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We create some new ideas of mappings called quasi-strict 𝑓-pseudocontractions. Moreover, we also find the significant inequality
related to such mappings and firmly nonexpansive mappings within the framework of Hilbert spaces. By using the ideas of metric
𝑓-projection, we propose an iterative shrinking metric 𝑓-projection method for finding a common fixed point of a quasi-strict
𝑓-pseudocontraction and a countable family of firmly nonexpansive mappings. In addition, we provide some applications of the
main theorem to find a common solution of fixed point problems and generalized mixed equilibrium problems as well as other
related results.

1. Introduction

It is well known that the metric projection operators in
Hilbert spaces and Banach spaces play an important role
in various fields of mathematics such as functional analysis,
optimization theory, fixed point theory, nonlinear program-
ming, game theory, variational inequality, and complemen-
tarity problem (see, e.g., [1, 2]). In 1994, Alber [3] introduced
and studied the generalized projections from Hilbert spaces
to uniformly convex and uniformly smooth Banach spaces.
Moreover, Alber [1] presented some applications of the gener-
alized projections to approximately solve variational inequal-
ities and von Neumann intersection problem in Banach
spaces. In 2005, Li [2] extended the generalized projection
operator from uniformly convex and uniformly smooth
Banach spaces to reflexive Banach spaces and studied some
properties of the generalized projection operator with appli-
cations to solve the variational inequality in Banach spaces.
Later, Wu and Huang [4] introduced a new generalized 𝑓-
projection operator in Banach spaces. They extended the
definition of the generalized projection operators introduced

by [3] and proved some properties of the generalized 𝑓-
projection operator. Fan et al. [5] presented some basic results
for the generalized 𝑓-projection operator and discussed the
existence of solutions and approximation of the solutions for
generalized variational inequalities in noncompact subsets of
Banach spaces.

Let 𝐻 be a real Hilbert space; a mapping 𝑇 with domain
𝐷(𝑇) and range 𝑅(𝑇) in 𝐻 is called firmly nonexpansive if

𝑇𝑥 − 𝑇𝑦

2

≤ ⟨𝑇𝑥 − 𝑇𝑦, 𝑥 − 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) , (1)

nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (2)

Throughout this paper, 𝐼 stands for an identity mapping. The
mapping 𝑇 is said to be a strict pseudocontraction if there
exists a constant 0 ≤ 𝑘 < 1 such that
𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦


2

+ 𝑘
(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) .

(3)
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In this case,𝑇may be called a 𝑘-strict pseudocontraction.We
use 𝐹(𝑇) to denote the set of fixed points of 𝑇 (i.e. 𝐹(𝑇) =
{𝑥 ∈ 𝐷(𝑇) : 𝑇𝑥 = 𝑥}). 𝑇 is said to be a quasi-strict
pseudocontraction if the set of fixed point 𝐹(𝑇) is nonempty
and if there exists a constant 0 ≤ 𝑘 < 1 such that

𝑇𝑥 − 𝑝

2

≤
𝑥 − 𝑝


2

+ 𝑘‖𝑥 − 𝑇𝑥‖
2,

∀𝑥 ∈ 𝐷 (𝑇) , 𝑝 ∈ 𝐹 (𝑇) .
(4)

Construction of fixed points of nonexpansive mappings
via Mann’s algorithm [6] has extensively been investigated in
the literature; see, for example, [6–10] and references therein.
However, we note that Mann’s iterations have only weak
convergence even in a Hilbert space (see, e.g., [11]). Nakajo
and Takahashi [12] modified the Mann iteration method so
that strong convergence is guaranteed, later well known as
a hybrid projection iteration method. Since then, the hybrid
method has received rapid developments. For the details,
the readers are referred to papers [13–26] and the references
therein.

On the other hand, for a real Banach space 𝐸 and the dual
𝐸∗, let 𝐶 be a nonempty closed convex subset of 𝐸. Let Θ :
𝐶 × 𝐶 → R be a bifunction, let 𝜑 : 𝐶 → R be a real-valued
function, and let 𝐴 : 𝐶 → 𝐸∗ be a nonlinear mapping. The
generalized mixed equilibrium problem is to find 𝑥 ∈ 𝐶 such
that

Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (5)

The solution set of (5) is denoted by 𝐺𝑀𝐸𝑃(Θ, 𝐴, 𝜑); that is,

𝐺𝑀𝐸𝑃 (Θ,𝐴, 𝜑) = {𝑥 ∈ 𝐶 : Θ (𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩

+𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶} .

(6)

If 𝐴 = 0, the problem (5) reduces to the mixed equilibrium
problem for Θ, denoted by MEP(Θ, 𝜑), which is to find that
𝑥 ∈ 𝐶 such that

Θ(𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (7)

If Θ = 0, the problem (5) reduces to the mixed variational
inequality of Browder type, denoted by VI(𝐶, 𝐴, 𝜑), which is
to find that 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (8)

If𝐴 = 0 and𝜑 = 0, the problem (5) reduces to the equilibrium
problem for Θ (for short, EP), denoted by EP(Θ), which is to
find that 𝑥 ∈ 𝐶 such that

Θ(𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (9)

If Θ = 0 and 𝐴 = 0, the problem (5) reduces to the
minimization problem for 𝜑, denoted by Arg min(𝜑), which
is to find that 𝑥 ∈ 𝐶 such that

𝜑 (𝑥) ≤ 𝜑 (𝑦) , ∀𝑦 ∈ 𝐶. (10)

The previous formulation, (8), was shown in [27] to
cover monotone inclusion problems, saddle point problems,

variational inequality problems, minimization problems,
optimization problems, vector equilibrium problems, and
Nash equilibria in noncooperative games. In addition, there
are several other problems, for example, the complementarity
problem, fixed point problem, and the optimization problem,
which can also be written in the form of (9). However, (5)
is very general; it covers the problems mentioned above as
special cases.

In 2007, S. T. Takahashi andW.T. Takahashi [28] andTada
and Takahashi [29, 30] proved weak and strong convergence
theorems for finding a common element of the set of solutions
of the equilibrium problem (9) and the set of fixed points
of a nonexpansive mapping in a Hilbert space. Takahashi et
al. [22] studied a strong convergence theorem by the hybrid
method for a family of nonexpansive mappings in Hilbert
spaces as follows: 𝑥

0
∈ 𝐻, 𝐶

1
= 𝐶, and 𝑥

1
= 𝑃
𝐶
1

𝑥
0
, and

let

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇
𝑛
𝑥
𝑛
,

𝐶
𝑛+1

= 𝑧 ∈ 𝐶
𝑛
:
𝑦𝑛 − 𝑧

 ≤
𝑥𝑛 − 𝑧

 ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, 𝑛 ∈ N,

(11)

where 0 ≤ 𝛼
𝑛

≤ 𝑎 < 1, for all 𝑛 ∈ N, and {𝑇
𝑛
}

is a sequence of nonexpansive mappings of 𝐶 into itself
such that ⋂

∞

𝑛=1
𝐹(𝑇
𝑛
) ̸= 𝜙. They proved that if {𝑇

𝑛
} satisfies

some appropriate conditions, then {𝑥
𝑛
} converges strongly to

𝑃
⋂
∞

𝑛=1
𝐹(𝑇
𝑛
)
𝑥
0
.

Motivated by Takahashi et al. [22], Takahashi and Zem-
bayashi [31] (see also [32]) introduced and proved a hybrid
projection algorithm for solving equilibrium problems and
fixed point problems of a relatively nonexpansive mapping
within the framework of a uniformly smooth and uniformly
convex Banach space.

In 2011, Saewan and Kumam [33] introduced a new
hybrid projection method based on the modified Mann
iterative scheme by the generalized 𝑓-projection operator for
a countable family of relatively quasi-nonexpansivemappings
and the solutions of the system of generalized mixed equilib-
rium problems. Later, they [34] also studied the new hybrid
Ishikawa iteration process by the generalized 𝑓-projection
operator for finding a common element of the fixed point
set for two countable families of weak relatively nonexpansive
mappings and the set of solutions of the system of generalized
Ky Fan inequalities in a uniformly convex and uniformly
smooth Banach space.

Recently, Li et al. [35] have studied the following hybrid
iterative scheme for a relatively nonexpansive mapping
by using the generalized 𝑓-projection operator in Banach
spaces:

𝑥
0
∈ 𝐶, 𝐶

0
= 𝐶,

𝑦
𝑛
= 𝐽−1 (𝛼

𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇𝑥
𝑛
) ,

𝐶
𝑛+1

= {𝑤 ∈ 𝐶
𝑛
: 𝐺 (𝑤, 𝐽𝑦

𝑛
) ≤ 𝐺 (𝑤, 𝐽𝑥

𝑛
)} ,

𝑥
𝑛+1

= ∏
𝑓

𝐶
𝑛+1

𝑥
0
, 𝑛 ≥ 1.

