝑦
9

0 0 0 0 0 0 0
𝑦
10

0 0 0 0 0 0 0
𝑦
11

0 0 0 0 0 0 0
𝑦
12

0.0375 0.0358 0.0377 0 0 0 0
𝑦
13

0 0 0 0 0 0 0
𝑦
14

0.0089 0.0083 0.0129 1.18 0 1.7664 1.3152
𝑦
15

1.9433 1.9483 1.9706 0 0 0 0
𝑦
16
18.9859 18.986 18.575 19.50 20.000 19.6737 20

...
...

...
...

...
...

...
...

Z 534.017 534.109 534.08 523.627 526.488 522.748 522.396
...

...
...

...
...

...
...

...
# 31 16 11 — — — 4
Note: Z describes the objective function value, and # denotes the number of
Frank-Wolfe iterations performed.

Table 7: The equilibrium link flows and travel times from solving
16-link network.

Scenario 1 Scenario 2
𝑡
1

1 𝑥
1

0 𝑡
1

1 𝑥
1

0
𝑡
2

2.3125 𝑥
2

5 𝑡
2

3.0961 𝑥
2

10
𝑡
3

3.5915 𝑥
3

6.0287 𝑡
3

4.291 𝑥
3

15.3514
𝑡
4

4 𝑥
4

0 𝑡
4

4 𝑥
4

0
𝑡
5

5 𝑥
5

0 𝑡
5

5 𝑥
5

0
𝑡
6

3.9215 𝑥
6

3.9713 𝑡
6

3.2153 𝑥
6

4.6486
𝑡
7

1 𝑥
7

0 𝑡
7

1 𝑥
7

0
𝑡
8

1.0625 𝑥
8

5 𝑡
8

1.7944 𝑥
8

10
𝑡
9

2.0025 𝑥
9

6.0287 𝑡
9

2.1081 𝑥
9

15.3514
𝑡
10

3 𝑥
10

0 𝑡
10

3 𝑥
10

0
𝑡
11

9 𝑥
11

0 𝑡
11

9 𝑥
11

0
𝑡
12

5.9805 𝑥
12

3.9713 𝑡
12

7.633 𝑥
12

4.6486
𝑡
13

4.0043 𝑥
13

5.0101 𝑡
13

4.2827 𝑥
13

14.3194
𝑡
14

2.1289 𝑥
14

5 𝑡
14

3.5986 𝑥
14

10
𝑡
15

9.0335 𝑥
15

1.0186 𝑡
15

9.8617 𝑥
15

1.032
𝑡
16

6.3125 𝑥
16

8.9814 𝑡
16

6.3622 𝑥
16

18.968

obtained by the proposed algorithm are compared with those
generated by existing major methods in the literature. From
the results, it has been found that the CS algorithm is able
to produce good results for solving the CNDP, especially
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Table 8: Comparison of results from solving the Sioux Falls
network.

Initial value of 𝑦
𝑎

HJ EDO SA AL IOA SAB
1.0 12.5 6.25 12.5 12.5 12.5

𝑦
16

3.8 4.59 5.38 5.5728 4.6875 5.7392
𝑦
17

3.6 1.52 2.26 1.6343 3.9063 5.7182
𝑦
19

3.8 5.45 5.50 5.6228 1.2695 4.9591
𝑦
20

2.4 2.33 2.01 1.6443 1.6599 4.9612
𝑦
25

2.8 1.27 2.64 3.1437 2.3331 5.5066
𝑦
26

1.4 2.33 2.47 3.2837 2.3438 5.5199
𝑦
29

3.2 0.41 4.54 7.6519 5.5651 5.8024
𝑦
39

4.0 4.59 4.45 3.8035 4.6862 5.5902
𝑦
48

4.0 2.71 4.21 7.3820 5.4688 5.8439
𝑦
74

4.0 2.71 4.67 3.6935 6.2500 5.8662
...

...
...

...
...

...
...

Z 81.77 83.47 80.87 81.75 87.34 84.21
...

...
...

...
...

...
...

# 108 12 3900 2700 31 11
Note: the upper bound for y was set to 25 for CS. Z describes the
objective function value, and # denotes the number of Frank-Wolfe iterations
performed.

Table 9: Comparison of results from solving the Sioux Falls network
(continued).

Initial value of 𝑦
𝑎

GP CG QNEW PT GA CS
12.5 12.5 6.25 12.5 — —

𝑦
16

4.8693 4.7691 4.9776 5.0237 5.17 5.0916
𝑦
17

4.8941 4.8605 5.0287 5.2158 2.94 1.3515
𝑦
19

1.8694 3.0706 1.9412 1.8298 4.72 6.4903
𝑦
20

1.5279 2.6836 2.1617 1.5747 1.76 2.2995
𝑦
25

2.7168 2.8397 2.6333 2.7947 2.39 2.9074
𝑦
26

2.7102 2.9754 2.7923 2.6639 2.91 2.0515
𝑦
29

6.2455 5.6823 5.7462 6.1879 2.92 3.6725
𝑦
39

5.0335 4.2726 5.6519 4.9624 5.99 5.2202
𝑦
48

3.7597 4.4026 4.5738 4.0674 3.63 3.4230
𝑦
74

3.5665 5.5183 4.1747 3.9199 4.43 4.8798
...

...
...

...
...

...
...

Z 82.71 82.53 83.08 82.53 81.74 81.51
...

...
...

...
...

