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We study colorings of a tree induced from isometries of the hyperbolic plane given an ideal tessellation. We show that, for a given
tessellation of the hyperbolic plane by ideal polygons, a coloring can be associated with any element of Isom(H2), and the element
is a commensurator of Γ if and only if its associated coloring is periodic, generalizing a result of Hedlund and Morse.

1. Introduction

Let 𝑇 be a locally finite tree, 𝑉𝑇 its vertex set, and 𝐸𝑇 the set
of oriented edges of 𝑇. Let A be a countable set which will
be called the alphabet. Let 𝜙 be a coloring of 𝑇, that is, a map
𝜙 : 𝑉𝑇 → A. Let Aut(𝑇) be the automorphism group of
𝑇. A periodic coloring is a coloring which is Γ-invariant for
some cocompact subgroup Γ ⊂ Aut(𝑇).

In this paper, we study colorings of regular trees induced
from some tessellations of the hyperbolic plane.

There is a well-known family of sequences coming from
rotations of circle as follows. Consider the tiling of the real
line R by unit length intervals {[𝑛, 𝑛 + 1) : 𝑛 ∈ Z} and a map
𝑡 󳨃→ 𝑎𝑡 + 𝑏 fromR to itself. There exists an integer 𝑗 such that
each interval [𝑛, 𝑛+1) is partitioned into 𝑗 or 𝑗+1 subintervals
of the form {[𝑎𝑛+𝑏, 𝑎(𝑛+1)+𝑏) : 𝑛 ∈ Z}∩{[𝑛, 𝑛+1) : 𝑛 ∈ Z}.
Consider the sequence (𝑢

𝑛
)
𝑛∈N with 𝑢𝑛 ∈ A = {𝑗, 𝑗+1}, which

is given by the number of such subintervals of [𝑛, 𝑛 + 1). It is
well known that this two-sided sequence 𝑢

𝑛
is periodic if only

if 𝑎 is rational [1].
As a generalization, we associate a coloring 𝜙

𝑔
of a 𝑘-

regular tree (𝑘 ≥ 3) for any isometry 𝑔 of the hyperbolic
plane, given a specific hyperbolic tessellation D generated
by a discrete subgroup Γ of the group of isometries on the
hyperbolic plane H2. Suppose that each vertex of elements of
D lies on the boundary of the hyperbolic plane so that the
dual graph ofD is a tree.

For such a tessellationD, we show that the coloring 𝜙
𝑔
is

periodic if and only if 𝑔 is a commensurator of Γ in Isom(H2).

Recall that an element 𝑔 ∈ Isom(H2) is called a commensura-
tor of Γ if and only if 𝑔Γ𝑔−1∩Γ is a subgroup of Γ and of 𝑔Γ𝑔−1
of finite index. Let us denote the group of commensurators of
Γ by Comm(Γ). Commensurator subgroup Comm(Γ) plays
an important role in the study of rigidity of locally symmetric
spaces andmore generally in geometric group theory ([2–4]).

This is a result analogous to the rotation case in the
sense that the group of commensurators of SL

2
(Z) is a group

containing SL
2
(Q) with finite index [5].

After showing the main theorem (Theorem 3), we show
that our construction is an analogue of sequences induced
froma rotation of circle onlywhen themultiplicative constant
𝑎 of 𝑡 󳨃→ 𝑎𝑡 + 𝑏 is rational.

We show that, in the case of an isometry of H2 which
is not a commensurator, we obtain colorings of unbounded
alphabet, in contrast with themotivating example where irra-
tional rotations correspond to Sturmian sequences, which are
in particular sequences with a finite alphabet (see Section 3
for details).

We then explain in a heuristic way how to obtain eventu-
ally periodic colorings and colorings of “low complexity” by
disregarding some information of the induced colorings.