(12)

Under some appropriate assumptions, they obtained strong
convergence theorems in Banach spaces.
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Motivated and inspired by the work mentioned above, in
this paper, we are interested to study our theorems within the
framework of a real Hibert space, and we create some new
ideas of mappings called quasi-strict 𝑓-pseudocontractions.
Moreover, we also find the significant inequality related to
suchmappings and firmly nonexpansivemappingswithin the
framework of Hilbert spaces. By using the ideas of metric
𝑓-projection, we propose an iterative shrinking metric 𝑓-
projection method for find a common fixed point of an
quasi-strict 𝑓-pseudocontraction and a countable family of
firmly nonexpansivemappings. In addition, we provide some
applications of the main theorem to finding a common
solution of fixed point problems and generalized mixed
equilibrium problems as well as other related results.

2. Preliminaries

In this section, some definitions are provided, and some
relevant lemmas which are useful to prove in the following
section are collected. Most of them are known, and others are
not hard to find or understand their proofs. Throughout this
paper, we will use the notation ⇀ for weak convergence and
→ for strong convergence.

Lemma 1 (see Takahashi [36]). Let {𝑎
𝑛
} be a sequence of

real numbers. Then, lim
𝑛→∞

𝑎
𝑛

= 0 if and only if, for any
subsequence {𝑎

𝑛
𝑖

} of {𝑎
𝑛
}, there exists a subsequence {𝑎

𝑛
𝑖𝑗

} of
{𝑎
𝑛
𝑖

} such that lim
𝑗→∞

𝑎
𝑛
𝑖𝑗

= 0.

Definition 2 (see [37–40]). Let 𝐶 be a nonempty, closed, and
convex subset of a Banach space 𝐸, and let {𝑇

𝑛
} be a sequence

of mappings of 𝐶 into itself such that ⋂
∞

𝑛=1
𝐹(𝑇
𝑛
) ̸= 0. Then,

{𝑇
𝑛
} is said to satisfy the NST-condition if, for each bounded

sequence {𝑧
𝑛
} ⊂ 𝐶,

lim
𝑛→∞

𝑧𝑛 − 𝑇
𝑛
𝑧
𝑛

 = 0 (13)

implies that 𝜔
𝑤
(𝑧
𝑛
) ⊂ ⋂

∞

𝑛=1
𝐹(𝑇
𝑛
), where 𝜔

𝑤
(𝑧
𝑛
) is the set of

all weak cluster points of {𝑧
𝑛
} (i.e., 𝜔

𝑤
(𝑧
𝑛
) = {𝑧 | ∃{𝑧

𝑛
𝑖

} ⊂
{𝑧
𝑛
} such that 𝑧

𝑛
𝑖

⇀ 𝑧}).

Let 𝐻 be a real Hilbert space, and let 𝐶 be nonempty,
closed, and convex subset of 𝐻. Let (⋅, ⋅)

𝑓
: 𝐶 × 𝐻 →

(−∞, +∞] be a functional defined as follows (see Li et al. [35]
(see also [4])):

(𝑦, 𝑥)
𝑓

:=
𝑦


2

− 2 ⟨𝑦, 𝑥⟩ + ‖𝑥‖
2

+ 2𝜌𝑓 (𝑦) =
𝑦 − 𝑥


2

+ 2𝜌𝑓 (𝑦) ,
(14)

where 𝑦 ∈ 𝐶, 𝑥 ∈ 𝐻, 𝜌 is positive number, and 𝑓 : 𝐶 →
(−∞, +∞] is proper, convex, and lower semicontinuous.
From the definitions of (⋅, ⋅)

𝑓
and 𝑓, it is easy to see the

following properties:

(i) (𝑦, 𝑥)
𝑓
is convex and continuous with respect to 𝑥

when 𝑦 is fixed;
(ii) (𝑦, 𝑥)

𝑓
is convex and lower semicontinuous with

respect to 𝑦 when 𝑥 is fixed.

Definition 3 (see Li et al. [35] (see also [4])). Let 𝐻 be a real
Hilbert space, and let 𝐶 be nonempty, closed, and convex
subset of 𝐻. We say that 𝑃

𝑓

𝐶
: 𝐻 → 2𝐶 is a metric 𝑓-

projection operator if

𝑃
𝑓

𝐶
𝑥 = {𝑢 ∈ 𝐶 | (𝑢, 𝑥)

𝑓
= inf
𝜉∈𝐶

(𝜉, 𝑥)
𝑓
} , ∀𝑥 ∈ 𝐻. (15)

Lemma 4 (see Li et al. [35, Lemma 3.1(ii)]). Let 𝐻 be a real
Hilbert space, and let 𝜙 ̸= 𝐶 ⊂ 𝐻. Then, for every 𝑥 ∈ 𝐻, 𝑥 =

𝑃
𝑓

𝐶
𝑥 if and only if

⟨𝑥 − 𝑦, 𝑥 − 𝑥⟩ + 𝜌𝑓 (𝑦) − 𝜌𝑓 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (16)

Lemma 5 (see Li et al. [35, Lemma 3.2]). Let 𝐻 be a real
Hilbert space, let 𝐶 be a nonempty, closed, and convex subset
of 𝐻, and let 𝑥 ∈ 𝐻, 𝑥 = 𝑃

𝑓

𝐶
𝑥. Then,

𝑦 − 𝑥

2

+ (𝑥, 𝑥)
𝑓

⩽ (𝑦, 𝑥)
𝑓
, ∀𝑦 ∈ 𝐶. (17)

Lemma 6 (see Deimling [41]). Let 𝐻 be a real Hilbert space,
and 𝑓 : 𝐻 → R ∪ {+∞} be a lower semicontinuous convex
functional. Then, there exist 𝑧 ∈ 𝐻 and 𝛼 ∈ R such that

𝑓 (𝑥) ≥ ⟨𝑥, 𝑧⟩ + 𝛼, ∀𝑥 ∈ 𝐻. (18)

Due to the properties of 𝑓, we have the motivation and
ideas to create a new type of mappings which is general and
covers a quasi-strict pseud-contraction as follows.

Definition 7. Let 𝐻 be a real Hilbert space, and a mapping
𝑇 with domain 𝐷(𝑇) and range 𝑅(𝑇) in 𝐻 is called quasi-
strict 𝑓-pseudocontraction if the set of fixed points 𝐹(𝑇) is
nonempty and if there exists a constant 0 ≤ 𝑘 < 1 such that,
for each 𝑝 ∈ 𝐹(𝑇),

(𝑝, 𝑇𝑥)
𝑓

⩽ (𝑝, 𝑥)
𝑓
+ 𝑘 ((𝑥, 𝑇𝑥)

𝑓
− 2𝜌𝑓 (𝑝)) , ∀𝑥 ∈ 𝐷 (𝑇) .

(19)

It is obvious from the previous definition that (19) is
equivalent to

𝑝 − 𝑇𝑥

2

≤
𝑝 − 𝑥


2

+ 𝑘‖𝑥 − 𝑇𝑥‖
2

+ 2𝑘𝜌 (𝑓 (𝑥) − 𝑓 (𝑝)) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) .

(20)

Definition 8. Amapping𝑇 : 𝐶 → 𝐶 is said to be closed if, for
any sequence {𝑥

𝑛
} ⊂ 𝐶 with 𝑥

𝑛
→ 𝑥 and 𝑇𝑥

𝑛
→ 𝑦, 𝑥 = 𝑦.

Example 9. Let 𝑇 : 𝐻 → 𝐻 be a mapping defined by 𝑇𝑥 =
(3/2)𝑥, for all 𝑥 ∈ 𝐻. Then, it is easy to see that 𝐹(𝑇) = {𝑥 ∈
𝐻 : 𝑇𝑥 = 𝑥} = {0}. Moreover, it is found that

‖0 − 𝑇𝑥‖
2 =



3

2
𝑥


2

=
9

4
‖𝑥‖
2 = ‖𝑥‖

2 +
5

4
‖𝑥‖
2

≤ ‖𝑥‖
2 +

3

2
‖𝑥‖
2 = ‖𝑥‖

2 + (
1

6
+

8

6
) ‖𝑥‖
2



4 Abstract and Applied Analysis

= ‖0 − 𝑥‖
2 +

2

3


𝑥 −

3

2
𝑥


2

+ 2 (
2

3
) (1) (‖𝑥‖

2 − ‖0‖
2)

= ‖0 − 𝑥‖
2 + 𝑘‖𝑥 − 𝑇𝑥‖

2 + 2𝑘𝜌 (𝑓 (𝑥) − 𝑓 (0)) ,

(21)

for all 𝑥 ∈ 𝐻, where 𝑘 = 2/3, 𝜌 = 1, and 𝑓 = ‖ ⋅ ‖2.
Furthermore, if {𝑥

𝑛
} ⊂ 𝐻 such that 𝑥

𝑛
→ 𝑥, then we have

𝑇𝑥
𝑛
= (3/2)𝑥

𝑛
→ (3/2)𝑥 and 𝑇𝑥 = (3/2)𝑥. This means that

𝑇 is closed and quasi-strict 𝑓-pseudocontraction.

