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We prove a common fixed point theorem for two pairs of compatible and subsequentially continuous (alternately subcompatible
and reciprocally continuous) mappings satisfying a general contractive condition in a metric space. Some illustrative examples are
furnished to highlight the realized improvements. Our result improves the main result of Sedghi and Shobe (2007).

1. Introduction

Fixed point theory is one of the most fruitful and effec-
tive tools in mathematics which has enormous applications
within as well as outside mathematics. Starting from the cel-
ebrated Banach contraction principle [1], many authors have
obtained its several generalizations in different ways (see, e.g.,
[2–4]).

A metrical common fixed point theorem generally
involves conditions on commutativity, continuity, and con-
traction of the given mappings, as well as completeness (or
closedness) of the underlying space (or subspaces), along
with conditions on suitable containment amongst the ranges
of involvedmappings.Hence, in order to prove a newmetrical
common fixed point theorem, one is always required to
weaken one or more of these conditions. In order to weaken
commutativity conditions in common fixed point theorems,
Sessa [5] introduced the concept of weakly commuting map-
pings. Jungck [6] defined the notion of compatible mappings
in order to generalize the concept of weak commutativity and
showed that weakly commuting mappings are compatible,
but the converse is not true. Afterwards Jungck and Rhoades
[7] introduced the concept of weak compatibility to the
setting of single-valued and multivalued mappings which is
more general than compatibility. However, the study of

common fixed points of noncompatible mappings is also
equally interesting, and it was initiated by Pant [8] in metric
spaces. Researchers of this domain introduced several defi-
nitions of weak commutativity such as compatible mappings,
compatibility of type (𝐴), (𝐵), (𝐶), and (𝑃), and several others,
whose systematic comparisons and illustrations are available
in Murthy [9] and Singh and Tomar [10].

In 2002, Aamri and El Moutawakil [11] introduced the
notion of property (E.A). Further, Al-Thagafi and Shahzad
[12] introduced the notion of occasionally weakly compatible
mappings. It was used further bymany authors (see, e.g., [13]).
However, in [14], Ðorić et al. observed that the condition
of occasionally weak compatibility reduces to weak compat-
ibility in the presence of a unique point of coincidence of
the given pair of mappings. Thus, no generalization can be
obtained by replacing weak compatibility with occasionally
weak compatibility (see also [15–17]).

In 2009, Bouhadjera and Godet-Thobie [18] further
enlarged the class of compatible (reciprocally continuous)
pairs by introducing the concept of subcompatibility (subse-
quential continuity) of pairs of mappings, which is substan-
tially weaker than compatibility (reciprocal continuity). Since
then, Imdad et al. [19] improved the results of Bouhadjera
and Godet-Thobie and showed that these results can easily be
recovered by replacing subcompatibility with compatibility
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or subsequential continuity with reciprocal continuity. Very
recently, Chauhan et al. [20] obtained some results of this
kind using integral type contractive conditions.Many authors
established a number of other fixed point results inmetric and
related spaces (see, e.g., [21–31]).

In 2007, Sedghi and Shobe [32] proved a common fixed
point theorem for weakly compatible mappings satisfying a
new general contractive type condition.The aim of this paper
is to prove a common fixed point theorem for two pairs
of self-mappings by using the notions of compatibility and
subsequential continuity (alternately subcompatibility and
reciprocal continuity) satisfying general contractive condi-
tion in a metric space. Some examples are furnished which
demonstrate the validity of our result.

2. Preliminaries

Definition 1. Let 𝐴, 𝑆 : 𝑋 → 𝑋 be two self-mappings on a
metric space (𝑋, 𝑑). The mappings 𝐴 and 𝑆 are said to be

(1) weakly commuting if 𝑑(𝐴𝑆𝑥, 𝑆𝐴𝑥) ≤ 𝑑(𝐴𝑥, 𝑆𝑥) for all
𝑥 ∈ 𝑋 [5],

(2) compatible if lim
𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) = 0 for each

sequence {𝑥
𝑛
} in 𝑋 such that lim

𝑛→∞
𝐴𝑥
𝑛

=

lim
𝑛→∞

𝑆𝑥
𝑛
[6],

(3) noncompatible if there exists a sequence {𝑥
𝑛
} in

𝑋 such that lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛
, but

lim
𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) is either nonzero or nonexis-

tent [8],
(4) weakly compatible if they commute at their coinci-

dence points; that is, 𝐴𝑆𝑢 = 𝑆𝐴𝑢 whenever 𝐴𝑢 = 𝑆𝑢,
for some 𝑢 ∈ 𝑋 [7],

(5) occasionally weakly compatible if there is a point 𝑥 ∈
𝑋 which is a coincidence point of 𝐴 and 𝑆 at which 𝐴
and 𝑆 commute [12],

(6) with the property (E.A) if there exists a sequence {𝑥
𝑛
}

in 𝑋 and some 𝑧 ∈ 𝑋 such that lim
𝑛→∞

𝐴𝑥
𝑛
=

lim
𝑛→∞

𝑆𝑥
𝑛
= 𝑧 [11].

It can be noticed that arbitrary noncompatible self-
mappings satisfy the property (E.A) but two mappings
satisfying the property (E.A), need not be noncompatible (see
[33, Example 1]). Also, weak compatibility and property (E.A)
are independent of each other (see [31, Examples 2.1 and 2.2]).