2. Periodic Tree Colorings from
Hyperbolic Tessellations

We first reformulate the classical example of two-sided
sequences mentioned in Section 1. Consider the tessellation
D of the hyperbolic plane (upper-half plane)H2 given by the
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group Γ
𝑟
generated by the reflections about the lines 𝑥 = 0

and 𝑥 = 1. More precisely, elements of D are of the form
{𝑧 ∈ C : 𝑛 ≤ Re(𝑧) < 𝑛+1}.Then Γ

𝑟
= ⟨𝑧 󳨃→ −𝑧, 𝑧 󳨃→ 2−𝑧⟩ is

isomorphic to the infinite dihedral group, and its dual graph
𝑇 is a 2-regular tree. Let 𝑔 = (

𝑎 𝑏

𝑐 𝑑
) ∈ PSL

2
(R), which sends

𝑧 ∈ H2 to (𝑎𝑧 + 𝑏)/(𝑐𝑧 + 𝑑). Then it is not difficult to check
that 𝑔 is a commensurator of Γ

𝑟
if and only if 𝑐 = 0, and 𝑎/𝑑

is rational.
For each vertex 𝑥 ∈ 𝑉𝑇, denote by 𝐷

𝑥
∈ D the element

ofD dual to 𝑥. Let 𝜙#
𝑔
be the coloring given by

𝜙
#
𝑔
(𝑥) = # {𝑔𝐷 : 𝑔𝐷 ∩ 𝐷

𝑥
̸= 0, 𝐷 ∈ D} . (1)

Then 𝜙
#
𝑔
is periodic if 𝑎/𝑑 is rational, 𝑐 = 0, and Sturmian if

𝑎/𝑑 is irrational, 𝑐 = 0 (e.g., [1], [9, Chapter 6]).
Let us generalize the above construction. Let us fix

an ideal polygon 𝐷 in the hyperbolic plane H2. Consider
the group Γ

𝑟
generated by the reflections in the edges of

𝐷, which is a discrete subgroup of finite covolume in the
isometry group ofH2. By Poincaré’s theorem on fundamental
polygons, there exists a tessellationD of H2 by the images of
𝐷 by the elements of Γ

𝑟
.

Let 𝑇 be the dual graph of the tessellation D, which is a
tree since𝐷 is an ideal polygon.The tree𝑇 is the Cayley graph
of the group Γ

𝑟
.

More generally, we will also consider the case when Γ
𝑟

is generated by the reflections in the edges of a generalized
ideal polygon, by which we mean a polygon in H2 ∪ 𝜕H2 such
that all vertices are on the boundary 𝜕H2. Note that such a
generalized ideal polygon may have infinite volume.

For any given 𝑔 ∈ Isom(H2), we associate a coloring to
𝑔 as follows. Consider 𝑔D = {𝑔𝐷 : 𝐷 ∈ D}. For any vertex
𝑥 of the dual graph 𝑇, the polygon 𝐷

𝑥
dual to 𝑥 is a union

of subsets of the form 𝐷
𝑥
∩ 𝑔𝐷
󸀠, for 𝐷󸀠 ∈ D, with mutually

disjoint interiors.We call by the partition of 𝐷 byD∨𝑔D the
collection {𝐷 ∩ 𝑔𝐷

󸀠
: 𝐷
󸀠
∈ D} just described (disregarding

intersections on the boundary).

Definition 1. Let A be the set of equivalence classes of
partitions of elements ofD, where two partitions of𝐷 and𝐷󸀠,
respectively, are equivalent if there exists an isometry from𝐷

to 𝐷
󸀠 which sends elements of the partition of 𝐷 bijectively

to elements of the partition of 𝐷󸀠. The coloring 𝜙
𝑔
associated

with 𝑔 is the map 𝜙
𝑔
: 𝑉𝑇 → A sending 𝑥 to the class of the

partition of𝐷
𝑥
byD ∨ 𝑔D.

Let ΓD ⊂ Isom(H2) be the set of isometries leaving D
invariant. Since every 𝐷 ∈ D is a generalized ideal polygon
with finitely many sides, Γ

𝑟
is a finite index subgroup of ΓD.

Thus 𝑔 ∈ Isom(H2) is a commensurator of Γ
𝑟
if and only if 𝑔

is a commensurator of ΓD.

