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The problem of heat transfer analysis is considered in electrically conducting thin film flows with slip boundary conditions. The
flow is assumed to be obeying the nonlinear rheological constitutive equation of a third grade fluid. We have solved the governing
nonlinear equations of present problems using the traditional Adomian decomposition method (ADM). Particular attention is
given to the combined effect of heat and MHD on the velocity field. The results include the profile of velocity, volume flux, skin
friction, average velocity, and the temperature distribution across the film.The effects of model parameters on velocity, skin friction
and temperature variation have been studied. Optimal homotopy asymptotic method (OHAM) is also used for comparison. The
numerical results and absolute errors are derived in tables.

1. Introduction

The flow and heat transfer inside thin films are ubiquitous
in civil, environmental sciences, mechanical engineering,
biological sciences, geophysics, and elsewhere. This is due
to their several applications at large scale such as wire and
fiber coating, reactor fluidization, paper production, different
food stuffs like ketchup, sauce, and honey, transpiration
cooling, gaseous diffusion, drilling mud, oil wills, heat pipes,
and fluid cells. The problem of chambers for chemical and
biological detection systems like fluid of many chemicals was
considered by Lavrik et al. [1]. Heat transfer inside thin film
flow with variable pressure was discussed by Khaled and
Vafai [2]. Thin film unsteady flow with variable viscosity was
investigated by Nadeem and Awais [3]. Munson and Young
[4] discussed the thin film flow of Newtonian fluids. Alam et
al. investigated the thin film flow of Johnson-Segalman fluids
for lifting and drainage problems [5].TheMHD thin filmflow
was discussed by Hameed and Ellahi for a non-Newtonian
fluid on a vertical moving belt [6]. Due to complexity of
non-Newtonian fluids, it becomes difficult to suggest a single
model which exhibits all properties of non-Newtonian fluids;
therefore various empirical and semiempirical models have
been imposed. The use of heat transfer together with the

MHD and non-Newtonian fluids under the influence of slip
boundary conditions is of particular interest in chemical
processing. Relevant and interestingwork about present work
may be found in [7, 8].One of the establishedmodels amongst
non-Newtonian fluids is class of third grade fluids which have
their constitutive equations based on strong theoretical foun-
dations, where the relation between the stress and strain is not
linear. To solve real world problems, different approximate
techniques have been used in mathematics, fluid mechanics,
and engineering sciences [9]. Some of the common methods
are VIM [10–14], DTM [15, 16], HPM [17–19], HAM, and
OHAM [20–24]. These methods deal with the nonlinear
problems effectively. The work under various configurations
on the thin film flows was discussed by Siddiqui et al. [25]. In
[26] they examined the thin film flows of Sisko and Oldroyd-
6 constant fluids on a moving belt. The heat transfer analysis
of thin film is also discussed by Chakraborty and Som [27].
The main aim of the present work is to study heat transfer
into a thin film of a third grade fluid on a vertical belt under
the influence of transverse magnetic field with slip boundary
conditions using ADM. In 1992 Adomian [28, 29] introduced
the ADM for the approximate solutions for linear and non-
linear problems. Wazwaz [30, 31] used ADM for the reliable
treatment of Bratu-type and Emden-Fowler equations.
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Figure 1: Geometry of the lifting problem.

2. Basic Equations

Thegoverning equations of an incompressible isothermal and
electrically conducting third grade fluid are

∇ ⋅ U = 0, (1)

𝜌

𝐷U
𝐷𝑡

= ∇ ⋅ T + 𝜌g + J × B, (2)

𝜌𝑐𝑝

𝐷Θ

𝐷𝑡

= 𝜅∇

2
Θ+ tr (𝜏 ⋅ L) , (3)

where 𝜌 is the constant density, g is body force per unit mass,
U is velocity vector of the fluid,Θ is temperature, 𝜅 is thermal
conductivity, 𝑐𝑝 is specific heat, L = ∇U,𝐷/𝐷𝑡 = 𝜕/𝜕𝑡+(U⋅∇)

denotematerial time derivative, 𝜏 is Cauchy stress tensor, and
T is the shear stress. A uniformmagnetic fieldB = (0, 𝐵0, 0) is
imposed transversely on the belt. The Lorentz force per unit
volume is given by

J × B = [0, 𝜎𝐵

2

0
𝑢 (𝑥) , 0] . (4)

Shear stress tensor T is given by

T = −𝑝I + 𝜏, (5)

where −𝑝I denotes spherical stress and 𝜏 is defined as

𝜏 = 𝜇A1 + 𝛼1A2 + 𝛼2A
2
1
+ 𝛽1A3

+ 𝛽2 (A1A2 + A2A1) + 𝛽3 (trA
2
1
)A1.