Definition 2 (see [34]). A pair (𝐴, 𝑆) of self-mappings on a
metric space (𝑋, 𝑑) is called reciprocally continuous if for a
sequence {𝑥

𝑛
} in𝑋, lim

𝑛→∞
𝐴𝑆𝑥
𝑛
= 𝐴𝑧 and lim

𝑛→∞
𝑆𝐴𝑥
𝑛
=

𝑆𝑧, whenever lim
𝑛→∞

𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥
𝑛
= 𝑧, for some 𝑧 ∈

𝑋.

It is easy to see that if two self-mappings are continuous,
then they are obviously reciprocally continuous, but the
converse is not true.Moreover, in the setting of commonfixed
point theorems for compatible pairs of self-mappings satisfy-
ing contractive conditions, continuity of one of the mappings
implies their reciprocal continuity but not conversely (see
[35]).

Definition 3 (see [18]). A pair (𝐴, 𝑆) of self-mappings on a
metric space (𝑋, 𝑑) is said to be subcompatible if there exists
a sequence {𝑥

𝑛
} such that lim

𝑛→∞
𝐴𝑥
𝑛
= lim

𝑛→∞
𝑆𝑥
𝑛
= 𝑧,

for some 𝑧 ∈ 𝑋 and lim
𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) = 0.

A pair of subcompatible mappings satisfies the property
(E.A). Obviously, compatible mappings which satisfy the
property (E.A) are subcompatible, but the converse statement
does not hold in general (see [36, Example 2.3]). Two
occasionally weakly compatiblemappings are subcompatible;
however, the converse is not true in general (see [18, Example
1.2]).

Definition 4 (see [18]). A pair (𝐴, 𝑆) of self-mappings on a
metric space (𝑋, 𝑑) is called subsequentially continuous if
there exists a sequence {𝑥

𝑛
} in 𝑋 such that lim

𝑛→∞
𝐴𝑥
𝑛
=

lim
𝑛→∞

𝑆𝑥
𝑛
= 𝑧, for some 𝑧 ∈ 𝑋 such that lim

𝑛→∞
𝐴𝑆𝑥
𝑛
=

𝐴𝑧 and lim
𝑛→∞

𝑆𝐴𝑥
𝑛
= 𝑆𝑧.

One can easily check that if two self-mappings 𝐴 and
𝑆 are both continuous, hence also reciprocally continuous
mappings but𝐴 and 𝑆 are not subsequentially continuous (see
[35, Example 1]).

Definition 5 (see [32]). By⬦ : R+×R+ → R+, a binary oper-
ation will be denoted, satisfying the following conditions:

(1) ⬦ is associative and commutative,

(2) ⬦ is continuous.

Some typical examples of⬦ are 𝑎⬦𝑏 = max{𝑎, 𝑏}, 𝑎⬦𝑏 =
𝑎+𝑏, 𝑎⬦𝑏 = 𝑎𝑏, 𝑎⬦𝑏 = 𝑎𝑏+𝑎+𝑏, and 𝑎⬦𝑏 = 𝑎𝑏/max{𝑎, 𝑏, 1},
for each 𝑎, 𝑏 ∈ R+.

Definition 6 (see [32]). The binary operation ⬦ is said to
satisfy 𝛼-property if there exists a positive real number 𝛼 such
that

𝑎 ⬦ 𝑏 ≤ 𝛼max {𝑎, 𝑏} , (1)

for all 𝑎, 𝑏 ∈ R+.

Example 7 (see [32]). (1) If 𝑎 ⬦ 𝑏 = 𝑎 + 𝑏, for each 𝑎, 𝑏 ∈ R+,
then for 𝛼 ≥ 2, we have 𝑎 ⬦ 𝑏 ≤ 𝛼max{𝑎, 𝑏}.

(2) If 𝑎⬦𝑏 = 𝑎𝑏/max{𝑎, 𝑏, 1}, for each 𝑎, 𝑏 ∈ R+, then for
𝛼 ≥ 1, we have 𝑎 ⬦ 𝑏 ≤ 𝛼max{𝑎, 𝑏}.

3. Main Results

In 2007, Sedghi and Shobe [32] proved the following result.

Theorem 8 (see [32, Theorem 2.1]). Let (𝑋, 𝑑) be a complete
metric space such that⬦ satisfies the 𝛼-property with 𝛼 > 0. Let
𝐴, 𝐵, 𝑆, and 𝑇 be self-mappings on 𝑋 satisfying the following
conditions:

(1) 𝐴(𝑋) ⊆ 𝑇(𝑋), 𝐵(𝑋) ⊆ 𝑆(𝑋), and 𝑇(𝑋) or 𝑆(𝑋) is a
closed subset of𝑋,

(2) the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible,
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(3) for all 𝑥, 𝑦 ∈ 𝑋,

𝑑 (𝐴𝑥, 𝐵𝑦) ≤ 𝑘
1
(𝑑 (𝑆𝑥, 𝑇𝑦) ⬦ 𝑑 (𝐴𝑥, 𝑆𝑥))

+ 𝑘
2
(𝑑 (𝑆𝑥, 𝑇𝑦) ⬦ 𝑑 (𝐵𝑦, 𝑇𝑦))

+ 𝑘
3
(𝑑 (𝑆𝑥, 𝑇𝑦) ⬦

𝑑 (𝑆𝑥, 𝐵𝑦) + 𝑑 (𝐴𝑥, 𝑇𝑦)

2
) ,

(2)

where 𝑘
1
, 𝑘
2
, 𝑘
3
> 0 and 0 < 𝛼(𝑘

1
+ 𝑘
2
+ 𝑘
3
) < 1.