For solving the equilibrium problem for a bifunction Θ :
𝐶 × 𝐶 → R, let us assume that Θ satisfies the following
conditions:

(A1) Θ(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;
(A2) Θ is monotone; that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤

0, for all 𝑥, 𝑦 ∈ 𝐶;
(A3) for each𝑥, 𝑦, 𝑧 ∈ 𝐶, lim

𝑡↓0
Θ(𝑡𝑧+(1−𝑡)𝑥, 𝑦) ≤ Θ(𝑥, 𝑦);

(A4) for each 𝑥 ∈ 𝐶, 𝑦 → Θ(𝑥, 𝑦) is convex and lower
semicontinuous.

Lemma 10 (see [27]). Let 𝐶 be a nonempty closed convex
subset of𝐻, and letΘ be a bifunction of𝐶×𝐶 intoR satisfying
(A1)–(A4). Let 𝑟 > 0 and 𝑥 ∈ 𝐻. Then, there exists 𝑧 ∈ 𝐶
such that

Θ(𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (22)

Lemma 11 (see [32]). Let𝐶 be a closed convex subset of𝐻 and
letΘ be a bifunction from 𝐶×𝐶 toR satisfying (A1)–(A4). For
𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping 𝑇

𝑟
: 𝐻 → 𝐶 as follows:

𝑇
𝑟
𝑥 = {𝑧 ∈ 𝐶 : Θ (𝑧, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(23)

for all 𝑥 ∈ 𝐶. Then, the following hold:

(i) 𝑇
𝑟
is single-valued;

(ii) 𝑇
𝑟
is firmly nonexpansive-typemapping; that is, for any

𝑥, 𝑦 ∈ 𝐻, ⟨𝑇
𝑟
𝑥−𝑇
𝑟
𝑦, 𝑇
𝑟
𝑥−𝑇
𝑟
𝑦⟩ ≤ ⟨𝑇

𝑟
𝑥−𝑇
𝑟
𝑦, 𝑥−𝑦⟩;

(iii) 𝐹(𝑇
𝑟
) = 𝐸𝑃(Θ);

(iv) 𝐸𝑃(Θ) is closed and convex;
(v) ‖𝑝 − 𝑇

𝑟
𝑥‖2+‖𝑇

𝑟
𝑥 − 𝑥‖2 ≤ ‖𝑝 − 𝑥‖2, for all𝑥 ∈ 𝐻, 𝑝 ∈

𝐹(𝑇
𝑟
).

Lemma 12 (see [42]). Let 𝐶 be a closed convex subset of a
smooth, strictly convex, and reflexive Hilbert space 𝐻. Let 𝐴 :
𝐶 → 𝐶 be a continuous and monotone mapping, let 𝜑 : 𝐶 →
R be a lower semicontinuous and convex function, and letΘ be
a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4). For 𝑟 > 0
and 𝑥 ∈ 𝐸, then, there exists 𝑢 ∈ 𝐶 such that

Θ(𝑢, 𝑦) + ⟨𝐴𝑢, 𝑦 − 𝑢⟩ + 𝜑 (𝑦) − 𝜑 (𝑢)

+
1

𝑟
⟨𝑦 − 𝑢, 𝑢 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(24)

Define a mapping 𝐾
𝑟
: 𝐶 → 𝐶 as follows:

𝐾
𝑟
(𝑥) = {𝑢 ∈ 𝐶 : Θ (𝑢, 𝑦) + ⟨𝐴𝑢, 𝑦 − 𝑢⟩ + 𝜑 (𝑦)

−𝜑 (𝑢) +
1

𝑟
⟨𝑦 − 𝑢, 𝑢 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(25)

for all 𝑥 ∈ 𝐶. Then, the following conclusions hold:

(1) 𝐾
𝑟
is single-valued;

(2) 𝐾
𝑟
is firmly nonexpansive type; that is, for all 𝑥, 𝑦 ∈ 𝐸,

⟨𝐾
𝑟
𝑥 − 𝐾

𝑟
𝑦,𝐾
𝑟
𝑥 − 𝐾

𝑟
𝑦⟩ ≤ ⟨𝐾

𝑟
𝑥 − 𝐾

𝑟
𝑦, 𝑥 − 𝑦⟩;

(3) 𝐹(𝐾
𝑟
) = 𝐺𝑀𝐸𝑃(Θ, 𝐴, 𝜑);

(4) 𝐺𝑀𝐸𝑃(Θ, 𝐴, 𝜑) is closed and convex;

(5) ‖𝑝 − 𝐾
𝑟
𝑥‖2 + ‖𝐾

𝑟
𝑥 − 𝑥‖2 ≤ ‖𝑝 − 𝑥‖2, for all 𝑥 ∈

𝐻, 𝑝 ∈ 𝐹(𝐾
𝑟
).

Lemma 13. Let𝐻 be a real Hilbert space, and let𝐾 : 𝐷(𝐾) →
𝑅(𝐾) be a mapping. Then, the following are equivalent:

(i) 𝐾 is firmly nonexpansive (i.e., ‖𝐾𝑥 − 𝐾𝑦‖2 ≤ ⟨𝐾𝑥 −
𝐾𝑦, 𝑥 − 𝑦⟩, for all 𝑥, 𝑦 ∈ 𝐷(𝐾));

(ii) ‖𝐾𝑥 − 𝐾𝑦‖2 ≤ ‖𝑥 − 𝑦‖2 − ‖(𝐼 − 𝐾)𝑥 − (𝐼 − 𝐾)𝑦‖2, for
all 𝑥, 𝑦 ∈ 𝐷(𝐾).

Proof. For each 𝑥, 𝑦 ∈ 𝐷(𝐾), we notice that

𝐾𝑥 − 𝐾𝑦

2

≤ ⟨𝐾𝑥 − 𝐾𝑦, 𝑥 − 𝑦⟩

⇐⇒
𝐾𝑥 − 𝐾𝑦


2

≤
𝑥 − 𝑦


2

−
𝑥 − 𝑦


2

+ ⟨𝑥 − 𝑦,𝐾𝑥 − 𝐾𝑦⟩

+ ⟨𝐾𝑥 − 𝐾𝑦, 𝑥 − 𝑦⟩ −
𝐾𝑥 − 𝐾𝑦


2

⇐⇒
𝐾𝑥 − 𝐾𝑦


2

≤
𝑥 − 𝑦


2

− ⟨𝑥 − 𝑦, (𝐼 − 𝐾) 𝑥 − (𝐼 − 𝐾) 𝑦⟩

+ ⟨𝐾𝑥 − 𝐾𝑦, (𝐼 − 𝐾) 𝑥 − (𝐼 − 𝐾) 𝑦⟩

⇐⇒
𝐾𝑥 − 𝐾𝑦


2

≤
𝑥 − 𝑦


2

− ⟨(𝐼 − 𝐾) 𝑥 − (𝐼 − 𝐾) 𝑦, (𝐼 − 𝐾) 𝑥 − (𝐼 − 𝐾) 𝑦⟩

⇐⇒
𝐾𝑥 − 𝐾𝑦


2

≤
𝑥 − 𝑦


2

−
(𝐼 − 𝐾) 𝑥 − (𝐼 − 𝐾) 𝑦


2

.

(26)

The proof is complete.

The following lemma is important since it provides
the significant inequality related to quasi-strict 𝑓-
pseudocontractions and firmly nonexpansive mappings
within the framework of Hilbert spaces.

Lemma 14. Let 𝐶 be a nonempty, closed, convex subset of
real Hilbert spaces 𝐻. Let 𝑇 : 𝐶 → 𝐶 be a quasi-strict
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𝑓-pseudocontraction, and let 𝐾 : 𝐶 → 𝐶 be a firmly
nonexpansive mapping such thatΩ := 𝐹(𝑇) ∩ 𝐹(𝐾) ̸= 0. Then,

‖𝑥 − 𝐾𝑇𝑥‖
2 + ‖𝐾𝑇𝑥 − 𝑇𝑥‖

2

≤
2

1 − 𝑘
⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩ + 2 ⟨𝑥 − 𝑝, 𝑇𝑥 − 𝐾𝑇𝑥⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥) − 𝑓 (𝑝)) ,

(27)

for all 𝑥 ∈ 𝐶 and 𝑝 ∈ Ω.