(6)

Here 𝛼𝑖 and 𝛽𝑗 are the material constants, and A1, A2,
and A3 are the kinematical tensors given by

A𝑛 =
𝐷A𝑛−1
𝐷𝑡

+ A𝑛−1 (∇u) + (∇u)𝑇A𝑛−1, 𝑛 ≥ 1,
(7)

𝜇 ≥ 0, 𝛼1 ≥ 0,

󵄨

󵄨

󵄨

󵄨

𝛼1 + 𝛼2

󵄨

󵄨

󵄨

󵄨

≤
√
24𝜇𝛽3, 𝛽3 ≥ 0.

(8)

3. Formulation of the Lift Problem

Consider awide flat beltmoving vertically upward at constant
speed𝑈0, through a large bath of third grade liquid as shown
in Figure 1.The belt carries with it a layer of liquid of constant
thickness, 𝛿. For analysis coordinate system is chosen, in
which the x-axis is taken parallel to the surface of the belt and
y-axis is perpendicular to the belt. Uniform magnetic field is
applied transversely to the belt. Assume the flow is steady and
laminar after a small distance above the liquid surface layer.
The external pressure is atmospheric everywhere.

Velocity and temperature fields are

u = (0, 𝑢 (𝑥) , 0) , Θ = Θ (𝑥) . (9)

Boundary conditions are

𝑢 = 𝑈0 − 𝛾𝑇𝑥𝑦 at 𝑥 = 0,

𝑑𝑢

𝑑𝑥

= 0, at 𝑥 = 𝛿,

Θ = Θ0, at 𝑥 = 0,

Θ = Θ1, at 𝑥 = 𝛿.

(10)

Inserting the velocity field given in (9) in (1) and (5)–(7),
the continuity equation (1) satisfies identically and (5) gives
the following components of stress tensor

𝑇𝑥𝑥 = −𝑃 + (2𝛼1 + 𝛼2) (
𝑑𝑢

𝑑𝑥

)

2

,

𝑇𝑥𝑦 = 𝜇

𝑑𝑢

𝑑𝑥

+ 2 (𝛽2 + 𝛽3) (
𝑑𝑢

𝑑𝑥

)

3

,

𝑇𝑦𝑦 = −𝑃 + 𝛼2 (
𝑑𝑢

𝑑𝑥

) ,

𝑇𝑧𝑧 = −𝑃,

𝑇𝑥𝑧 = 𝑇𝑦𝑧 = 0.

(11)

Using (11), the momentum and energy equations reduce
to

0 = 𝜇

𝑑

2
𝑢

𝑑𝑥

2
+ 6 (𝛽2 + 𝛽3) (

𝑑𝑢

𝑑𝑥

)

2

(

𝑑

2
𝑢

𝑑𝑥

2
) − 𝜌𝑔 − 𝜎𝐵

2

0
𝑢 (𝑥) ,

0 = 𝜅

𝑑

2
Θ

𝑑𝑥

2
+ 𝜇(

𝑑𝑢

𝑑𝑥

)

2

+ 2 (𝛽2 + 𝛽3) (
𝑑𝑢

𝑑𝑥

)

4

.