Then, 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common fixed point in 𝑋.

Now we prove our main result.

Theorem9. Let𝐴, 𝐵, 𝑆, and𝑇 be four self-mappings on amet-
ric space (𝑋, 𝑑), and let the operation ⬦ satisfy the 𝛼-property
with 𝛼 > 0. Suppose that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are
compatible and subsequentially continuous (alternately sub-
compatible and reciprocally continuous), satisfying inequality
(2) of Theorem 8. Then 𝐴, 𝐵, 𝑆, and 𝑇 have a unique common
fixed point in 𝑋.

Proof. If the pair of mappings (𝐴, 𝑆) is subsequentially con-
tinuous and compatible, there exists a sequence {𝑥

𝑛
} in 𝑋

such that
lim
𝑛→∞

𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆𝑥
𝑛
= 𝑧, (3)

for some 𝑧 ∈ 𝑋, and
lim
𝑛→∞

𝑑 (𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) = 𝑑 (𝐴𝑧, 𝑆𝑧) = 0; (4)

that is, 𝐴𝑧 = 𝑆𝑧. Similarly, with respect to the pair (𝐵, 𝑇),
there exists a sequence {𝑦

𝑛
} in𝑋 such that

lim
𝑛→∞

𝐵𝑦
𝑛
= lim
𝑛→∞

𝑇𝑦
𝑛
= 𝑤, (5)

for some 𝑤 ∈ 𝑋, and
lim
𝑛→∞

𝑑 (𝐵𝑇𝑦
𝑛
, 𝑇𝐵𝑦
𝑛
) = 𝑑 (𝐵𝑤, 𝑇𝑤) = 0; (6)

that is, 𝐵𝑤 = 𝑇𝑤. Hence 𝑧 is a coincidence point of the pair
(𝐴, 𝑆) whereas 𝑤 is a coincidence point of the pair (𝐵, 𝑇).

Now we assert that 𝑧 = 𝑤. If 𝑧 ̸=𝑤 then using inequality
(2) with 𝑥 = 𝑥

𝑛
and 𝑦 = 𝑦

𝑛
, we have

𝑑 (𝐴𝑥
𝑛
, 𝐵𝑦
𝑛
)

≤ 𝑘
1
(𝑑 (𝑆𝑥

𝑛
, 𝑇𝑦
𝑛
) ⬦ 𝑑 (𝐴𝑥

𝑛
, 𝑆𝑥
𝑛
))

+ 𝑘
2
(𝑑 (𝑆𝑥

𝑛
, 𝑇𝑦
𝑛
) ⬦ 𝑑 (𝐵𝑦

𝑛
, 𝑇𝑦
𝑛
))

+ 𝑘
3
(𝑑 (𝑆𝑥

𝑛
, 𝑇𝑦
𝑛
) ⬦

𝑑 (𝑆𝑥
𝑛
, 𝐵𝑦
𝑛
) + 𝑑 (𝐴𝑥

𝑛
, 𝑇𝑦
𝑛
)

2
) .

(7)
Letting 𝑛 → ∞, we get

𝑑 (𝑧, 𝑤) ≤ 𝑘
1
(𝑑 (𝑧, 𝑤) ⬦ 𝑑 (𝑧, 𝑧))

+ 𝑘
2
(𝑑 (𝑧, 𝑤) ⬦ 𝑑 (𝑤,𝑤))

+ 𝑘
3
(𝑑 (𝑧, 𝑤) ⬦

𝑑 (𝑧, 𝑤) + 𝑑 (𝑧, 𝑤)

2
) .

(8)

Since ⬦ satisfies the 𝛼-property, we obtain

𝑑 (𝑧, 𝑤) ≤ 𝑘
1
𝛼max {𝑑 (𝑧, 𝑤) , 𝑑 (𝑧, 𝑧)}

+ 𝑘
2
𝛼max {𝑑 (𝑧, 𝑤) , 𝑑 (𝑤, 𝑤)}

+ 𝑘
3
𝛼max{𝑑 (𝑧, 𝑤) , 𝑑 (𝑧, 𝑤) + 𝑑 (𝑧, 𝑤)

2
}

= 𝑘
1
𝛼max {𝑑 (𝑧, 𝑤) , 0} + 𝑘

2
𝛼max {𝑑 (𝑧, 𝑤) , 0}

+ 𝑘
3
𝛼max {𝑑 (𝑧, 𝑤) , 𝑑 (𝑧, 𝑤)}

= 𝛼 (𝑘
1
+ 𝑘
2
+ 𝑘
3
) 𝑑 (𝑧, 𝑤)