Proof. Let 𝑥 ∈ 𝐶 and 𝑝 ∈ Ω. By the quasi-strict 𝑓-
pseudocontractility of 𝑇, we have that

(𝑝, 𝑇𝑥)
𝑓

⩽ (𝑝, 𝑥)
𝑓
+ 𝑘 ((𝑥, 𝑇𝑥)

𝑓
− 2𝜌𝑓 (𝑝))

⇐⇒
𝑝 − 𝑇𝑥


2

≤
𝑝 − 𝑥


2

+ 𝑘‖𝑥 − 𝑇𝑥‖
2 + 2𝑘𝜌 (𝑓 (𝑥) − 𝑓 (𝑝))

⇐⇒
𝑝 − 𝑥


2

+ 2 ⟨𝑝 − 𝑥, 𝑥 − 𝑇𝑥⟩ + ‖𝑥 − 𝑇𝑥‖
2

≤
𝑝 − 𝑥


2

+ 𝑘‖𝑥 − 𝑇𝑥‖
2 + 2𝑘𝜌 (𝑓 (𝑥) − 𝑓 (𝑝))

⇐⇒ (1 − 𝑘) ‖𝑥 − 𝑇𝑥‖
2 ≤ 2 ⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩

+ 2𝑘𝜌 (𝑓 (𝑥) − 𝑓 (𝑝))

⇐⇒ ‖𝑥 − 𝑇𝑥‖
2 ≤

2

1 − 𝑘
⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥) − 𝑓 (𝑝)) .

(28)

It follows from Lemma 13 and (28) that

𝑝 − 𝑥

2

+ ‖𝑥 − 𝐾𝑇𝑥‖
2 + 2 ⟨𝑝 − 𝑥, 𝑥 − 𝐾𝑇𝑥⟩

=
𝑝 − 𝐾𝑇𝑥


2

≤
𝑝 − 𝑇𝑥


2

− ‖𝐾𝑇𝑥 − 𝑇𝑥‖
2

= (𝑝, 𝑇𝑥)
𝑓
− 2𝜌𝑓 (𝑝) − ‖𝐾𝑇𝑥 − 𝑇𝑥‖

2

≤ (𝑝, 𝑥)
𝑓
+ 𝑘 ((𝑥, 𝑇𝑥)

𝑓
− 2𝜌𝑓 (𝑝))

− 2𝜌𝑓 (𝑝) − ‖𝐾𝑇𝑥 − 𝑇𝑥‖
2

= ((𝑝, 𝑥)
𝑓
− 2𝜌𝑓 (𝑝)) + 𝑘‖𝑥 − 𝑇𝑥‖

2

+ 2𝑘𝜌 (𝑓 (𝑥) − 𝑓 (𝑝)) − ‖𝐾𝑇𝑥 − 𝑇𝑥‖
2

≤
𝑝 − 𝑥


2

+ 𝑘(
2

1 − 𝑘
⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥) − 𝑓 (𝑝)))

+ 2𝑘𝜌 (𝑓 (𝑥) − 𝑓 (𝑝)) − ‖𝐾𝑇𝑥 − 𝑇𝑥‖
2

≤
𝑝 − 𝑥


2

+
2𝑘

1 − 𝑘
⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩

+
2𝑘2𝜌

1 − 𝑘
(𝑓 (𝑥) − 𝑓 (𝑝))

+ 2𝑘𝜌 (𝑓 (𝑥) − 𝑓 (𝑝)) − ‖𝐾𝑇𝑥 − 𝑇𝑥‖
2,

(29)

and, then,

‖𝑥 − 𝐾𝑇𝑥‖
2 + ‖𝐾𝑇𝑥 − 𝑇𝑥‖

2

≤
2𝑘

1 − 𝑘
⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩ + 2 ⟨𝑥 − 𝑝, 𝑥 − 𝐾𝑇𝑥⟩

+ [
2𝑘2𝜌

1 − 𝑘
+ 2𝑘𝜌] (𝑓 (𝑥) − 𝑓 (𝑝))

=
2𝑘

1 − 𝑘
⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩ + 2 ⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩

+ 2 ⟨𝑥 − 𝑝, 𝑇𝑥 − 𝐾𝑇𝑥⟩

+ 2𝑘𝜌 [
𝑘

1 − 𝑘
+ 1] (𝑓 (𝑥) − 𝑓 (𝑝))

=
2

1 − 𝑘
⟨𝑥 − 𝑝, 𝑥 − 𝑇𝑥⟩ + 2 ⟨𝑥 − 𝑝, 𝑇𝑥 − 𝐾𝑇𝑥⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥) − 𝑓 (𝑝)) .

(30)

This completes the proof.

3. Main Result

In this section, some available properties of a quasi-strict 𝑓-
pseudocontraction 𝑇 are used to prove that the set of fixed
points 𝐹(𝑇) is closed and convex. An iterative shrinking
metric 𝑓-projection method is provided in order to find a
common fixed point of a quasi-strict 𝑓-pseudocontraction
and a countable family of firmly nonexpansive mappings.

Lemma 15. Let 𝐶 be a nonempty, closed, convex subset of a
real Hilbert space 𝐻, and let 𝑇 : 𝐶 → 𝐶 be a quasi-strict 𝑓-
pseudocontraction. Then, the fixed point set 𝐹(𝑇) of 𝑇 is closed
and convex.

Proof. Let {𝑝
𝑛
} be a sequence in 𝐹(𝑇) such that 𝑝

𝑛
→ 𝑝 ∈ 𝐶

as 𝑛 → ∞. It follows from (28) that

(𝑝
𝑛
, 𝑇𝑝)
𝑓

⩽ (𝑝
𝑛
, 𝑝)
𝑓
+ 𝑘 ((𝑝, 𝑇𝑝)

𝑓
− 2𝜌𝑓 (𝑝

𝑛
))

⇐⇒
𝑝 − 𝑇𝑝


2

≤
2

1 − 𝑘
⟨𝑝 − 𝑝

𝑛
, 𝑝 − 𝑇𝑝⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑝) − 𝑓 (𝑝

𝑛
)) .

(31)

Taking lim sup
𝑛→∞

on both sides of (31), so we have that

𝑝 − 𝑇𝑝

2

= lim sup
𝑛→∞

𝑝 − 𝑇𝑝

2

≤ lim sup
𝑛→∞

(
2

1 − 𝑘
⟨𝑝 − 𝑝

𝑛
, 𝑝 − 𝑇𝑝⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑝) − 𝑓 (𝑝

𝑛
)))

≤
2

1 − 𝑘
lim sup
𝑛→∞

⟨𝑝 − 𝑝
𝑛
, 𝑝 − 𝑇𝑝⟩

+
2𝑘𝜌

1 − 𝑘
lim sup
𝑛→∞

(𝑓 (𝑝) − 𝑓 (𝑝
𝑛
))
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≤
2𝑘𝜌

1 − 𝑘
(lim sup
𝑛→∞

𝑓 (𝑝) + lim sup
𝑛→∞

(−𝑓 (𝑝
𝑛
)))

=
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑝) − lim inf

𝑛→∞
𝑓 (𝑝
𝑛
)) ≤ 0.

(32)

This means that 𝑝 = 𝑇𝑝.
We next show that 𝐹(𝑇) is convex. For arbitrary 𝑝

1
, 𝑝
2
∈

𝐹(𝑇) and 𝑡 ∈ (0, 1), we let𝑝
𝑡
= 𝑡𝑝
1
+(1−𝑡)𝑝

2
. By the definition

of 𝑇, we have that

(𝑝
1
, 𝑇𝑝
𝑡
)
𝑓

≤ (𝑝
1
, 𝑝
𝑡
)
𝑓
+ 𝑘 ((𝑝

𝑡
, 𝑇𝑝
𝑡
)
𝑓
− 2𝜌𝑓 (𝑝

1
)) ,

(𝑝
2
, 𝑇𝑝
𝑡
)
𝑓

≤ (𝑝
2
, 𝑝
𝑡
)
𝑓
+ 𝑘 ((𝑝

𝑡
, 𝑇𝑝
𝑡
)
𝑓
− 2𝜌𝑓 (𝑝

2
)) .

(33)

By (28), it is easy to see that (33) are equivalent to

𝑝𝑡 − 𝑇𝑝
𝑡


2

≤
2

1 − 𝑘
⟨𝑝
𝑡
− 𝑝
1
, 𝑝
𝑡
− 𝑇𝑝
𝑡
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑝
𝑡
) − 𝑓 (𝑝

1
)) ,

(34)

𝑝𝑡 − 𝑇𝑝
𝑡


2

≤
2

1 − 𝑘
⟨𝑝
𝑡
− 𝑝
2
, 𝑝
𝑡
− 𝑇𝑝
𝑡
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑝
𝑡
) − 𝑓 (𝑝

2
)) ,

(35)

respectively. Multiplying by 𝑡 and (1 − 𝑡) on both sides of
(34) and (35), respectively, and adding the two inequalities,
we have that

𝑝𝑡 − 𝑇𝑝
𝑡


2

≤
2

1 − 𝑘
⟨𝑝
𝑡
− (𝑡𝑝
1
+ (1 − 𝑡) 𝑝

2
) , 𝑝
𝑡
− 𝑇𝑝
𝑡
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑝
𝑡
) − 𝑡𝑓 (𝑝

1
) − (1 − 𝑡) 𝑓 (𝑝

2
))

=
2

1 − 𝑘
⟨𝑝
𝑡
− 𝑝
𝑡
, 𝑝
𝑡
− 𝑇𝑝
𝑡
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑡𝑝

1
+ (1 − 𝑡) 𝑝

2
)

−𝑡𝑓 (𝑝
1
) − (1 − 𝑡) 𝑓 (𝑝

2
))

≤
2𝑘𝜌

1 − 𝑘
(𝑡𝑓 (𝑝

1
) + (1 − 𝑡) 𝑓 (𝑝

2
)

−𝑡𝑓 (𝑝
1
) − (1 − 𝑡) 𝑓 (𝑝

2
)) = 0.