Lemma 2. For each 𝑥, 𝑦 ∈ 𝑉𝑇, one has 𝜙
𝑔
(𝑥) = 𝜙

𝑔
(𝑦) if and

only if there exists 𝛾 ∈ ΓD ∩ 𝑔ΓD𝑔
−1

⊂ Isom(H2) such that
𝛾𝐷
𝑥
= 𝐷
𝑦
, where 𝐷

𝑥
, 𝐷
𝑦
are the elements of D associated

with 𝑥, 𝑦 ∈ 𝑉𝑇.

Proof. Suppose that 𝛾𝐷
𝑥
= 𝐷
𝑦
for some 𝛾 ∈ ΓD∩𝑔ΓD𝑔

−1. Let
the partition of𝐷

𝑥
byD ∨ 𝑔D be

𝐷
𝑥
= ⋃

𝑖∈𝐼

(𝐷
𝑥
∩ 𝑔𝐸
𝑖
) , (2)

where {𝐸
𝑖
}
𝑖∈𝐼

⊂ D. Then

𝛾𝐷
𝑥
= ⋃

𝑖∈𝐼

(𝛾𝐷
𝑥
∩ 𝛾𝑔𝐸

𝑖
) . (3)

Since 𝛾 ∈ ΓD∩𝑔ΓD𝑔
−1, we have 𝛾 = 𝑔𝛾

󸀠
𝑔
−1 for some 𝛾󸀠 ∈ ΓD.

Thus
𝛾𝐷
𝑥
= ⋃

𝑖∈𝐼

(𝛾𝐷
𝑥
∩ 𝑔𝛾
󸀠
𝐸
𝑖
) . (4)

Since 𝑔𝛾󸀠𝐸
𝑖
are all elements of 𝑔D, the above partition is a

partition of 𝛾𝐷
𝑥
by D ∨ 𝑔D. Therefore, the colorings 𝜙

𝑔
on

𝐷
𝑥
and𝐷

𝑦
= 𝛾𝐷
𝑥
are the same.

Conversely, any isometry from 𝐷
𝑥
to 𝐷
𝑦
extends to an

isometry of H2 leaving D invariant. Thus if 𝜙
𝑔
(𝑥) = 𝜙

𝑔
(𝑦),

then there exists 𝛾 ∈ ΓD such that 𝛾𝐷
𝑥
= 𝐷
𝑦
which sends

elements of the partition of𝐷
𝑥
byD∨𝑔D bijectively to those

of 𝐷
𝑦
. Let us denote the partitions of 𝐷

𝑥
and 𝐷

𝑦
= 𝛾𝐷
𝑥
by

D ∨ 𝑔D by

𝐷
𝑥
= ⋃

𝑖∈𝐼

(𝐷
𝑥
∩ 𝑔𝐸
𝑖
) ,

𝐷
𝑦
= 𝛾𝐷
𝑥
= ⋃

𝑗∈𝐽

(𝛾𝐷
𝑥
∩ 𝑔𝐹
𝑗
) ,

(5)

for some {𝐸
𝑖
}
𝑖∈𝐼
, {𝐹
𝑗
}
𝑗∈𝐽

⊂ D. Since𝐷
𝑥
and𝐷

𝑦
have the same

coloring, the above partition is equal to

𝛾𝐷
𝑥
= ⋃

𝑖∈𝐼

(𝛾𝐷
𝑥
∩ 𝛾𝑔𝐸

𝑖
) . (6)

Thus 𝐼 = 𝐽, and by rearranging 𝐹
𝑗
if necessary, we have

𝐷
𝑦
∩ 𝑔𝐹
𝑖
= 𝐷
𝑦
∩ 𝛾𝑔𝐸

𝑖
for each 𝑖. SinceD is a tessellation by

ideal polygons, this implies that 𝑔𝐹
𝑖
= 𝛾𝑔𝐸

𝑖
. As 𝐹

𝑖
and 𝐸

𝑖
are

elements ofD, there exists 𝛾
𝑖
∈ ΓD such that 𝐹

𝑖
= 𝛾
𝑖
𝐸
𝑖
. Thus

𝑔𝛾
𝑖
(𝛾𝑔)
−1 stabilizes 𝐸

𝑖
; thus it is an element of ΓD, say 𝛾

󸀠. We
conclude that 𝛾󸀠𝛾 = 𝑔𝛾

𝑖
𝑔
−1

∈ 𝑔ΓD𝑔
−1 satisfies the statement

of the lemma.