...
...

# 9 6 5 7 77 36
Note: the upper bound for y was set to 25 for CS. Z describes the
objective function value, and # denotes the number of Frank-Wolfe iterations
performed.

under heavier demand condition. Secondly, the performance
of the CS algorithm is tested on the Sioux Falls city network.
In comparison with the results obtained by the other major
algorithms except SA, the CS algorithm achieved the best
solution. Although the SA slightly outperformed than CS, it
needs much more computational efforts in solving the traffic

Table 10: The resulting link travel times from solving Sioux Falls
network.

𝑡
1

0.0600 𝑡
20

0.0460 𝑡
39

0.0775 𝑡
58

0.0808
𝑡
2

0.0402 𝑡
21

0.1270 𝑡
40

0.1180 𝑡
59

0.1036
𝑡
3

0.0600 𝑡
22

0.1011 𝑡
41

0.1295 𝑡
60

0.0461
𝑡
4

0.0884 𝑡
23

0.0935 𝑡
42

0.0889 𝑡
61

0.1046
𝑡
5

0.0402 𝑡
24

0.1284 𝑡
43

0.1127 𝑡
62

0.0925
𝑡
6

0.0486 𝑡
25

0.0506 𝑡
44

0.1304 𝑡
63

0.0924
𝑡
7

0.0411 𝑡
26

0.0552 𝑡
45

0.0512 𝑡
64

0.0923
𝑡
8

0.0484 𝑡
27

0.1286 𝑡
46

0.0933 𝑡
65

0.0499
𝑡
9

0.0281 𝑡
28

0.1120 𝑡
47

0.1053 𝑡
66

0.1248
𝑡
10

0.0847 𝑡
29

0.1247 𝑡
48

0.1301 𝑡
67

0.0930
𝑡
11

0.0280 𝑡
30

0.1776 𝑡
49

0.1016 𝑡
68

0.0924
𝑡
12

0.1087 𝑡
31

0.0854 𝑡
50

0.0348 𝑡
69

0.0495
𝑡
13

0.0974 𝑡
32

0.1277 𝑡
51

0.1775 𝑡
70

0.1335
𝑡
14

0.0947 𝑡
33

0.1337 𝑡
52

0.1023 𝑡
71

0.0912
𝑡
15

0.1169 𝑡
34

0.1139 𝑡
53

0.0802 𝑡
72

0.1311
𝑡
16

0.0588 𝑡
35

0.0411 𝑡
54

0.0210 𝑡
73

0.0493
𝑡
17

0.0559 𝑡
36

0.1328 𝑡
55

0.0347 𝑡
74

0.0812
𝑡
18

0.0210 𝑡
37

0.0310 𝑡
56

0.0461 𝑡
75

0.1256
𝑡
19

0.0457 𝑡
38

0.0310 𝑡
57

0.0512 𝑡
76

0.0497

Table 11: The resulting equilibrium link flows from solving Sioux
Falls network.

𝑥
1

6.6117 𝑥
20

13.9081 𝑥
39

16.2801 𝑥
58

10.2387
𝑥
2

9.5834 𝑥
21

5.8748 𝑥
40

9.0660 𝑥
59

8.9514
𝑥
3

6.8855 𝑥
22

8.1800 𝑥
41

9.3401 𝑥
60

23.5386
𝑥
4

7.4205 𝑥
23

15.3377 𝑥
42

8.4098 𝑥
61

8.9850
𝑥
5

9.3097 𝑥
24

5.9425 𝑥
43

21.1721 𝑥
62

6.9501
𝑥
6

18.6187 𝑥
25

24.4434 𝑥
44

9.4240 𝑥
63

7.8222
𝑥
7

15.2883 𝑥
26

24.3975 𝑥
45

18.2917 𝑥
64

6.9563
𝑥
8

18.4954 𝑥
27

18.1153 𝑥
46

17.7595 𝑥
65

9.3722
𝑥
9

22.6678 𝑥
28

21.1013 𝑥
47

8.3726 𝑥
66

10.6043
𝑥
10

6.3151 𝑥
29

15.6432 𝑥
48

15.4477 𝑥
67

17.7493
𝑥
11

22.6053 𝑥
30

8.4342 𝑥
49

12.0336 𝑥
68

7.8211
𝑥
12

9.1783 𝑥
31

6.3642 𝑥
50

19.9374 𝑥
69

9.3819
𝑥
13

15.6613 𝑥
32

18.0856 𝑥
51

8.4327 𝑥
70

9.6804
𝑥
14

7.6942 𝑥
33

8.4341 𝑥
52

12.0139 𝑥
71

8.4095
𝑥
15

9.4394 𝑥
34

8.9825 𝑥
53

10.2598 𝑥
72

9.6788
𝑥
16

18.9802 𝑥
35

15.1379 𝑥
54

17.8759 𝑥
73

8.9006
𝑥
17

14.1828 𝑥
36

8.4800 𝑥
55

19.8542 𝑥
74

16.1756
𝑥
18

17.6012 𝑥
37

17.9425 𝑥
56

23.4572 𝑥
75

10.6008
𝑥
19

19.5151 𝑥
38

17.9481 𝑥
57

18.3465 𝑥
76

8.8986

assignment problem. It is clear that the CS algorithm gives
promising results in terms of objective function value and
required computational effort and would be considered for
large-scale road network applications in solving the CNDP.
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Figure 3: Sioux Falls network.
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