(36)

Hence, 𝑇𝑝
𝑡
= 𝑝
𝑡
. This complete the proof.

Theorem 16. Let 𝐻 be a real Hilbert space, 𝐶 a nonempty,
closed, be convex subset of 𝐸, let 𝑇 be a closed and quasi-
strict 𝑓-pseudocontraction from 𝐶 into itself, and let {𝐾

𝑛
}∞
𝑛=1

be a countable family of firmly nonexpansive mappings from
𝐶 into itself which satisfies the 𝑁𝑆𝑇-condition such that Ω :=

𝐹(𝑇) ∩ ⋂
∞

𝑛=1
𝐹(𝐾
𝑛
) ̸= 0. Define a sequence {𝑥

𝑛
} in 𝐶 by the

following algorithm:

𝑥
0
∈ 𝐻, chosen arbitrarily,

𝐶
1
= 𝐶,

𝑥
1
= 𝑃
𝑓

𝐶
1

𝑥
0
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
|
𝑥𝑛 − 𝐾

𝑛
𝑇𝑥
𝑛


2

+
𝐾𝑛𝑇𝑥

𝑛
− 𝑇𝑥
𝑛


2

≤
2

1 − 𝑘
⟨𝑥
𝑛
− 𝑧, 𝑥

𝑛
− 𝑇𝑥
𝑛
⟩

+ 2 ⟨𝑥
𝑛
− 𝑧, 𝑇𝑥

𝑛
− 𝐾
𝑛
𝑇𝑥
𝑛
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥
𝑛
) − 𝑓 (𝑧))}

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛+1

𝑥
0
.

(37)

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑃

𝑓

Ω
𝑥
0
.

Proof. The proof is divided into six steps.

Step 1. Show that 𝐶
𝑛
is closed and convex, for all 𝑛 ≥ 1.

For 𝑛 = 1, 𝐶
1
= 𝐶 is closed and convex. Assume that 𝐶

𝑖
is

closed and convex for some 𝑖 ∈ N. For 𝑧 ∈ 𝐶
𝑖+1

, we have that
𝑥𝑖 − 𝐾

𝑖
𝑇𝑥
𝑖


2

+
𝐾𝑖𝑇𝑥

𝑖
− 𝑇𝑥
𝑖


2

≤
2

1 − 𝑘
⟨𝑥
𝑖
− 𝑧, 𝑥

𝑖
− 𝑇𝑥
𝑖
⟩ + 2 ⟨𝑥

𝑖
− 𝑧, 𝑇𝑥

𝑖
− 𝐾𝑇𝑥

𝑖
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥
𝑖
) − 𝑓 (𝑧)) .

(38)

It is not hard to see that the continuity and linearity of
⟨⋅, 𝑥
𝑖
− 𝑇𝑥
𝑖
⟩ and ⟨⋅, 𝑇𝑥

𝑖
− 𝐾𝑇𝑥

𝑖
⟩ together with the lower

semicontinuity and convexity of𝑓 allow𝐶
𝑖+1

to be closed and
convex. Then, for all 𝑛 ≥ 1, 𝐶

𝑛
is closed and convex.

Step 2. Show that Ω ⊂ ⋂
∞

𝑛=1
𝐶
𝑛
:= 𝐷.

It is obvious that Ω := 𝐹(𝑇) ∩ ⋂
∞

𝑛=1
𝐹(𝐾
𝑛
) ⊂ 𝐶 = 𝐶

1
.

Suppose that Ω ⊂ 𝐶
𝑖
for some 𝑖 ∈ N. For any 𝑝 ∈ Ω, we have

𝑝 ∈ 𝐶
𝑖
, and by Lemma 14 we obtain that

𝑥𝑖 − 𝐾
𝑖
𝑇𝑥
𝑖


2

+
𝐾𝑖𝑇𝑥

𝑖
− 𝑇𝑥
𝑖


2

≤
2

1 − 𝑘
⟨𝑥
𝑖
− 𝑝, 𝑥

𝑖
− 𝑇𝑥
𝑖
⟩ + 2 ⟨𝑥

𝑖
− 𝑝, 𝑇𝑥

𝑖
− 𝐾𝑇𝑥

𝑖
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥
𝑖
) − 𝑓 (𝑝)) .

(39)

Thismeans that𝑝 ∈ 𝐶
𝑖+1

. Bymathematical induction,Ω ⊂ 𝐶
𝑛

for all 𝑛 ≥ 1. Therefore, Ω ⊂ ⋂
∞

𝑛=1
𝐶
𝑛
:= 𝐷 ̸= 0.

Step 3. Show that {𝑥
𝑛
} is bounded and that the

lim
𝑛→∞

(𝑥
𝑛
, 𝑥
0
)
𝑓
exists.

Since 𝑓 : 𝑋 → R is a convex and lower semicontinuous
mapping, applying Lemma 6, we see that there exist 𝑧 ∈ 𝐻
and 𝛼 ∈ R such that

𝑓 (𝑦) ≥ ⟨𝑦, 𝑧⟩ + 𝛼, ∀𝑦 ∈ 𝐻. (40)



Abstract and Applied Analysis 7

It follows that

(𝑥
𝑛
, 𝑥
0
)
𝑓

=
𝑥𝑛


2

− 2⟨𝑥
𝑛
, 𝑥
0
⟩ +

𝑥0

2

+ 2𝜌𝑓 (𝑥
𝑛
)

≥
𝑥𝑛


2

− 2 ⟨𝑥
𝑛
, 𝑥
0
⟩ +

𝑥0

2

+ 2𝜌 ⟨𝑥
𝑛
, 𝑧⟩ + 2𝜌𝛼

=
𝑥𝑛


2

− 2 ⟨𝑥
𝑛
, 𝑥
0
− 𝜌𝑧⟩ +

𝑥0

2

+ 2𝜌𝛼

≥
𝑥𝑛


2

− 2
𝑥0 − 𝜌𝑧


𝑥𝑛

 +
𝑥0


2

+ 2𝜌𝛼

= (
𝑥𝑛

 −
𝑥0 − 𝜌𝑧

)
2

+
𝑥0


2

−
𝑥0 − 𝜌𝑧


2

+ 2𝜌𝛼.

(41)

Since 𝑥
𝑛
= 𝑃
𝑓

𝐶
𝑛

𝑥
0
, it follows from (41) that

𝑥0

2

−
𝑥0 − 𝜌𝑧

 + 2𝜌𝛼

≤ (
𝑥𝑛

 −
𝑥0 − 𝜌𝑧

)
2

+
𝑥0


2

−
𝑥0 − 𝜌𝑧

 + 2𝜌𝛼

≤ (𝑥
𝑛
, 𝑥
0
)
𝑓

= (𝑃
𝑓

𝐶
𝑛

(𝑥
0
), 𝑥
0
)
𝑓

= inf
𝜉∈𝐶
𝑛

(𝜉, 𝑥
0
)
𝑓

≤ (𝑢, 𝑥
0
)
𝑓

(42)

for each 𝑢 ∈ Ω. This implies that {𝑥
𝑛
} and (𝑥

𝑛
, 𝑥
0
)
𝑓
are

bounded. By the fact that 𝑥
𝑛+1

∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
and Lemma 5,

we obtain that
𝑥𝑛+1 − 𝑥

𝑛


2

+ (𝑥
𝑛
, 𝑥
0
)
𝑓

≤ (𝑥
𝑛+1

, 𝑥
0
)
𝑓
. (43)

Since ‖𝑥
𝑛+1

− 𝑥
𝑛
‖2 ≥ 0, {(𝑥

𝑛
, 𝑥
0
)
𝑓
} is nondecreasing. There-

fore, the limit of {(𝑥
𝑛
, 𝑥
0
)
𝑓
} exists.

Step 4. Show that 𝑥
𝑛

→ 𝑝 as 𝑛 → ∞, where 𝑝 = 𝑃
𝑓

𝐷
𝑥
0
.