(12)
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Introducing the following nondimensional variables:

𝑢 =

𝛿

]
𝑈, 𝑥 =

𝑥

𝛿

, Θ =

Θ − Θ0

Θ1 − Θ0
,

𝛾 =

𝜇𝛾

𝛿

, Λ =

𝛾]

𝛿

,

𝜆 =

𝜇]2

𝑘 (Θ1 − Θ0) 𝛿
2
, 𝑚 =

𝛿

3
𝑔

]2
,

𝑀 =

𝜎𝐵

2

0
𝛿

2

𝜇

, 𝛽 =

(𝛽2 + 𝛽3) ]
2

𝜇𝛿

4
,

𝛼 =

𝛿𝑈0

]
, 𝑅𝑒 =

𝑈𝛿

]
, ] =

𝜇

𝜌

,

(13)

where 𝑚 is the gravitational parameter, 𝑀 is magnetic
parameter,𝛽 is non-Newtonian effect,Λ is slip parameter, 𝜆 is
heat dimensionless number, 𝑅𝑒 is the local Reynolds number,
and 𝛼 is the nondimensional variable using the above dimen-
sionless variables in (10) and in (12) and dropping bars we
obtain

𝑑

2
𝑢

𝑑𝑥

2
+ 6𝛽(

𝑑𝑢

𝑑𝑥

)

2

(

𝑑

2
𝑢

𝑑𝑥

2
) − 𝑚 −𝑀𝑢 (𝑥) = 0, (14)

𝑑

2
Θ

𝑑𝑥

2
+ 𝜆[(

𝑑𝑢

𝑑𝑥

)

2

+ 2𝛽(

𝑑𝑢

𝑑𝑥

)

4

] = 0, (15)

𝑢𝑛 (0) = 𝛼 − Λ(

𝑑𝑢𝑛

𝑑𝑥

+ 2𝛽(

𝑑𝑢𝑛

𝑑𝑥

)

3

) ,

𝑑𝑢𝑛 (1)

𝑑𝑥

= 0, 𝑛 = 0,

(16)

𝑢𝑛 (0) = − Λ(

𝑑𝑢𝑛

𝑑𝑥

+ 2𝛽(

𝑑𝑢𝑛

𝑑𝑥

)

3

) ,

𝑑𝑢𝑛 (1)

𝑑𝑥

= 0, 𝑛 > 0,

(17)

Θ (0) = 0, Θ (1) = 1. (18)

4. Adomian Decomposition Method (ADM)

A general description of the method is as follows. Begin
with an equation ̃

𝐹(𝑢) = 𝑔(𝑥), where ̃

𝐹 represents a general
nonlinear ordinary differential operator involving both linear
and nonlinear terms and 𝑔 is a source term. The linear term
is decomposed into ̃

𝐿+

̃

𝑅, where ̃𝐿 is easily invertible and ̃

𝑅 is
the remainder of the linear operator. For convenience, ̃𝐿may
be taken as the highest order derivative which avoids difficult
integrationswhich result when complicatedGreen’s functions
are involved. Thus the equation may be written as follows:

̃

𝐿𝑢 +

̃

𝑅𝑢 +

̃

𝑁𝑢 = 𝑔. (19)

Solving for ̃𝐿𝑢,

̃

𝐿𝑢 = 𝑔 −

̃

𝑅𝑢 −

̃

𝑁𝑢, (20)

where ̃

𝑁 is non-linear operator and 𝑔 is a source term, since
̃

𝐿 is easily invertible.
Equation (20) can be written as follows:

̃

𝐿

−1
̃

𝐿𝑢 =

̃

𝐿

−1
𝑔 −

̃

𝐿

−1
̃

𝑅𝑢 −

̃

𝐿

−1
̃

𝑁𝑢. (21)

We use ̃

𝐿

−1 depending on the order of the differential
equation. If differential equation is an initial-value problem, if
it is desired for boundary value problem as well, integrations
are used. The constants of integration are evaluated from
the given initial and boundary conditions. ̃𝐿−1 can also be
treated as definite integral from (̃𝑡0 to ̃

𝑡). Solving (21) for 𝑢
we obtained

𝑢 = 𝐶1 + 𝐶2𝑡 +
̃

𝐿

−1
𝑔 −

̃

𝐿

−1
̃

𝑅𝑢 −

̃

𝐿

−1
̃

𝑁𝑢. (22)

The non-linear term ̃

𝑁𝑢, is defined as follows:

̃

𝑁𝑢 =

∞

∑

𝑘=0

̃

𝐴𝑛. (23)

Here ̃

𝐴𝑛 are special polynomials called Adomian polynomi-
als and 𝑢̃ will be equated to ∑

∞

𝑘=0
𝑢̃𝑛. The initial velocity is

identified as follows:

𝑢̃0 =
̃

𝐶1 +
̃

𝐶2𝑡 +
̃

𝐿

−1
𝑔,

∞

∑

𝑘=0

𝑢𝑛 = 𝑢0 −
̃

𝐿

−1
̃

𝑅

∞

∑

𝑘=0

𝑢𝑛 −
̃

𝐿

−1
∞

∑

𝑘=0

̃

𝐴𝑛.

(24)

Comparison for different components of velocity profile is as
follows:

𝑢1 = −

̃

𝐿

−1
̃

𝑅𝑢0 −
̃

𝐿

−1
̃

𝐴0,

𝑢2 = −

̃

𝐿

−1
̃

𝑅𝑢0 −
̃

𝐿

−1
̃

𝐴1,

...

𝑢𝑛+1 = −

̃

𝐿

−1
̃

𝑅𝑢𝑛 −
̃

𝐿

−1
̃

𝐴𝑛.

(25)

The Adomian polynomials ̃

𝐴𝑛 depend on the velocity com-
ponents 𝑢0, 𝑢1, 𝑢2, . . . , 𝑢𝑛, which play a flourishing role in
the rapid convergence of the series. In the above series ̃

𝐴0

depends only on 𝑢0, ̃𝐴1 depends on 𝑢0 and 𝑢1, ̃𝐴2 depends on
𝑢0, 𝑢1, and 𝑢2, and so forth. Relevant discussion about ADM
can be seen in [16, 17].

4.1. The ADM Solution of Lifting Problem. Using the inverse
operator ̃𝐿−1 = ∬𝑑𝑢

󸀠 of the Adomian decomposition meth-
od on (14), we obtained

𝑢 = 𝐶1𝑥 + 𝐶2 + 𝑚

𝑥

2

2

+

̃

𝐿

−1
[𝑀𝑢] − 6𝛽

̃

𝐿

−1
[(

𝑑𝑢

𝑑𝑥

)

2
𝑑

2
𝑢

𝑑

2
𝑥

] .

(26)
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For series solution we use summation on (26)

∞

∑

𝑛=0

𝑢𝑛 = 𝐶1𝑥 + 𝐶2 + 𝑚

𝑥

2

2

+𝑀

̃

𝐿

−1
(

∞

∑

𝑛=0

𝑢𝑛) − 6𝛽

̃

𝐿

−1

× [

𝑑

𝑑𝑥

(

∞

∑

𝑛=0

𝑢𝑛)

2
𝑑

2

𝑑𝑥

2
(

∞

∑

𝑛=0

𝑢𝑛)] .

(27)

Adomian polynomials are defined from (27) as follows:

̃

𝐴𝑛 = (

𝑑

𝑑𝑥

(

∞

∑

𝑛=0

𝑢𝑛)

2

)[

𝑑

2

𝑑𝑥

2
(

∞

∑

𝑛=0

𝑢𝑛)] ,

𝑛 ≥ 0.

(28)

From (28) when 𝑛 ≥ 0, the Adomian polynomials in
components form are

̃

𝐴0= (

𝑑𝑢0

𝑑𝑥

)

2
𝑑

2
𝑢0

𝑑𝑥

2
,

̃

𝐴1 = (

𝑑𝑢0

𝑑𝑥

)

2
𝑑

2
𝑢1

𝑑𝑥

2
+ 2

𝑑𝑢0

𝑑𝑥

𝑑𝑢1

𝑑𝑥

,

̃

𝐴2 = (

𝑑𝑢0

𝑑𝑥

)

2
𝑑

2
𝑢2

𝑑𝑥

2
+ (

𝑑𝑢1

𝑑𝑥

)

2
𝑑

2
𝑢0

𝑑𝑥

2

+ 2

𝑑𝑢0

𝑑𝑥

𝑑𝑢2

𝑑𝑥

𝑑

2
𝑢0

𝑑𝑥

2
.