Now let us formulate our theorem.

Theorem3. Let Γ
𝑟
be a group generated by the reflections in the

edges of a generalized ideal polygon. An isometry 𝑔 ∈ Isom(H2)

is a commensurator of Γ
𝑟
if and only if its associated coloring 𝜙

𝑔

is periodic.

Proof. As we mentioned earlier, 𝑔 ∈ Comm(Γ
𝑟
) if and only if

𝑔 ∈ Comm(ΓD). Suppose that Γ
󸀠
= 𝑔ΓD𝑔

−1
∩ ΓD is a finite-

indexed subgroup of ΓD. By Lemma 2, we know that 𝜙
𝑔
is

Γ
󸀠-invariant. Since ΓD is cocompact in Aut(𝑇), Γ󸀠 is also a

cocompact discrete subgroup of Aut(𝑇). Thus 𝜙
𝑔
is periodic.

Conversely, suppose that 𝜙
𝑔
is periodic. Let Γ be a cocom-

pact subgroup of Aut(𝑇) preserving 𝜙
𝑔
. For any 𝑥 ∈ 𝑉𝑇

and 𝛾 ∈ Γ we have 𝜙
𝑔
(𝑥) = 𝜙

𝑔
(𝛾𝑥); thus, by Lemma 2, there

exists 𝛾󸀠 ∈ Γ
󸀠
= ΓD ∩ 𝑔ΓD𝑔

−1 such that 𝛾󸀠(𝐷
𝑥
) = 𝐷

𝛾𝑥
. Letting
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(a) 𝑧 󳨃→ 3𝑧
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(b) 𝑧 󳨃→ 𝑧 + (1/2)

Figure 1: Examples of isometry 𝑔 associated with periodic colorings.

Γ
󸀠󸀠

= {𝛾
󸀠
∈ Γ
󸀠
: 𝛾 ∈ Γ}, it follows that Γ󸀠󸀠 \ 𝑇 ≃ Γ

󸀠
\ 𝑇 is

finite since Γ \𝑇 is finite. Since Γ
𝑟
is a finite index subgroup of

ΓD and 𝑇 is the Cayley graph of Γ
𝑟
, Γ󸀠 ⊂ ΓD is of finite index.

Therefore 𝑔 is a commensurator of ΓD, thus a commensurator
of Γ
𝑟
.
Note that the coloring 𝜙

#
𝑔
on a 2-regular tree in (1) is

periodic if 𝜙
𝑔
is periodic.

Now let us provide some examples of isometries of
the hyperbolic plane giving periodic colorings. A periodic
coloring which is Γ-invariant for some Γ ⊂ Isom(H2) will be
expressed on the quotient, denoted by Γ \\𝑇, which is either
a graph (if there is no torsion element) or a graph of groups
(if there are some torsion elements, we attach the stabilizers
of vertices and edges on the quotient graph). In fact, we will
express a coloring on the edge-indexed graph of the quotient
graph of groups Γ\\𝑇, as we only need the edge-indexed graph
of a graph of groups to recover 𝑇 from a graph of groups.

Recall that the edge-indexed graph of a graph of groups is
a graph with an index on each oriented edge, where the graph
is given by the quotient graph Γ \ 𝑇 and the index 𝑖(𝑒) of the
oriented edge 𝑒 is given by the index of the edge group 𝐺

𝑒

in the vertex group 𝐺
𝜕0(𝑒)

of the initial vertex 𝜕
0
(𝑒) of 𝑒. (For

details on graph of groups and the edge-indexed graph of a
graph of groups, see [6–8].)