Let {𝑥
𝑛
𝑖

} ⊂ {𝑥
𝑛
}. From the boundedness of {𝑥

𝑛
𝑖

}, there
exists {𝑥

𝑛
𝑖𝑗

} ⊂ {𝑥
𝑛
𝑖

} such that

𝑥
𝑛
𝑖𝑗

⇀ 𝑝 as 𝑗 → ∞. (44)

Writing 𝑥
𝑗
:= 𝑥
𝑛
𝑖𝑗

, it is easy to see that 𝑝 ∈ 𝐶
𝑗
, where 𝐶

𝑗
:=

𝐶
𝑛
𝑖𝑗

. Note that

(𝑥
𝑗
, 𝑥
0
)
𝑓

= (𝑃
𝑓

�̃�
𝑗

(𝑥
0
), 𝑥
0
)
𝑓

= min
𝜉∈�̃�
𝑗

(𝜉, 𝑥
0
)
𝑓

≤ (𝑝, 𝑥
0
)
𝑓
. (45)

On the other hand, since 𝑥
𝑗

⇀ 𝑝, so 𝑥
𝑗
− 𝑥
0

⇀ 𝑝 − 𝑥
0
,

and, then, by weakly lower semicontinuity of ‖ ⋅ ‖2 and 𝑓, we
obtain that

𝑝 − 𝑥
0


2

≤ lim inf
𝑗→∞

𝑥𝑗 − 𝑥
0


2

, (46)

𝑓 (𝑝) ≤ lim inf
𝑗→∞

𝑓 (𝑥
𝑗
) . (47)

Combining (46) and (47), we obtain that

(𝑝, 𝑥
0
)
𝑓

=
𝑝 − 𝑥

0


2

+ 2𝜌𝑓 (𝑝)

≤ lim inf
𝑗→∞

𝑥𝑗 − 𝑥
0


2

+ 2𝜌 lim inf
𝑗→∞

𝑓 (𝑥
𝑗
)

≤ lim inf
𝑗→∞

(
𝑥𝑗 − 𝑥

0


2

+ 2𝜌𝑓 (𝑥
𝑗
))

= lim inf
𝑗→∞

(𝑥
𝑗
, 𝑥
0
)
𝑓
.

(48)

It follows from (45) and (48), that

(𝑝, 𝑥
0
)
𝑓

≤ lim inf
𝑗→∞

(𝑥
𝑗
, 𝑥
0
)
𝑓

≤ lim sup
𝑗→∞

(𝑥
𝑗
, 𝑥
0
)
𝑓

≤ (𝑝, 𝑥
0
)
𝑓
,

(49)

and, then,

lim
𝑗→∞

(𝑥
𝑗
, 𝑥
0
)
𝑓

= (𝑝, 𝑥
0
)
𝑓
. (50)

Next, we consider that

lim sup
𝑗→∞

𝑥𝑗 − 𝑥
0


2

= lim sup
𝑗→∞

((𝑥
𝑗
, 𝑥
0
)
𝑓
− 2𝜌𝑓 (𝑥

𝑗
))

≤ lim sup
𝑗→∞

(𝑥
𝑗
, 𝑥
0
)
𝑓
+ lim sup
𝑗→∞

(−2𝜌𝑓 (𝑥
𝑗
))

= (𝑝, 𝑥
0
)
𝑓
− 2𝜌 lim inf

𝑗→∞

𝑓 (𝑥
𝑗
)

≤ (𝑝, 𝑥
0
)
𝑓
− 2𝜌𝑓 (𝑝) =

𝑝 − 𝑥
0


2

.

(51)

Combining (46) and (51), we obtain that

𝑝 − 𝑥
0


2

≤ lim inf
𝑗→∞

𝑥𝑗 − 𝑥
0


2

≤ lim sup
𝑗→∞

𝑥𝑗 − 𝑥
0


2

≤
𝑝 − 𝑥

0


2

,

(52)

and, then,

lim
𝑗→∞

𝑥𝑗 − 𝑥
0


2

=
𝑝 − 𝑥

0


2

. (53)

Note that

𝑓 (𝑥
𝑗
) =

1

2𝜌
((𝑥
𝑗
, 𝑥
0
)
𝑓
−

𝑥𝑗 − 𝑥
0


2

) . (54)

Then, we have that

lim sup
𝑗→∞

𝑓 (𝑥
𝑗
)

=
1

2𝜌
lim sup
𝑗→∞

((𝑥
𝑗
, 𝑥
0
)
𝑓
−

𝑥𝑗 − 𝑥
0


2

)

=
1

2𝜌
((𝑝, 𝑥

0
)
𝑓
−

𝑝 − 𝑥
0


2

)

= 𝑓 (𝑝) .

(55)

Combining (47) and (55), we obtain that

𝑓 (𝑝) ≤ lim inf
𝑗→∞

𝑓 (𝑥
𝑗
) ≤ lim sup
𝑗→∞

𝑓 (𝑥
𝑗
) = 𝑓 (𝑝) , (56)

and, then,

lim
𝑗→∞

𝑓(𝑥
𝑛
𝑖𝑗

) = lim
𝑗→∞

𝑓 (𝑥
𝑗
) = 𝑓 (𝑝) . (57)
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By Lemma 1, this implies that

lim
𝑛→∞

𝑓 (𝑥
𝑛
) = 𝑓 (𝑝) . (58)

On the other hand, we note that
𝑥𝑗 − 𝑝


2

=
(𝑥𝑗 − 𝑥

0
) − (𝑝 − 𝑥

0
)

2

=
𝑥𝑗 − 𝑥

0


2

− 2 ⟨𝑥
𝑗
− 𝑥
0
, 𝑝 − 𝑥

0
⟩

+
𝑝 − 𝑥

0


2

.

(59)

It follows from (44) and (53) that

lim
𝑗→∞

𝑥𝑗 − 𝑝

2

= lim
𝑗→∞

(
𝑥𝑗 − 𝑥

0


2

− 2 ⟨𝑥
𝑗
− 𝑥
0
, 𝑝 − 𝑥

0
⟩

+
𝑝 − 𝑥

0


2

)

= lim
𝑗→∞

𝑥𝑗 − 𝑥
0


2

− 2 lim
𝑗→∞

⟨𝑥
𝑗
− 𝑥
0
, 𝑝 − 𝑥

0
⟩

+
𝑝 − 𝑥

0


2

=
𝑝 − 𝑥

0


2

− 2 ⟨𝑝 − 𝑥
0
, 𝑝 − 𝑥

0
⟩ +

𝑝 − 𝑥
0


2

= 0.

(60)

Therefore, 𝑥
𝑛
𝑖𝑗

= 𝑥
𝑗

→ 𝑝 as 𝑗 → ∞. This implies by
Lemma 1 that

𝑥
𝑛
→ 𝑝 as 𝑛 → ∞. (61)

Thus,
𝜔
𝑤
(𝑥
𝑛
) = {𝑝} . (62)

It is easy to show that 𝑝 ∈ 𝐶
𝑛
, for all 𝑛 ≥ 1. Hence, 𝑝 ∈

⋂
∞

𝑛=1
𝐶
𝑛

=: 𝐷. Since 𝑥
𝑛

= 𝑃
𝑓

𝐶
𝑛

𝑥
0
, so, by Lemma 4, we have

that
⟨𝑥
𝑛
− 𝑦, 𝑥

0
− 𝑥
𝑛
⟩ + 𝜌𝑓 (𝑦) − 𝜌𝑓 (𝑥

𝑛
) ≥ 0, ∀𝑦 ∈ 𝐷. (63)

Letting 𝑛 → ∞, so we obtain that
⟨𝑝 − 𝑦, 𝑥

0
− 𝑝⟩ + 𝜌𝑓 (𝑦) − 𝜌𝑓 (𝑝) ≥ 0, ∀𝑦 ∈ 𝐷, (64)

which implies that 𝑝 = 𝑃
𝑓

𝐷
𝑥
0
.

Step 5. Show that 𝑝 ∈ Ω.
Firstly, we prove that {𝑇𝑥

𝑛
} and {𝐾

𝑛
𝑇𝑥
𝑛
} are bounded.

Indeed, taking V ∈ Ω = 𝐹(𝑇) ∩ ⋂
∞

𝑛=1
𝐹(𝐾
𝑛
) and then by (28),

we have that
‖V‖2 − 2 ‖V‖ 𝑇𝑥

𝑛

 +
𝑇𝑥
𝑛


2

= (‖V‖ −
𝑇𝑥
𝑛

)
2

≤
V − 𝑇𝑥

𝑛


2

≤
V − 𝑥

𝑛


2

+ 𝑘
𝑥𝑛 − 𝑇𝑥

𝑛


2

+ 2𝑘𝜌 (𝑓 (𝑥
𝑛
) − 𝑓 (V))

≤
V − 𝑥

𝑛


2

+ 𝑘(
2

1 − 𝑘
⟨𝑥
𝑛
− V, 𝑥
𝑛
− 𝑇𝑥
𝑛
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥
𝑛
) − 𝑓 (V)))

+ 2𝑘𝜌 (𝑓 (𝑥
𝑛
) − 𝑓 (V))

≤
V − 𝑥

𝑛


2

+
2𝑘

1 − 𝑘
⟨𝑥
𝑛
− V, 𝑥
𝑛
− 𝑇𝑥
𝑛
⟩

+ 2𝑘𝜌(
𝑘

1 − 𝑘
+ 1) (𝑓 (𝑥

𝑛
) − 𝑓 (V))

≤
V − 𝑥

𝑛


2

+
2𝑘

1 − 𝑘

𝑥𝑛 − V
𝑥𝑛



+
2𝑘

1 − 𝑘

𝑥𝑛 − V
𝑇𝑥
𝑛



+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥
𝑛
) − 𝑓 (V)) .