(29)

The series solution becomes

𝑢0 + 𝑢1 + 𝑢2 + ⋅ ⋅ ⋅ = 𝐶1𝑥 + 𝐶2 + 𝑚

𝑥

2

2

+𝑀𝐿

−1
[𝑢0 + 𝑢1 + 𝑢2 + ⋅ ⋅ ⋅ ]

− 6𝛽𝐿

−1
[

̃

𝐴0 +
̃

𝐴1 +
̃

𝐴2 + ⋅ ⋅ ⋅ ] .

(30)

The velocity components are obtained by comparing both
sides of (33).

4.1.1. Zero Component Problem. Consider

𝑢0 (𝑥) = 𝐶1𝑥 + 𝐶2 + 𝑚

𝑥

2

2

.

(31)

From (16) the boundary condition, for 𝑛 = 0, is

𝑢0 (0) = 𝛼 − Λ(

𝑑𝑢0

𝑑𝑥

+ 2𝛽(

𝑑𝑢0

𝑑𝑥

)

3

) ,

𝑑𝑢0 (1)

𝑑𝑥

= 0. (32)

By making use of (32) in (31), after simplification we obtain

𝑢0 (𝑥) = 𝛼 +

𝑚𝑥

2

2

− 𝑚𝑥 + Λ (𝑚 + 2𝛽𝑚

3
) .

(33)

4.1.2. First Component Problem. Consider

𝑢1 (𝑥) = 𝑀𝐿

−1
[𝑢0] − 6𝛽𝐿

−1
[

̃

𝐴0] . (34)

From (17) the boundary condition, for 𝑛 = 1, is

𝑢1 (0) = − Λ (

𝑑𝑢1

𝑑𝑥

+ 6𝛽(

𝑑𝑢0

𝑑𝑥

)

2
𝑑𝑢1

𝑑𝑥

) ,

𝑑𝑢1 (1)

𝑑𝑥

= 0.

(35)

The solution is

𝑢1 (𝑥) = [ (1 + 6𝑚

2
𝛽)Λ

× (

𝑚𝑀

3

−𝑀𝛼 + 2𝑚

3
𝛽 − 𝑚𝑀Λ − 2𝑚

3
𝑀𝛽Λ)

+ (

𝑚𝑀

3

−𝑀𝛼 + 2𝑚

3
𝛽 − 𝑚𝑀Λ − 2𝑚

3
𝑀𝛽Λ)𝑥

+ (

𝑀𝛼

2

− 3𝑚

3
𝛽 +

𝑚𝑀Λ

2

+ 𝑚

3
𝑀𝛽Λ)𝑥

2

+(2𝑚

3
𝛽 −

𝑚𝑀

6

)𝑥

3
+ (

𝑚𝑀

24

−

𝑚

3
𝛽

2

)𝑥

4
] .

(36)

4.1.3. Second Component Problem. Consider

𝑢2 (𝑥) = 𝑀𝐿

−1
[𝑢1] − 6𝛽𝐿

−1
[

̃

𝐴1] . (37)

From (17) the boundary condition, for 𝑛 = 2, is

𝑢2 (0)

= − Λ(

𝑑𝑢2

𝑑𝑥

(1 + 6𝛽 (

𝑑𝑢0

𝑑𝑥

)

2

) + 6𝛽(

𝑑𝑢1

𝑑𝑥

)

2
𝑑𝑢0

𝑑𝑥

) ,

𝑑𝑢2 (1)

𝑑𝑥

= 0.

(38)

The solution is

𝑢2 (𝑥) = Ψ0 − Ψ1𝑥 + Ψ2𝑥
2
− Ψ3𝑥

3
+ Ψ4𝑥

4
− Ψ5𝑥

5
+ Ψ6𝑥

6
.

(39)

The series solution up to the second component is

𝑢 (𝑥) = 𝑢0 (𝑥) + 𝑢1 (𝑥) + 𝑢2 (𝑥) . (40)

Using (33), (36), and (39) in (40), we have

𝑢 (𝑥) = Φ0 − Φ1𝑥 + Φ2𝑥
2
− Φ3𝑥

3
+ Φ4𝑥

4
− Φ5𝑥

5
+ Φ6𝑥

6
.