< 𝑑 (𝑧, 𝑤) ,

(9)

which is a contradiction. Hence 𝑧 = 𝑤. Now we prove that
𝐴𝑧 = 𝑧. If we suppose that 𝐴𝑧 ̸= 𝑧, then from inequality (2)
with 𝑥 = 𝑧 and 𝑦 = 𝑦

𝑛
, we have

𝑑 (𝐴𝑧, 𝐵𝑦
𝑛
)

≤ 𝑘
1
(𝑑 (𝑆𝑧, 𝑇𝑦

𝑛
) ⬦ 𝑑 (𝐴𝑧, 𝑆𝑧))

+ 𝑘
2
(𝑑 (𝑆𝑧, 𝑇𝑦

𝑛
) ⬦ 𝑑 (𝐵𝑦

𝑛
, 𝑇𝑦
𝑛
))

+ 𝑘
3
(𝑑 (𝑆𝑧, 𝑇𝑦

𝑛
) ⬦

𝑑 (𝑆𝑧, 𝐵𝑦
𝑛
) + 𝑑 (𝐴𝑧, 𝑇𝑦

𝑛
)

2
) .

(10)

Taking the limit as 𝑛 → ∞, we get

𝑑 (𝐴𝑧, 𝑤) ≤ 𝑘
1
(𝑑 (𝑆𝑧, 𝑤) ⬦ 𝑑 (𝐴𝑧, 𝐴𝑧))

+ 𝑘
2
(𝑑 (𝐴𝑧, 𝑤) ⬦ 𝑑 (𝑤,𝑤))

+ 𝑘
3
(𝑑 (𝐴𝑧, 𝑤) ⬦

𝑑 (𝐴𝑧, 𝑤) + 𝑑 (𝐴𝑧, 𝑤)

2
) ;

(11)

that is,

𝑑 (𝐴𝑧, 𝑧) ≤ 𝑘
1
(𝑑 (𝑆𝑧, 𝑧) ⬦ 𝑑 (𝐴𝑧, 𝐴𝑧))

+ 𝑘
2
(𝑑 (𝐴𝑧, 𝑧) ⬦ 𝑑 (𝑧, 𝑧))

+ 𝑘
3
(𝑑 (𝐴𝑧, 𝑧) ⬦

𝑑 (𝐴𝑧, 𝑧) + 𝑑 (𝐴𝑧, 𝑧)

2
)

≤ 𝑘
1
𝛼max {𝑑 (𝑆𝑧, 𝑧) , 𝑑 (𝐴𝑧, 𝐴𝑧)}

+ 𝑘
2
𝛼max {𝑑 (𝐴𝑧, 𝑧) , 𝑑 (𝑧, 𝑧)}

+ 𝑘
3
𝛼max{𝑑 (𝐴𝑧, 𝑧) , 𝑑 (𝐴𝑧, 𝑧) + 𝑑 (𝐴𝑧, 𝑧)

2
} .

(12)

Then, simplifying, we obtain

𝑑 (𝐴𝑧, 𝑧) ≤ 𝛼 (𝑘
1
+ 𝑘
2
+ 𝑘
3
) 𝑑 (𝐴𝑧, 𝑧)

< 𝑑 (𝐴𝑧, 𝑧) ,
(13)
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a contradiction.Hence,𝐴𝑧 = 𝑧.Therefore,𝐴𝑧 = 𝑆𝑧 = 𝑧. Now
we show that 𝐵𝑧 = 𝑧. If 𝐵𝑧 ̸= 𝑧 then using (2) with 𝑥 = 𝑥

𝑛
and

𝑦 = 𝑧, we have

𝑑 (𝐴𝑥
𝑛
, 𝐵𝑧)

≤ 𝑘
1
(𝑑 (𝑆𝑥

𝑛
, 𝑇𝑧) ⬦ 𝑑 (𝐴𝑥

𝑛
, 𝑆𝑥
𝑛
))

+ 𝑘
2
(𝑑 (𝑆𝑥

𝑛
, 𝑇𝑧) ⬦ 𝑑 (𝐵𝑧, 𝑇𝑧))

+ 𝑘
3
(𝑑 (𝑆𝑥

𝑛
, 𝑇𝑧) ⬦

𝑑 (𝑆𝑥
𝑛
, 𝐵𝑧) + 𝑑 (𝐴𝑥

𝑛
, 𝑇𝑧)

2
) .

(14)

As 𝑛 → ∞, we get

𝑑 (𝑧, 𝐵𝑧) ≤ 𝑘
1
(𝑑 (𝑧, 𝐵𝑧) ⬦ 𝑑 (𝑧, 𝑧))

+ 𝑘
2
(𝑑 (𝑧, 𝐵𝑧) ⬦ 𝑑 (𝐵𝑧, 𝐵𝑧))

+ 𝑘
3
(𝑑 (𝑧, 𝐵𝑧) ⬦

𝑑 (𝑧, 𝐵𝑧) + 𝑑 (𝑧, 𝐵𝑧)

2
)

≤ 𝑘
1
𝛼max {𝑑 (𝑧, 𝐵𝑧) , 𝑑 (𝑧, 𝑧)}

+ 𝑘
2
𝛼max {𝑑 (𝑧, 𝐵𝑧) , 𝑑 (𝐵𝑧, 𝐵𝑧)}

+ 𝑘
3
𝛼max{𝑑 (𝑧, 𝐵𝑧) , 𝑑 (𝑧, 𝐵𝑧) + 𝑑 (𝑧, 𝐵𝑧)

2
} .