(65)

By a simple calculation, we get that

𝑇𝑥
𝑛


2

≤ (
V − 𝑥

𝑛


2

+
2𝑘

1 − 𝑘

𝑥𝑛 − V
𝑥𝑛



−‖V‖2 +
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥
𝑛
) − 𝑓 (V)))

+ (
2𝑘

1 − 𝑘

𝑥𝑛 − V + 2 ‖V‖) 𝑇𝑥
𝑛



≤ 𝑀 + �̃�
𝑇𝑥
𝑛

 = 𝑀 +
1

2
(2�̃�

𝑇𝑥
𝑛

)

≤ 𝑀 +
1

2
(�̃�2 +

𝑇𝑥
𝑛


2

)

= 𝑀 +
1

2
�̃�2 +

1

2

𝑇𝑥
𝑛


2

,

(66)

where𝑀 := sup{‖V − 𝑥
𝑛
‖2 +(2𝑘/1−𝑘)‖𝑥

𝑛
−V‖×‖𝑥

𝑛
‖−‖V‖2 +

(2𝑘𝜌/1 − 𝑘)(𝑓(𝑥
𝑛
) − 𝑓(V)) | 𝑛 ∈ N} and �̃� := sup{(2𝑘/1 −

𝑘)‖𝑥
𝑛
− V‖ + 2‖V‖ | 𝑛 ∈ N}. So we have that

𝑇𝑥
𝑛


2

≤ 2𝑀 + �̃�2, (67)

for all 𝑛 ∈ N. Therefore, {𝑇𝑥
𝑛
} is bounded. Notice that, for

each V ∈ Ω,
V − 𝐾

𝑛
𝑇𝑥
𝑛

 ≤
V − 𝑇𝑥

𝑛

 , (68)

for all 𝑛 ∈ N. Therefore, {𝐾
𝑛
𝑇𝑥
𝑛
} is also bounded. Moreover,

we note that
𝑥𝑛+1 − 𝑥

𝑛

 ≤
𝑥𝑛+1 − 𝑝

 +
𝑝 − 𝑥

𝑛

 → 0 as 𝑛 → ∞.
(69)

Thus, by the fact that 𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛+1

𝑥
0
∈ 𝐶
𝑛+1

and by (58), we
obtain that

𝑥𝑛 − 𝐾
𝑛
𝑇𝑥
𝑛


2

+
𝐾𝑛𝑇𝑥

𝑛
− 𝑇𝑥
𝑛


2

≤
2

1 − 𝑘
⟨𝑥
𝑛
− 𝑥
𝑛+1

, 𝑥
𝑛
− 𝑇𝑥
𝑛
⟩

+ 2 ⟨𝑥
𝑛
− 𝑥
𝑛+1

, 𝑇𝑥
𝑛
− 𝐾
𝑛
𝑇𝑥
𝑛
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

𝑛+1
)) → 0

as 𝑛 → ∞.

(70)

This means that
𝑥𝑛 − 𝐾

𝑛
𝑇𝑥
𝑛

 → 0,
𝐾𝑛𝑇𝑥

𝑛
− 𝑇𝑥
𝑛

 → 0

as 𝑛 → ∞.
(71)
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For this reason, we have that
𝑥𝑛 − 𝑇𝑥

𝑛

 =
𝑥𝑛 − 𝐾

𝑛
𝑇𝑥
𝑛
+ 𝐾
𝑛
𝑇𝑥
𝑛
− 𝑇𝑥
𝑛



≤
𝑥𝑛 − 𝐾

𝑛
𝑇𝑥
𝑛



+
𝐾𝑛𝑇𝑥

𝑛
− 𝑇𝑥
𝑛

 → 0 as 𝑛 → ∞.

(72)

Next, we have that
𝑇𝑥
𝑛
− 𝑝

 ≤
𝑇𝑥
𝑛
− 𝑥
𝑛

 +
𝑥𝑛 − 𝑝

 → 0 as 𝑛 → ∞.
(73)

That is, 𝑇𝑥
𝑛

→ 𝑝 as 𝑛 → ∞. It follows from the closed
mapping of 𝑇, that 𝑇𝑝 = 𝑝; thus, 𝑝 ∈ 𝐹(𝑇).

On the other hand, let us consider that
𝑥𝑛 − 𝐾

𝑛
𝑥
𝑛

 ≤
𝑥𝑛 − 𝐾

𝑛
𝑇𝑥
𝑛

 +
𝐾𝑛𝑇𝑥

𝑛
− 𝐾
𝑛
𝑥
𝑛



≤
𝑥𝑛 − 𝐾

𝑛
𝑇𝑥
𝑛

 +
𝑇𝑥
𝑛
− 𝑥
𝑛

 → 0

as 𝑛 → ∞.

(74)

It follows from the NST-condition of {𝐾
𝑛
} and (62), that 𝑝 ∈

⋂
∞

𝑛=1
𝐹(𝐾
𝑛
). Therefore, 𝑥

𝑛
→ 𝑝 ∈ 𝐹(𝑇) ∩ ⋂

∞

𝑛=1
𝐹(𝐾
𝑛
) = Ω.

Step 6. Show that 𝑝 = 𝑃
𝑓

Ω
𝑥
0
.

Notice by Step 2 that Ω ⊂ 𝐷; so we have that 𝑃𝑓
Ω
𝑥
0
∈ 𝐷,

and then by Step 5 it yields that

(𝑝, 𝑥
0
)
𝑓

= (𝑃
𝑓

𝐷
𝑥
0
, 𝑥
0
)
𝑓

= inf
𝜉∈𝐷

(𝜉, 𝑥
0
)
𝑓

≤ (𝑃
𝑓

Ω
𝑥
0
, 𝑥
0
)
𝑓

= inf
𝜁∈Ω

(𝜁, 𝑥
0
)
𝑓

≤ (𝑝, 𝑥
0
)
𝑓
.

(75)

This shows that (𝑃
𝑓

Ω
𝑥
0
, 𝑥
0
)
𝑓

= (𝑝, 𝑥
0
)
𝑓
. It follows from the

uniqueness 𝑝 = 𝑃
𝑓

Ω
𝑥
0
. Then, {𝑥

𝑛
} converges strongly to 𝑝 =

𝑃
𝑓

Ω
𝑥
0
. This completes the proof.

4. Deduced Theorems and Applications

In this section, some applications of the main theorem
are provided in order to find some common solutions of
problems in a Hilbert space.

If 𝑓 = ‖ ⋅ ‖2, then (𝑥, 𝑦)
‖⋅‖
2 = ‖𝑥 − 𝑦‖2 + 2𝜌‖𝑥‖2, for all

(𝑥, 𝑦) ∈ 𝐶 × 𝐻, and 𝑃
𝑓

𝐶
𝑛

𝑥
0

= 𝑃‖⋅‖
2

𝐶
𝑛

𝑥
0
, for all 𝑛 ∈ N; then, by

Theorem 16, we obtain the following corollary.

Corollary 17. Let 𝐶, 𝐻, {𝐾
𝑛
} be the same as in Theorem 16,

and 𝑇 be a closed and quasi-strict ‖ ⋅ ‖2-pseudocontraction
from𝐶 into itself such thatΩ := 𝐹(𝑇)∩⋂

∞

𝑛=1
𝐹(𝐾
𝑛
) ̸= 0. Define

a sequence {𝑥
𝑛
} in 𝐶 by the following algorithm:

𝑥
0
∈ 𝐻, chosen arbitrarily,

𝐶
1
= 𝐶,

𝑥
1
= 𝑃‖⋅‖

2

𝐶
1

(𝑥
0
) ,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
|
𝑥𝑛 − 𝐾

𝑛
𝑇𝑥
𝑛


2

+
𝐾𝑛𝑇𝑥

𝑛
− 𝑇𝑥
𝑛


2

≤
2

1 − 𝑘
⟨𝑥
𝑛
− 𝑧, 𝑥

𝑛
− 𝑇𝑥
𝑛
⟩

+ 2 ⟨𝑥
𝑛
− 𝑧, 𝑇𝑥

𝑛
− 𝐾
𝑛
𝑇𝑥
𝑛
⟩

+
2𝑘𝜌

1 − 𝑘
(
𝑥𝑛


2

− ‖𝑧‖
2)} ,

𝑥
𝑛+1

= 𝑃‖⋅‖
2

𝐶
𝑛+1

(𝑥
0
) .