(41)

The constants (Ψ0–Ψ6) and (Φ0–Φ6) are given in the
appendix.

The dimensionless shear stress is

𝜏𝑥𝑦 =

𝜇]

𝛿

2
[

𝑑𝑢

𝑑𝑥

+ 2𝛽(

𝑑𝑢

𝑑𝑥

)

3

] . (42)
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The shear rate becomes

𝜏𝑥𝑦

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=0

=

𝜇]

𝛿

2
[25 (90𝑚
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The coefficient of skin friction is defined as follows:

𝐶𝑓 (0) =
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By use of (43), we have
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5. Volume Flow Rate and Average Velocity

Volume flow rate in nondimensional form is as follows:

𝑄 = ∫

1

0

𝑢 (𝑥) 𝑑𝑥.
(46)

Using velocity field from (41), volumeflow rate is obtained
as follows.

Average velocity 𝑢 in dimensionless form is given by

𝑢 = 𝑄, (47)
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Figure 2: Geometry of the drainage problem.

6. Temperature Distribution in
Case of Lift Problem

On substituting the series solution for velocity field given
in (41) in (15) and solving corresponding to the boundary
condition given in (18) for fixed values of 𝛼 = 0.1; 𝑚 = 0.5;
𝑀 = 1; Λ = 0.4; 𝛽 = 1; 𝜆 = 100, we obtained

Θ (𝑥) = 7.1923𝑥 − 12.7305𝑥

2
+ 9.0310𝑥

3

− 2.4798𝑥

4
− 0.3026𝑥

5
+ 0.4717𝑥

6

− 0.2248𝑥

7
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8
+ 0.01515𝑥

9

− 0.0133𝑥
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(49)

7. Formulation of Drainage Problem

The geometry and assumptions of the problem are the same
as those in the previous problem. Consider a film of non-
Newtonian liquid draining at volume flow rate Q down the
vertical belt, as shown in Figure 2. The belt is stationary and
the fluid drain down the belt due to gravity. The coordinate
system is selected in the sameway as that in the previous case.
Assuming the flow is steady, laminar and external pressure
is neglected. Consider that fluid shear forces balance gravity
and the film thickness remain constant.

Boundary condition for electrically conducting drainage
problem is as follows:

𝑢 = −𝛾𝑇𝑥𝑦 at 𝑥 = 0,

𝑑𝑢

𝑑𝑥

= 0, at 𝑥 = 𝛿.

(50)

Using nondimensional variables the slip boundary conditions
for drainage problem become

𝑢𝑛 (0) = − Λ (

𝑑𝑢𝑛

𝑑𝑥

+ 2𝛽(
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(51)

7.1. Solution of the Drainage Problem by ADM. Using ADM
on (14), the Adomian polynomials in (29) for both problems
are the same.The different velocity components are obtained
as follows.

7.1.1. Zero Component Problem. Consider
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The solution is

𝑢0 (𝑥) = 𝑚𝑥 −
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7.1.2. First Component Problem. Consider
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For different velocity components, the Adomian polynomials
mentioned in (29) are used:
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7.1.3. Second Component Problem. Consider
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The solution is

𝑢2 (𝑥) = 𝜉0 − 𝜉1𝑥 + 𝜉2𝑥
2
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3
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6
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(57)

The series solution of the velocity field is
𝑢 (𝑥) = 𝑢0 (𝑥) + 𝑢1 (𝑥) + 𝑢2 (𝑥) . (58)

Substituting (53), (55), and (57) in (58),
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(59)

The constants (𝜉0–𝜉6) and (𝜔0–𝜔6) are defined and listed in
the appendix.