Example 4. Consider the Farey tessellation D of the hyper-
bolic plane, which is the tessellation with𝐷 the ideal triangle
of vertices∞, 0, and 1.Then Γ

𝑟
= ⟨−𝑧, 𝑧/(2𝑧−1), 2−𝑧⟩, and

the dual graph of Γ
𝑟
is a 3-regular tree𝑇. Note that Γ

𝑟
∩PSL
2
(Z)

is a subgroup of Γ
𝑟
of index 2. Γ

𝑟
is commensurable to PSL

2
(Z)

as Γ
𝑟
∩ PSL

2
(Z) is a subgroup of PSL

2
(Z) of index six since

{𝑧, 1/(1 − 𝑧), (𝑧 + 1)/𝑧} is the stabilizer subgroup of 𝐷 in
PSL
2
(Z).
A hyperbolic element 𝑔

1
: 𝑧 󳨃→ 3𝑧 and a parabolic

element 𝑔
2
: 𝑧 󳨃→ 𝑧 + (1/2) is considered in Figure 1. The

associated colorings 𝜙
𝑔1
and 𝜙

𝑔2
are both periodic.

The periodic coloring of the edge-indexed graph of a
graph of groups Γ \ 𝑇 for 𝑧 󳨃→ 3𝑧 and 𝑧 󳨃→ 𝑧 + (1/2) is as
follows:

𝑔1 : 𝑧 3𝑧,
𝑎 𝑏

1 1

1

3 (7)

Here, vertices 𝑎 and 𝑏 represent the ideal triangle partitioned
as

, ,

(8)

respectively. On the other hand,

1

1

111
1𝑎 𝑏

𝑔2 : 𝑧 𝑧 +
1

2
, (9)

In this graph, vertices 𝑎 and 𝑏 represent the ideal triangle
partitioned as

, ,

(10)

respectively (see Figure 1).
Remark also that an elliptic element 𝑧 󳨃→ (2𝑧 − 1)/(𝑧 + 1)

has a periodic coloring identical to that of 𝑧 󳨃→ 3𝑧.

3. Eventually Periodic Colorings and
Their Generalizations

Now consider an element of Isom(H2) which is not a
commensurator of Γ

𝑟
. We know that the associated coloring

𝜙
𝑔
is not periodic.

Corollary 5. Let 𝜙
𝑔
be a coloring associated with an element

𝑔 ∈ Isom(H2) which is not a commensurator of Γ
𝑟
. Then its

associated coloring has infinite alphabet.

Proof. Let Γ󸀠 = ΓD ∩ 𝑔ΓD𝑔
−1 and Γ = Γ

𝑟
∩ Γ
󸀠. By Lemma 2,

𝜙
𝑔
(𝑥) = 𝜙

𝑔
(𝑦) implies that 𝑥, 𝑦 are in the same right coset of

Γ. Therefore the coloring 𝜙
𝑔
has a finite alphabet if and only

if Γ is a finite index subgroup of Γ
𝑟
. By Theorem 3, finiteness

of the coloring alphabet is equivalent to the fact that 𝑔 is a
commensurator of Γ

𝑟
.
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Figure 2: 𝑧 󳨃→ (𝑧 − √11)/(√10(𝑧 + 1)).

This phenomenon is in contrast to the motivating exam-
ple of circle rotation explained in the beginning of the
last section. In that case, irrational rotations correspond
to nonperiodic colorings. However they are defined on a
finite set of alphabets, and the corresponding sequences are
Sturmian, that is, sequences with subword complexity 𝑝(𝑛) =
𝑛 + 1. See [9] for Sturmian sequences.

Now let us explain how to obtain colorings of “low
complexity” with a finite set of alphabets from hyperbolic
tessellations by disregarding some information, as the color-
ing on a 2-regular tree 𝜙#

𝑔
in (1) for noncommensurable 𝑔 is

Sturmian.

Definition 6. One calls a coloring 𝜙 eventually periodic if
there exists a subtree𝐾 of finite number of vertices such that
𝑇−𝐾 = ∪𝑇

𝑖
is a finite union of subtrees𝑇

𝑖
such that 𝜙 on each

𝑇
𝑖
can be extended to a periodic coloring on 𝑇.