(15)

Then, simplifying, we obtain

𝑑 (𝑧, 𝐵𝑧) ≤ 𝛼 (𝑘
1
+ 𝑘
2
+ 𝑘
3
) 𝑑 (𝑧, 𝐵𝑧)

< 𝑑 (𝑧, 𝐵𝑧) ,
(16)

a contradiction. Hence, 𝐵𝑧 = 𝑧. Therefore, 𝑧 = 𝐴𝑧 = 𝑆𝑧 =

𝐵𝑧 = 𝑇𝑧; that is, 𝑧 is a common fixed point of 𝐴, 𝐵, 𝑆,
and 𝑇. The uniqueness of common fixed point is an easy
consequence of inequality (2).

Now suppose that the mappings (𝐴, 𝑆) (as well as (𝐵, 𝑇))
are subcompatible and reciprocally continuous. Then there
exists a sequence {𝑥

𝑛
} in𝑋 such that

lim
𝑛→∞

𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆𝑥
𝑛
= 𝑧, (17)

for some 𝑧 ∈ 𝑋, and

lim
𝑛→∞

𝑑 (𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) = 𝑑 (𝐴𝑧, 𝑆𝑧) = 0, (18)

whereas in respect of the pair (𝐵, 𝑇), there exists a sequence
{𝑦
𝑛
} in𝑋 with

lim
𝑛→∞

𝐵𝑦
𝑛
= lim
𝑛→∞

𝑇𝑦
𝑛
= 𝑤, (19)

for some 𝑤 ∈ 𝑋, and

lim
𝑛→∞

𝑑 (𝐵𝑇𝑦
𝑛
, 𝑇𝐵𝑦
𝑛
) = 𝑑 (𝐵𝑤, 𝑇𝑤) = 0. (20)

Therefore, 𝐴𝑧 = 𝑆𝑧 and 𝐵𝑤 = 𝑇𝑤; that is, 𝑧 is a coincidence
point of the pair (𝐴, 𝑆)whereas𝑤 is a coincidence point of the
pair (𝐵, 𝑇). The rest of the proof can be completed easily.

Example 10. Let𝑋 = [0,∞), and let 𝑑 be the usual metric on
𝑋. Define self-mappings 𝐴, 𝐵, 𝑆, and 𝑇 by

𝐴𝑥 = 𝐵𝑥 =

{{

{{

{

𝑥

7
, if 𝑥 ∈ [0, 1] ;

𝑥 + 6

7
, if 𝑥 ∈ (1,∞) ,

𝑆𝑥 = 𝑇𝑥 =

{{

{{

{

𝑥

6
, if 𝑥 ∈ [0, 1] ;

𝑥 + 5

6
, if 𝑥 ∈ (1,∞) .

(21)

Consider the sequence {𝑥
𝑛
} = {1/𝑛}

𝑛∈N in𝑋. Then

lim
𝑛→∞

𝐴𝑥
𝑛
= lim
𝑛→∞

1

7𝑛
= 0 = lim

𝑛→∞

1

6𝑛
= lim
𝑛→∞

𝑆𝑥
𝑛
. (22)

Next,

lim
𝑛→∞

𝐴𝑆𝑥
𝑛
= lim
𝑛→∞

𝐴(
1

6𝑛
) = lim
𝑛→∞

1

42𝑛
= 0 = 𝐴0,

lim
𝑛→∞

𝑆𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆 (
1

7𝑛
) = lim
𝑛→∞

1

42𝑛
= 0 = 𝑆0,

lim
𝑛→∞

𝑑 (𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) = 0.

(23)

Consider another sequence {𝑥
𝑛
} = {1 + 1/𝑛}

𝑛∈N in𝑋. Then

lim
𝑛→∞

𝐴𝑥
𝑛
= lim
𝑛→∞

(1 +
1

7𝑛
) = 1

= lim
𝑛→∞

(1 +
1

6𝑛
) = lim
𝑛→∞

𝑆𝑥
𝑛
.

(24)

However,

lim
𝑛→∞

𝐴𝑆𝑥
𝑛
= lim
𝑛→∞

𝐴(1 +
1

6𝑛
) = lim
𝑛→∞

(1 +
1

42𝑛
) = 1 ̸=𝐴1,

lim
𝑛→∞

𝑆𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆 (1 +
1

7𝑛
) = lim
𝑛→∞

(1 +
1

42𝑛
) = 1 ̸= 𝑆1,

(25)
but lim

𝑛→∞
𝑑(𝐴𝑆𝑥

𝑛
, 𝑆𝐴𝑥
𝑛
) = 0. Thus, the pair (𝐴, 𝑆) is com-

patible as well as subsequentially continuous but not recip-
rocally continuous (the same for the pair (𝐵, 𝑇)). It is easy
to check that condition (2) is satisfied with ⬦ = max, 𝛼 =

1, and 𝑘
1
+ 𝑘
2
+ 𝑘
3
= 6/7. Therefore, all the conditions of

Theorem 9 are satisfied. Here, 0 is a coincidence as well as the
unique common fixed point of the mappings 𝐴, 𝐵, 𝑆, and 𝑇.