Substituting (59) the shear rate is obtained as
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8. Volume Flow Rate and Average
Velocity of Thin Film Flow

Using (59) in (47) we obtain the following.
The average velocity is defined as 𝑢/𝛿

𝑢 = 𝑄,

𝑄 =
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(61)

9. Heat Distribution for Drainage Problem

Solving (15) with boundary conditions given in (18), after
making use of (59) for fixed values of 𝑚 = 0.5, 𝑀 = 1,
Λ = 0.4, 𝛽 = 1, and 𝜆 = 100, we obtain

Θ (𝑥) = 7.7356𝑥 − 14.3046𝑥

2
+ 11.1370𝑥

3

− 4.2154𝑥

4
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+ 0.241003𝑥

6

− 0.2503𝑥
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.

(62)

10. Results and Discussion

The effects of magnetic parameter 𝑀, non-Newtonian
parameter 𝛽, gravitational parameter 𝑚, slip parameter Λ,
and the dimensionless number 𝜆, for both lift and drainage
velocity profiles, are discussed in Figures 5–14. Figures 1 and
2 show the geometry of lift and drainage velocity profiles.
Figures 3 and 4 show the comparison of OHAM and ADM
for lift and drainage velocity profiles. Numerical results and
absolute error for both problems are shown in Tables 1 and
2, respectively. Figures 5 and 10 show that the rise in the
non-Newtonian parameter 𝛽 increases the speed of flow. For
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𝑚 = 0.5,𝑀 = 0.1, 𝛽 = 0.3, Λ = 0.01, 𝛼 = 0.1, 𝐶1 = −0.6221311197,
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Figure 4: Comparison of ADM and OHAM methods for drainage
velocity profile is shown for the given parameters and auxiliary
constants. 𝑚 = 0.1, 𝑀 = 0.1, 𝛽 = 0.3, Λ = 0.01, 𝛼 = 0.1,
𝐶1 = −0.93798569, and 𝐶2 = −0.000741729.

small values of 𝛽, the velocity profile differs little from the
Newtonian one; however when 𝛽 is increased, these profiles
become more flattened showing the shear-thinning effect.
Behavior of the velocity field 𝑢, for different values of 𝑀,
by fixing other physical parameters, is shown in Figures 6
and 11 for lifting and drainage of fluid, respectively. Here, it
can be seen that the boundary layer thickness is reciprocal
to the transverse magnetic field and the velocity decreases
as one progresses towards the surface of the fluid. We note
that the velocity of fluid is maximum at the surface of
the belt and minimum at the surface. Moreover, it is to
be noted that for large values of 𝑀, the velocity increases
rapidly as compared to small values. When the gravitational
parameter 𝑚 increases, the velocity decreases in lifting flow
and increases in case of drainage. This can be seen from
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Figure 5: The influence of non-Newtonian 𝛽 on velocity profile for
lifting problem keeping 𝛼 = 0.1,𝑚 = 0.5,𝑀 = 1, and Λ = 0.4.
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Journal of Applied Mathematics 9
u
(x
)

x

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Λ = 0.0

Λ = 0.5

Λ = 1.0

Λ = 1.5

Figure 8: Variation of velocity for various values of slip parameter
Λ, by fixing 𝛼 = 0.1;𝑚 = 0.2; 𝛽 = 1.2;𝑀 = 0.6.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

𝜆 = 40

𝜆 = 60

𝜆 = 80

𝜆 = 100

x

u
(x
)
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Figure 10: The influence of the non-Newtonian effect “𝛽” on the
velocity profile 𝑢(𝑥) of drainage problem keeping 𝑚 = 0.5, 𝑀 = 1,
and Λ = 0.2.

Table 1: Comparison of (OHAM) and (ADM) for lift velocity
profile.

𝑥 OHAM ADM Absolut error
0.0 0.105386 0.106257 0.870 × 10

−3

0.1 0.062934 0.062767 0.167 × 10

−3

0.2 0.024379 0.023672 0.707 × 10

−3

0.3 −0.010137 −0.011089 0.953 × 10

−3

0.4 −0.0404456 −0.041497 0.105 × 10

−2

0.5 −0.066426 −0.067481 0.106 × 10

−2

0.6 −0.087899 −0.088944 0.105 × 10

−2

0.7 −0.104748 0.105779 0.104 × 10

−2

0.8 −0.116863 −0.117886 0.103 × 10

−2

0.9 −0.124166 −0.125185 0.102 × 10

−2

Table 2: Comparison of (OHAM) and (ADM) for drainage velocity
profile.