In the next examples, let us denote a geodesic in H2

between points 𝑥, 𝑦 ∈ 𝜕H2 by (𝑥, 𝑦), and let us call the edges
in R = 𝜕H2 boundary edges.

Example 7. Let D be the tessellation of H2 with 𝐷 a
generalized ideal polygon whose edges are two geodesics
(−2, 2), (−1, 1) and two boundary edges [−2, −1], [1, 2]. Let
𝑒
𝑛

= (−2
𝑛
, 2
𝑛
). An element of D is a generalized ideal

polygon which is the region bounded by 𝑒
𝑛
, 𝑒
𝑛+1

, for some
𝑛 ∈ Z, which we denote by 𝐷

𝑛
. The dual graph is a 2-regular

tree𝑇, and we can naturally denote the element of𝑉𝑇 dual to
𝐷
𝑛
by 𝑛 ∈ Z.
In this case, the commensurator of Γ

𝑟
is of the form 𝑧 󳨃→

𝑎𝑧 and 𝑧 󳨃→ 𝑎/𝑧 for 𝑎 ∈ R. If 𝑔 is considered as a map on
H2 ∪ 𝜕H2, then 𝑔 ∈ Comm(Γ

𝑟
) if and only if 𝑔({0,∞}) =

{0,∞}.
Let 𝑔 ∉ Comm(Γ

𝑟
) and 𝜙

0

𝑔
be a coloring given by

𝜙
0

𝑔
(𝑚) = {

𝑎, if there is 𝐷 ∈ D such that 𝑔𝐷 ⊂ 𝐷
𝑚
,

𝑏, otherwise.
(11)

If the boundary edge [2𝑚, 2𝑚+1] or [−2𝑚+1, −2𝑚] contains
𝑔(0) (or 𝑔(∞)) in its interior, then𝐷

𝑚
contains 𝑔𝐷

𝑛
∈ 𝑔 D ,

for sufficiently small (or large, resp.) 𝑛. This is the case when
all vertices of 𝑔𝐷

𝑛
are contained in one boundary edge of𝐷

𝑚
.

Otherwise, we claim that there is no 𝐷 ∈ D such that
𝑔𝐷 ⊂ 𝐷

𝑚
. Indeed, suppose 𝑔𝐷

𝑛
is contained in𝐷

𝑚
. The only

remaining case is when the two boundary edges of 𝑔𝐷
𝑛
are

contained in both of the boundary edges of 𝐷
𝑚
. Let 𝛾 be the

element of Γ sending 𝐷
𝑚
to 𝐷
𝑛
. Since 𝑔𝛾 is an isometry of

H2 sending 𝐷
𝑚
into itself and the boundary edges of 𝑔(𝐷

𝑚
)

are contained in both of the boundary edges of 𝐷
𝑚
, it sends

the geodesic segment ℓ ofminimal distance between 𝑒
𝑚
, 𝑒
𝑚+1

,
which is the intersection of the 𝑦-axis with𝐷

𝑚
, to a geodesic

segment of minimal distance between 𝑔𝛾𝑒
𝑚
,𝑔𝛾𝑒
𝑚+1

. Thus
the distance between 𝑔𝛾𝑒

𝑚
,𝑔𝛾𝑒
𝑚+1

is bounded above by the
length of ℓ ∩ 𝑔𝛾𝐷

𝑚
, which is strictly less than the length of ℓ,

which is the distance between 𝑒
𝑚
and 𝑒
𝑚+1

. This contradicts
the fact that 𝑔𝛾 is an isometry.

Therefore, all vertices except for one or two are colored
by 𝑏, and the remaining one or two vertices whose dual
generalized ideal polygon contains 𝑔(0) or 𝑔(∞) in its
interior are colored by 𝑎. Hence, by omitting one or two
vertices, one obtains a periodic coloring. Thus, 𝜙0

𝑔
is an

eventually periodic coloring.
In Figure 2, an example of 𝑔 : 𝑧 󳨃→ (𝑧 − √11)/(√10(𝑧 +

1)) is presented. In this case, there are exactly two vertices
colored by 𝑎, that is, 𝜙0

𝑔
(𝑚) = 𝑎 for𝑚 = −2, 0 and 𝜙

0

𝑔
(𝑚) = 𝑏

otherwise.