It can be noted that this example cannot be covered by
those fixed point theorems which assume both compatibility
and reciprocal continuity or by involving conditions of
closedness of respective ranges. Indeed, in this example
𝐴(𝑋) = [0, 1/7] ∪ (1,∞) and 𝑆(𝑋) = [0, 1/6] ∪ (1,∞); hence,
neither of 𝐴(𝑋) and 𝑆(𝑋) is closed.

Example 11. Let𝑋 = R (set of real numbers), and let 𝑑 be the
usual metric on𝑋. Define self-mappings 𝐴, 𝐵, 𝑆, and 𝑇 by

𝐴𝑥 = 𝐵𝑥 =
{

{

{

𝑥

4
, if 𝑥 ∈ (−∞, 1) ;

4𝑥 − 3, if 𝑥 ∈ [1,∞) ,

𝑆𝑥 = 𝑇𝑥 = {
𝑥 + 3, if 𝑥 ∈ (−∞, 1) ;

5𝑥 − 4, if 𝑥 ∈ [1,∞) .

(26)
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Consider the sequence {𝑥
𝑛
} = {1 + 1/𝑛}

𝑛∈N in𝑋. Then

lim
𝑛→∞

𝐴𝑥
𝑛
= lim
𝑛→∞

(1 +
4

𝑛
) = 1

= lim
𝑛→∞

(1 +
5

𝑛
) = lim
𝑛→∞

𝑆𝑥
𝑛
.

(27)

Also,

lim
𝑛→∞

𝐴𝑆𝑥
𝑛
= lim
𝑛→∞

𝐴(1 +
5

𝑛
) = lim
𝑛→∞

(1 +
20

𝑛
) = 1 = 𝐴1,

lim
𝑛→∞

𝑆𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆 (1 +
4

𝑛
) = lim
𝑛→∞

(1 +
20

𝑛
) = 1 = 𝑆1,

lim
𝑛→∞

𝑑 (𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) = 0.

(28)

Consider another sequence {𝑥
𝑛
} = {(1/𝑛) − 4}

𝑛∈N in𝑋. Then

lim
𝑛→∞

𝐴 (𝑥
𝑛
) = lim
𝑛→∞

(
1

4𝑛
− 1) = −1

= lim
𝑛→∞

(
1

𝑛
− 1) = lim

𝑛→∞

𝑆 (𝑥
𝑛
) .

(29)

Next,

lim
𝑛→∞

𝐴𝑆𝑥
𝑛
= lim
𝑛→∞

𝐴(
1

𝑛
− 1)

= lim
𝑛→∞

(
1

4𝑛
−
1

4
) = −

1

4
= 𝐴 (−1) ,

lim
𝑛→∞

𝑆𝐴𝑥
𝑛
= lim
𝑛→∞

𝑆 (
1

4𝑛
− 1)

= lim
𝑛→∞

(
1

4𝑛
− 1 + 3) = 2 = 𝑆 (−1) ,

(30)

and lim
𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛
, 𝑆𝐴𝑥
𝑛
) ̸= 0. Thus, the pair (𝐴, 𝑆) is recip-

rocally continuous as well as subcompatible but not compat-
ible (the same for the pair (𝐵, 𝑇)). It is easy to check that
condition (2) is satisfied with ⬦ = max, 𝛼 = 1, and 𝑘

1
+

𝑘
2
+ 𝑘
3
= 4/5. Therefore, all the conditions of Theorem 9

are satisfied. Thus, 1 is a coincidence as well as the unique
common fixed point of the pair (𝐴, 𝑆).

It can be noted that this example cannot be covered by
those fixed point theorems which involve both compatibility
and reciprocal continuity. Again, 𝐴(𝑋) = (−∞, 1/4) ∪

[1, +∞) is not closed. Note also that the mappings 𝐴 and
𝑆 have two points of coincidence (−1 and 1), which are
occasionally weakly compatible but not weakly compatible.

In the next example (taken from [18, Example 1.4]), we
demonstrate the situation when conditions of Theorem 9 are
not satisfied, and the given pairs have no common fixed
points.

Example 12. Let𝑋 = [0, +∞)with the standardmetric 𝑑, and
let 𝐴, 𝐵, 𝑆, 𝑇 : 𝑋 → 𝑋 be given by

𝐴𝑥 = 𝐵𝑥 = {
𝑥 + 1, 0 ≤ 𝑥 ≤ 1,

2𝑥 − 1, 𝑥 > 1,

𝑆𝑥 = 𝑇𝑥 = {
1 − 𝑥, 0 ≤ 𝑥 < 1,

3𝑥 − 2, 𝑥 ≥ 1.

(31)

Then, as it was shown in [18, Example 1.4], the pairs (𝐴, 𝑆)
and (𝐵, 𝑇) are subsequentially continuous and subcompat-
ible. However, they are neither reciprocally continuous nor
compatible (not even occasionally weakly compatible). We
note that (𝐴, 𝑆) has no common fixed points, although it has
a unique point of coincidence 𝑧 = 1.

We present an example of different kind, inspired by [20,
Example 3].