(76)

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑃‖⋅‖

2

Ω
𝑥
0
.

If 𝑓 is a constant function, saying that 𝑓 = 𝑎 ∈ R,
then (𝑥, 𝑦)

𝑎
= ‖𝑥 − 𝑦‖2 + 2𝜌𝑎, and it is not hard to see that

𝑇 coincides with a quasi-strict pseudocontraction. Thus, by
Theorem 16, we obtain the following corollary.
Corollary 18. Let 𝐶, 𝐻, {𝐾

𝑛
} be the same as in Theorem 16,

and let 𝑇 be a closed and quasi-strict pseudocontraction from
𝐶 into itself such that Ω := 𝐹(𝑇) ∩ ⋂

∞

𝑛=1
𝐹(𝐾
𝑛
) ̸= 0. Define a

sequence {𝑥
𝑛
} in 𝐶 by the following algorithm:

𝑥
0
∈ 𝐻, chosen arbitrarily,

𝐶
1
= 𝐶,

𝑥
1
= 𝑃𝑎
𝐶
1

(𝑥
0
) ,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
|
𝑥𝑛 − 𝐾

𝑛
𝑇𝑥
𝑛


2

+
𝐾𝑛𝑇𝑥

𝑛
− 𝑇𝑥
𝑛


2

≤
2

1 − 𝑘
⟨𝑥
𝑛
− 𝑧, 𝑥

𝑛
− 𝑇𝑥
𝑛
⟩

+2 ⟨𝑥
𝑛
− 𝑧, 𝑇𝑥

𝑛
− 𝐾
𝑛
𝑇𝑥
𝑛
⟩ } ,

𝑥
𝑛+1

= 𝑃𝑎
𝐶
𝑛+1

(𝑥
0
) .

(77)

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑃𝑎

Ω
𝑥
0
.

Let 𝐾 : 𝐶 → 𝐶 be a firmly nonexpansive mapping and
𝐾
𝑛

= 𝐾 for all 𝑛 ∈ N. Then, it is not hard to verify that a
family {𝐾

𝑛
} satisfies NST-condition. Therefore, if 𝑓 = 𝑎 = 0,

then Corollary 18 reduces to the following corollary.

Corollary 19. Let 𝐶,𝐻, 𝑇 be the same as in Corollary 18, and
let𝐾 be a firmly nonexpansive mapping from 𝐶 into itself such
that Ω := 𝐹(𝑇) ∩ 𝐹(𝐾) ̸= 0. Define a sequence {𝑥

𝑛
} in 𝐶 by the

following algorithm:

𝑥
0
∈ 𝐻, chosen arbitrarily,

𝐶
1
= 𝐶,

𝑥
1
= 𝑃
𝐶
1

(𝑥
0
) ,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
|
𝑥𝑛 − 𝐾𝑇𝑥

𝑛


2

+
𝐾𝑇𝑥

𝑛
− 𝑇𝑥
𝑛


2

≤
2

1 − 𝑘
⟨𝑥
𝑛
− 𝑧, 𝑥

𝑛
− 𝑇𝑥
𝑛
⟩

+2 ⟨𝑥
𝑛
− 𝑧, 𝑇𝑥

𝑛
− 𝐾𝑇𝑥

𝑛
⟩ } ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

(𝑥
0
) .

(78)

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑃

Ω
𝑥
0
.
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Finally, we provide some applications of the main theo-
rem to find a common solution of fixed point problems of a
closed and quasi-strict 𝑓-pseudocontraction and generalized
mixed equilibrium problems via an iterative shrinkingmetric
𝑓-projectionmethodwithin the framework ofHilbert spaces.

Theorem 20. Let 𝐶, 𝐻, 𝑇 be the same as in Theorem 16, let
Θ be a bifunction from 𝐶 × 𝐶 to R satisfying (A1)–(A4), let
𝜑 be a lower semicontinuous and convex function, and let 𝐴 :
𝐶 → 𝐻 be a continuous and monotone mapping such that
Ω := 𝐹(𝑇) ∩ 𝐺𝑀𝐸𝑃(Θ, 𝐴, 𝜑) ̸= 0. Define a sequence {𝑥

𝑛
} in 𝐶

by the following algorithm:

𝑥
0
∈ 𝐻, chosen arbitrarily,

𝐶
1
= 𝐶,

𝑥
1
= 𝑃
𝑓

𝐶
1

𝑥
0
,

𝑢
𝑛
∈ 𝐶 such that
Θ(𝑢
𝑛
, 𝑦) + ⟨𝐴𝑢

𝑛
, 𝑦 − 𝑢

𝑛
⟩ + 𝜑 (𝑦)

− 𝜑 (𝑢
𝑛
) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑇𝑥
𝑛
⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
|
𝑥𝑛 − 𝑢

𝑛


2

+
𝑢𝑛 − 𝑇𝑥

𝑛


2

≤
2

1 − 𝑘
⟨𝑥
𝑛
− 𝑧, 𝑥

𝑛
− 𝑇𝑥
𝑛
⟩

+ 2 ⟨𝑥
𝑛
− 𝑧, 𝑇𝑥

𝑛
− 𝑢
𝑛
⟩

+
2𝑘𝜌

1 − 𝑘
(𝑓 (𝑥
𝑛
) − 𝑓 (𝑧))} ,

𝑥
𝑛+1

= 𝑃
𝑓

𝐶
𝑛+1

𝑥
0
,

(79)

where 𝑘 ∈ [0, 1) and 𝑟
𝑛

> 0, for all 𝑛 ∈ N, with
lim inf

𝑛→∞
𝑟
𝑛
> 0. Then, {𝑥

𝑛
} converges strongly to 𝑃

𝑓

Ω
(𝑥
0
).

Proof. By Lemma 12(3) it is not hard to see that
⋂
∞

𝑛=1
𝐹(𝐾
𝑟
𝑛

) = 𝐺𝑀𝐸𝑃(Θ,𝐴, 𝜑). From the definition of
{𝑥
𝑛
}, it is easy to see that 𝑢

𝑛
= 𝐾
𝑟
𝑛

𝑇𝑥
𝑛
, and by (62) we have

that 𝜔
𝑤
(𝑥
𝑛
) = {𝑝}. Next, we will show that a countable family

{𝐾
𝑟
𝑛

} satisfies the NST-condition. It is sufficient to show
that 𝑝 ∈ 𝐺𝑀𝐸𝑃(Θ,𝐴, 𝜑). It follows from (61) and (71) that
𝑢
𝑛

= 𝐾
𝑟
𝑛

𝑇𝑥
𝑛

→ 𝑝 as 𝑛 → ∞. Define Φ : 𝐶 × 𝐶 → R

by Φ(𝑥, 𝑦) = Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ + 𝜑(𝑦) − 𝜑(𝑥), for all
𝑥, 𝑦 ∈ 𝐶. It is not hard to verify that Φ satisfies conditions
(A1)–(A4). By (A2), we have that

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ Φ (𝑦, 𝑢

𝑛
) , ∀𝑦 ∈ 𝐶. (80)

By using (A4) and lim inf
𝑛→∞

𝑟
𝑛

> 0, we obtain, that 0 ≥
Φ(𝑦, 𝑝), for all 𝑦 ∈ 𝐶. For 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶, let 𝑦

𝑡
=

𝑡𝑦 + (1 − 𝑡)𝑝. So, from (A1) and (A4), we have that

0 = Φ (𝑦
𝑡
, 𝑦
𝑡
) = Φ (𝑦

𝑡
, 𝑡𝑦 + (1 − 𝑡) 𝑝)

≤ 𝑡Φ (𝑦
𝑡
, 𝑦) + (1 − 𝑡)Φ (𝑦

𝑡
, 𝑝) ≤ 𝑡Φ (𝑦

𝑡
, 𝑦) .

(81)

Dividing by 𝑡, we have that

Φ(𝑦
𝑡
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (82)

From (A3), we have that 0 ≤ lim
𝑡→0

Φ(𝑦
𝑡
, 𝑦) =

lim
𝑡→0

Φ(𝑡𝑦 + (1 − 𝑡)𝑝, 𝑦) ≤ Φ(𝑝, 𝑦), for all 𝑦 ∈ 𝐶,
and, hence, 𝑝 ∈ 𝐺𝑀𝐸𝑃(Θ, 𝐴, 𝜑) = ⋂

∞

𝑛=1
𝐹(𝐾
𝑟
𝑛

), so
𝜔
𝑤
(𝑥
𝑛
) ⊂ ⋂

∞

𝑛=1
𝐹(𝐾
𝑟
𝑛

). Therefore, {𝐾
𝑟
𝑛

}∞
𝑛=1

satisfies NST-
condition. Applying Theorem 16, we conclude that 𝑥

𝑛
→

𝑃
𝑓

Ω
𝑥
0
.
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