Now consider the Farey tessellation D and the corre-
sponding group Γ. The dual graph of Γ is a 3-regular tree
𝑇. Let us provide two examples of colorings given by non-
commensurable elements of Γ in Isom(H2).

Example 8. Let 𝑔 : 𝑧 󳨃→ 𝛼𝑧 with irrational 𝛼. Then 𝑔 ∉

Comm(Γ
𝑟
). Let 𝜙1

𝑔
be a coloring given by

𝜙
1

𝑔
(𝑥) =

{{

{{

{

𝑎, if ∃𝐷 ∈ D such that 𝐷
𝑥
∩ 𝑔𝐷 contains

a geodesic line,
𝑏, otherwise

(12)

for 𝑥 ∈ 𝑉𝑇 and 𝐷
𝑥
∈ D corresponding to 𝑥. A geodesic line

is contained in 𝐷
𝑥
∩ 𝑔𝐷 if only if the two ideal triangles 𝐷

𝑥

and 𝑔𝐷 have two common vertices. Since the only possible
rational vertices of 𝑔𝐷 are 0 and ∞, 𝜙1

𝑔
(𝑥) = 𝑎 if and only

if 𝐷
𝑥
corresponds to ideal triangle of vertices (0, 1,∞) or

(−1, 0,∞). Therefore, 𝜙1
𝑔
is an eventually periodic coloring,

and the coloring of the edge-indexed graph of a graph of
groups is as follows:

2121212122 11 2 1 2 1 2 1 2 1
𝑎 𝑎𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏

· · ·· · · (13)

For example, Figure 3 shows the case 𝑔 : 𝑧 󳨃→ √3𝑧.
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𝑎 𝑎

𝑏

𝑏
𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏
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Figure 3: 𝑧 󳨃→ √3𝑧.
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1
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3
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1

1
−
4

3
−
3

2
−
5

3
−
2

1
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𝑏 𝑏 𝑏

Figure 4: 𝑧 󳨃→ 𝑧 + √17.

Example 9. Let 𝑔 : 𝑧 󳨃→ 𝑧+𝛽with irrational 𝛽. Then we have
𝑔 ∉ Comm(Γ

𝑟
). Let 𝜙2

𝑔
be a coloring given by

𝜙
2

𝑔
(𝑥) =

{{

{{

{

𝑎, if there is 𝐷 ∈ D such that 𝐷
𝑥
∩ 𝑔𝐷

is not compact,
𝑏, otherwise

(14)

for 𝑥 ∈ 𝑉𝑇 and 𝐷
𝑥
∈ D corresponding to 𝑥. If 𝐷

𝑥
∩ 𝑔𝐷

is not compact, then 𝐷
𝑥
and 𝑔𝐷 have at least one common

vertex. Since all vertices of 𝑔D other than ∞ are irrational,
𝜙
2

𝑔
(𝑥) = 𝑎 if and only if 𝐷

𝑥
has the vertex of ∞, which

is the only possible common vertex of 𝐷
𝑥
with 𝑔𝐷 ∈ 𝑔D.

Therefore, 𝜙2
𝑔
is a coloring with two colors whose coloring of

the edge-indexed graph of a graph of groups is as follows:

· · ·
1 1 1
1

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

(15)

For example, Figure 4 shows the case 𝑔 : 𝑧 󳨃→ 𝑧 + √17.
We remark that this last example has the number of

colored balls up to isometry equal to 𝑛 + 2. We believe that
the colorings of this type (i.e., with the number of isometry
classes of colored balls being 𝑛+2) are the ones corresponding
to Sturmian sequences. We leave systematic studies about
them for future research.

Remark 10. We can generalize the construction in this paper
from torsion-free discrete subgroup to any discrete subgroup
with one cusp: in this generality, one should consider the
minimal subtree containing vertices not in 𝜕H2, which is
again a tree.
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