Example 13. Let 𝑋 = {0, 1, 2, . . . , 10}, and define a metric 𝑑
on𝑋 by

𝑑 (𝑥, 𝑦) = {
0, 𝑥 = 𝑦,

max {𝑥, 𝑦} , 𝑥 ̸= 𝑦.
(32)

Consider the mappings 𝐴, 𝐵, 𝑆, 𝑇 : 𝑋 → 𝑋 given by

𝐴𝑥 = 𝐵𝑥 = {
0, 𝑥 = 0,

𝑥 − 1, 𝑥 ≥ 1;

𝑆𝑥 = 𝑇𝑥 =

{{

{{

{

0, 𝑥 = 0,

𝑥 + 1, 1 ≤ 𝑥 ≤ 9,

10, 𝑥 = 10.

(33)

Take⬦ = max (which satisfies𝛼-conditionwith𝛼 = 1).Then,

(1) the pair (𝐴, 𝑆) (as well as (𝐵, 𝑇)) is compatible and
subsequentially continuous,

(2) condition (2) is satisfied with 𝑘
1
= 𝑘
2
= 𝑘
3
= 0.3.

Indeed, in order to prove (1), take 𝑥
𝑛
= 0 for all 𝑛 but finitely

many (which is the only possibility to obtain the same limit
for (𝐴𝑥

𝑛
) and (𝑆𝑥

𝑛
)). Then 𝑑(𝐴𝑥

𝑛
, 0) → 0 and 𝑑(𝑆𝑥

𝑛
, 0) →

0; also 𝑆𝐴𝑥
𝑛
→ 0 = 𝑆0 and 𝐴𝑆𝑥

𝑛
→ 0 = 𝐴0. Hence, the

pair (𝐴, 𝑆) is compatible and subsequentially continuous.
In order to prove (2), suppose that 𝑥, 𝑦 ∈ 𝑋, 𝑥 ̸= 𝑦 (the

case 𝑥 = 𝑦 is trivial). Since we have 𝐴 = 𝐵, 𝑆 = 𝑇, and 𝑘
1
=

𝑘
2
, condition (2) is symmetric in 𝑥, 𝑦; hence, without loss of

generality, we can suppose that 𝑥 ≥ 𝑦. Consider the following
possible cases.
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Case 1. One has 𝑦 = 0 and 𝑥 = 1. Then 𝐴𝑥 = 𝐵𝑦 = 0, 𝑑(𝐴𝑥,
𝐵𝑦) = 0, and (2) is satisfied.

Case 2. One has 𝑦 ∈ {0, 1} and 2 ≤ 𝑥 ≤ 9. Then 𝐴𝑥 = 𝑥 − 1,
𝐵𝑦 = 0,𝑑(𝐴𝑥, 𝐵𝑦) = 𝑥−1.The right-hand side of (2) becomes
(𝑡 ∈ {0, 2})

𝑅 = 𝑘
1
max {𝑥 + 1, 𝑡} + 𝑘

2
max {𝑥 + 1, 𝑥 + 1}

+ 𝑘
3
max {𝑥 + 1, 1

2
[max {𝑆𝑥, 𝐵𝑦} + 𝑥 + 1]}

= (𝑘
1
+ 𝑘
2
+ 𝑘
3
) (𝑥 + 1) = 0.9 (𝑥 + 1)

≥ 0.9 ⋅
10

8
(𝑥 − 1) > 𝑥 − 1 = 𝑑 (𝐴𝑥, 𝐵𝑦) .

(34)

Case 3. One has 𝑦 ∈ {0, 1} and 𝑥 = 10. Then

𝑑 (𝐴𝑥, 𝐵𝑦) = 9 = (𝑘
1
+ 𝑘
2
+ 𝑘
3
) ⋅ 10 = 𝑅. (35)

Case 4. One has 2 ≤ 𝑦 < 𝑥 ≤ 9. Then 𝑑(𝐴𝑥, 𝐵𝑦) = 𝑑(𝑥 −

1, 𝑦 − 1) = 𝑥 − 1 and

𝑅 = 𝑘
1
max {𝑥 + 1, 𝑥 + 1} + 𝑘

2
max {𝑥 + 1, 𝑦 + 1}

+ 𝑘
3
max {𝑥 + 1, 1

2
[𝑥 + 1 +max {𝐴𝑥, 𝑇𝑦}]}

= (𝑘
1
+ 𝑘
2
+ 𝑘
3
) (𝑥 + 1) = 0.9 (𝑥 + 1)

≥ 0.9 ⋅
10

8
(𝑥 − 1) > 𝑥 − 1 = 𝑑 (𝐴𝑥, 𝐵𝑦) .

(36)

Case 5. One has 2 ≤ 𝑦 < 𝑥 = 10. Then (2) again reduces to
9 = (𝑘

1
+ 𝑘
2
+ 𝑘
3
) ⋅ 10.

All the conditions of Theorem 9 are satisfied, and 𝐴, 𝐵, 𝑆,
and 𝑇 have a unique common fixed point (which is 𝑧 = 0).

By choosing 𝐴, 𝐵, 𝑆, and 𝑇 suitably inTheorem 9, we can
deduce corollaries for two or three self-mappings. As a sam-
ple, we deduce the following corollary for two self-mappings.