𝑥 OHAM ADM Absolut error
0.0 −0.00096249 −0.001043 0.804 × 10

−4

0.1 0.0081824 0.00810405 0.784 × 10

−4

0.2 0.0163486 0.016272 0.767 × 10

−4

0.3 0.0235415 0.0234664 0.752 × 10

−4

0.4 0.0297656 0.0296918 0.739 × 10

−4

0.5 0.0350252 0.0349525 0.728 × 10

−4

0.6 0.0393238 0.0392519 0.719 × 10

−4

0.7 0.0426641 0.0425929 0.713 × 10

−4

0.8 0.0450485 0.0449777 0.708 × 10

−4

0.9 0.0464684 0.0464079 0.705 × 10

−4

Figures 7 and 12, respectively. Due to friction force the
gravitational effect seems to be smaller near the belt. It can be
seen that there is a point in the domain, where the velocity of
the fluid becomes approximately the same for different values
of gravitational parameter. The reason is that the friction of
the belt becomes negligible at this point. On increasing 𝑚

after this point in lifting flow, the velocity decreases due to
negligible friction but in drainage flow after this point, the
velocity of the fluid increases. The effect of slip parameter
can be observed from Figures 8 and 13. It is noticed that the
speed of the fluid near the belt is greater than the speed at
the surface.When we increase the slip parameter, the velocity
of the fluid increases and comparatively this increase can be
seen more clearly between Λ = 1.0 and Λ = 1.5 because
the friction goes on decreasing. Figures 9 and 14 indicate the
dimensionless temperature distribution for different values of
𝜆. It can be seen that temperature distribution increases as
the dimensionless parameter 𝜆 increases and becomes more
flattened for large values of 𝜆. Figure 15 shows the effect of
local Reynolds number versus skin friction.This figure shows
that the Reynolds number decreases the skin friction. For
large values of Reynolds number, the skin friction vanishes.
Figure 16 shows the effect of non-Newtonian parameter 𝛽

versus skin friction.
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Figure 11: The influence of the magnetic force “𝑀” on velocity
profile shown in this figure for the drainage problem, where𝑚 = 0.5,
𝛽 = 1, and Λ = 0.2.
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Figure 12: This figure shows the influence of the gravitational
parameter 𝑚 on the velocity profile “𝑢(𝑥)” for drainage problem
keeping 𝛽 = 1,𝑀 = 1, and Λ = 0.2.

11. Conclusion

The constitutive equation governing the flow of a third grade
fluid for lifting and drainage of fluid with slip boundary
conditions is solved analytically by using Adomian decom-
position method. Expression for velocity field, volume flow
rate, skin friction, and temperature distribution is derived
and sketched. It is concluded that velocity increases as the
gravitational parameter 𝑚 decreases in lifting case while
velocity increases as this parameter increases in drainage. For
small values of 𝛽, the velocity profile differs little from the
Newtonian one; however when 𝛽 is increased, these profiles
become more flattened showing the shear-thinning effect. It
can be seen that the boundary layer thickness is reciprocal to
the transverse magnetic effect and the velocity decreases as
it progresses towards the surface of the fluid. On increasing
the slip parameter, the velocity of the fluid increases and
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Figure 13: Variation of velocity for various values of slip parameter
Λ, by fixing𝑀 = 0.6,𝑚 = 0.2, and 𝛽 = 1.2.
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Figure 14: The influence of dimensionless number “𝜆” on the
temperature distribution 𝑢(𝑥), for drainage problem keeping 𝑚 =

0.5,𝑀 = 1, Λ = 0.4, and 𝛽 = 1.
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Figure 15: Variation of skin friction versus Reynolds number.
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Figure 16: Variation of skin friction versus non-Newtonian param-
eter 𝛽.

comparatively this increase can be seen more clearly between
Λ = 1.0 and Λ = 1.5 because the friction goes on decreasing.
According to the best of our knowledge there is no previous
literature about discussed problem; this is our first attempt
to handle this problem with slip boundary condition. Also
this problem ismore generalwhen compared to linear viscous
model and second grade fluid model.
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