Corollary 14. Let 𝐴 and 𝑆 be two self-mappings on a metric
space (𝑋, 𝑑) such that ⬦ satisfies the 𝛼-property with 𝛼 > 0.
If the pair (𝐴, 𝑆) is compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous) satis-
fying

𝑑 (𝐴𝑥, 𝐴𝑦) ≤ 𝑘
1
(𝑑 (𝑆𝑥, 𝑆𝑦) ⬦ 𝑑 (𝐴𝑥, 𝑆𝑥))

+ 𝑘
2
(𝑑 (𝑆𝑥, 𝑆𝑦) ⬦ 𝑑 (𝐴𝑦, 𝑆𝑦))

+ 𝑘
3
(𝑑 (𝑆𝑥, 𝑆𝑦) ⬦

𝑑 (𝑆𝑥, 𝐴𝑦) + 𝑑 (𝐴𝑥, 𝑆𝑦)

2
) ,

(37)

for all𝑥, 𝑦 ∈ 𝑋, where 𝑘
1
, 𝑘
2
, 𝑘
3
> 0 and 0 < 𝛼(𝑘

1
+𝑘
2
+𝑘
3
) < 1,

then 𝐴 and 𝑆 have a unique common fixed point in 𝑋.

Remark 15. The conclusion of Theorem 9 remains true if we
replace inequality (2) by the following:

𝑑 (𝐴𝑥, 𝐵𝑦) ≤ 𝑘
1
(𝑑 (𝑆𝑥, 𝑇𝑦) + 𝑑 (𝐴𝑥, 𝑆𝑥))

+ 𝑘
2
(𝑑 (𝑆𝑥, 𝑇𝑦) + 𝑑 (𝐵𝑦, 𝑇𝑦))

+ 𝑘
3
(𝑑 (𝑆𝑥, 𝑇𝑦) +

𝑑 (𝑆𝑥, 𝐵𝑦) + 𝑑 (𝐴𝑥, 𝑇𝑦)

2
) ,

(38)

for all𝑥, 𝑦 ∈ 𝑋, where 𝑘
1
, 𝑘
2
, 𝑘
3
> 0 and 0 < 𝑘

1
+𝑘
2
+𝑘
3
< 1/2.

Similarly, other variants of contractive condition can be
obtained by specifying operation ⬦.

Remark 16. Similar results can be obtained if condition (2) is
replaced by the following one:

𝑑 (𝐴𝑥, 𝐵𝑦) ≤ 𝜓 (𝑢)

for some 𝑢 ∈ {𝑑 (𝑆𝑥, 𝑇𝑦) , 𝑑 (𝐴𝑥, 𝑆𝑥) ,

𝑑 (𝐵𝑦, 𝑇𝑦) , 𝑑 (𝑆𝑥, 𝐵𝑦) ,

𝑑 (𝐴𝑥, 𝑇𝑦)} ,

(39)

for a suitable function 𝜓 : [0, +∞) → [0, +∞).

4. Conclusion

Theorem 9 is proved for two pairs of compatible and subse-
quentially continuous (alternately subcompatible and recip-
rocally continuous)mappings satisfying a general contractive
condition.Theorem 9 improves themain result of Sedghi and
Shobe [32, Theorem 2.1] as we do not require any condition
on the containment of ranges of involved mappings and
completeness (or closedness) of the whole space (or any
subspace). Anatural result is defined in the formof a corollary
(seeCorollary 14).On the other hand, Remark 15 is developed
for a particular case, 𝑎 ⬦ 𝑏 = 𝑎 + 𝑏, which also improves the
result of Sedghi and Shobe [32, Corollary 2.2].
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Mathématique, vol. 32, no. 46, pp. 149–153, 1982.

[6] G. Jungck, “Compatible mappings and common fixed points,”
International Journal of Mathematics and Mathematical Sci-
ences, vol. 9, no. 4, pp. 771–779, 1986.

[7] G. Jungck and B. E. Rhoades, “Fixed points for set valued func-
tions without continuity,” Indian Journal of Pure and Applied
Mathematics, vol. 29, no. 3, pp. 227–238, 1998.

[8] R. P. Pant, “Noncompatible mappings and common fixed
points,” Soochow Journal of Mathematics, vol. 26, no. 1, pp. 29–
35, 2000.

[9] P. P. Murthy, “Important tools and possible applications of met-
ric fixed point theory,” Nonlinear Analysis, vol. 47, no. 5, pp.
3479–3490, 2001.

[10] S. L. Singh and A. Tomar, “Weaker forms of commuting maps
and existence of fixed points,” Journal of the Korean Society of
Mathematical Education B, vol. 10, no. 3, pp. 145–161, 2003.

[11] M. Aamri and D. El Moutawakil, “Some new common fixed
point theorems under strict contractive conditions,” Journal of
Mathematical Analysis and Applications, vol. 270, no. 1, pp. 181–
188, 2002.

[12] M. A. Al-Thagafi andN. Shahzad, “Generalized 𝐼-nonexpansive
selfmaps and invariant approximations,” Acta Mathematica
Sinica, vol. 24, no. 5, pp. 867–876, 2008.

[13] G. Jungck and B. E. Rhoades, “Fixed point theorems for
occasionally weakly compatible mappings,” Fixed Point Theory,
vol. 7, no. 2, pp. 287–296, 2006.
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