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We prove new coincidence point theorems for the (𝜑, 𝜓, 𝜙, 𝜉)-contractions and generalized Meir-Keeler-type 𝛼-𝜓-contractions in
partially ordered metric spaces. Our results generalize many recent coincidence point theorems in the literature.

1. Introduction and Preliminaries

Throughout this paper, by R+, we denote the set of all
nonnegative real numbers, while N is the set of all natural
numbers. Let (𝑋, 𝑑) be a metric space, 𝐷 a subset of 𝑋, and
𝑓 : 𝐷 → 𝑋 a map. We say 𝑓 is contractive if there exists
𝛼 ∈ [0, 1) such that for all 𝑥, 𝑦 ∈ 𝐷,

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝛼 ⋅ 𝑑 (𝑥, 𝑦) . (1)

The well-known Banach’s fixed point theorem asserts that
if 𝐷 = 𝑋, 𝑓 is contractive and (𝑋, 𝑑) is complete, then
𝑓 has a unique fixed point in 𝑋. It is well known that the
Banach contraction principle [1] is a very useful and classical
tool in nonlinear analysis. Also, this principle has many
generalizations. For instance, a mapping𝑓 : 𝑋 → 𝑋 is called
a quasicontraction if there exists 𝑘 < 1 such that

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑘⋅max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) ,

𝑑 (𝑦, 𝑓𝑦) , 𝑑 (𝑥, 𝑓𝑦) , 𝑑 (𝑦, 𝑓𝑥)} ,
(2)

for any 𝑥, 𝑦 ∈ 𝑋. In 1974, Ćirić [2] introduced thesemaps and
proved an existence and uniqueness fixed point theorem.

Recently, Eslamian and Abkar proved the following
theorem.

Theorem 1 (see [3]). Let (𝑋, 𝑑) be a complete metric space and
𝑓 : 𝑋 → 𝑋 be such that

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) − 𝛽 (𝑑 (𝑥, 𝑦)) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥, 𝑦 ∈ 𝑋,
(3)

where 𝜓, 𝛼, 𝛽 : R+ → R+ are as follows: 𝜓 is continuous and
nondecreasing, 𝛼 is continuous, 𝛽 is lower semicontinuous, and

𝜓 (𝑡) − 𝛼 (𝑡) + 𝛽 (𝑡) > 0 ∀𝑡 > 0,

𝜓 (𝑡) = 0 𝑖𝑓𝑓 𝑡 = 0, 𝛼 (0) = 𝛽 (0) = 0.
(4)

Then 𝑓 has a fixed point in𝑋.

Recently, fixed point theory has developed rapidly in
partially ordered metric spaces (e.g., [4–8]).

In 2012, Choudhury and Kundu [9] proved the following
coincidence theorem as a generalization of Theorem 1.

Theorem 2 (see [9]). Let (𝑋, ⊑) be a partially ordered set and
suppose that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a
complete metric space and 𝑓, 𝑔 : 𝑋 → 𝑋 be such that 𝑓𝑋 ⊂

𝑔𝑋, 𝑓 is 𝑔-nondecreasing, 𝑔𝑋 is closed, and

𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝛼 (𝑑 (𝑔𝑥, 𝑔𝑦)) − 𝛽 (𝑑 (𝑔𝑥, 𝑔𝑦)) ,

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥, 𝑦 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑔𝑥 ⊑ 𝑔𝑦,
(5)
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where 𝜓, 𝛼, 𝛽 : R+ → R+ are such that 𝜓 is continuous and
nondecreasing, 𝛼 is continuous, 𝛽 is lower semicontinuous, and

𝜓 (𝑡) − 𝛼 (𝑡) + 𝛽 (𝑡) > 0 ∀𝑡 > 0,

𝜓 (𝑡) = 0 𝑖𝑓𝑓 𝑡 = 0, 𝛼 (0) = 𝛽 (0) = 0.
(6)

Also, if any nondecreasing sequence {𝑥
𝑛
} in 𝑋 converges to ],

then we assume that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (7)

If there exists 𝑥
0
∈ 𝑋 with 𝑔𝑥

0
⊑ 𝑓𝑥
0
, then 𝑓 and 𝑔 have a

coincidence point in𝑋.

In this paper, we prove new coincidence point theorems
for the (𝜑, 𝜓, 𝜙, 𝜉)-contractions and generalizedMeir-Keeler-
type𝛼-𝜓-contractions in partially orderedmetric spaces. Our
results generalize many recent coincidence point theorems in
the literature.

2. Main Results

We start with the following definition.

Definition 3 (𝑔-nondecreasing mapping [4]). Let (𝑋, ⊑) be a
partially ordered set and 𝑓, 𝑔 : 𝑋 → 𝑋. Then 𝑓 is said to be
𝑔-nondecreasing if, for 𝑥, 𝑦 ∈ 𝑋,

𝑔𝑥 ⊑ 𝑔𝑦 ⇒ 𝑓𝑥 ⊑ 𝑓𝑦. (8)

In the sequel, we denote by Ψ the class of functions 𝜓 :

R+
5

→ R+ satisfying the following conditions:
(𝜓
1
) 𝜓 is an increasing, continuous function in each
coordinate,

(𝜓
2
) for all 𝑡 ∈ R+, 𝜓(𝑡, 𝑡, 𝑡, 0, 2𝑡) ≤ 𝑡, 𝜓(𝑡, 𝑡, 𝑡, 2𝑡, 0) ≤ 𝑡,
𝜓(0, 0, 𝑡, 𝑡, 0) ≤ 𝑡, and 𝜓(𝑡, 0, 0, 𝑡, 𝑡) ≤ 𝑡,

(𝜓
3
) 𝜓(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) = 0 if and only if 𝑡

1
= 𝑡
2
= 𝑡
3
= 𝑡
4
=

𝑡
5
= 0.

Next, we denote byΦ the class of functions 𝜙 : R+ → R+

satisfying the following conditions:

(𝜙
1
) 𝜙 is a continuous function and monotone nonde-
creasing;

(𝜙
2
) 𝜙(𝑡) > 0 for 𝑡 > 0 and 𝜙(0) = 0;

(𝜙
3
) 𝜙 is subadditive, that is, 𝜙(𝑡

1
+ 𝑡
2
) ≤ 𝜙(𝑡

1
) + 𝜙(𝑡

2
) for

all 𝑡
1
, 𝑡
2
> 0.

And, we denote the following sets of functions:

Θ = {𝜑 : R
+

→ R
+ such that 𝜑 is continuous} ,

Ξ = {𝜉 : R
+

→ R
+ such that 𝜉 is lower continuous} .

(9)

Let𝑋 be a nonempty set and (𝑋, ⊑) be a partially ordered
set endowedwith ametric𝑑.Then, the triple (𝑋, ⊑, 𝑑) is called
a partially ordered metric space.

We now state the (𝜑, 𝜓, 𝜙, 𝜉)-contraction and the main
fixed point theorem for the (𝜑, 𝜓, 𝜙, 𝜉)-contraction in par-
tially ordered metric spaces, as follows.

Definition 4. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, and let 𝑓, 𝑔 : 𝑋 → 𝑋. Then the pair (𝑓, 𝑔)
is called a (𝜑, 𝜓, 𝜙, 𝜉)-contraction if the following inequality
holds:

𝜑 (𝑑 (𝑓𝑥, 𝑓𝑦))

≤ 𝜓 (𝜙 (𝑑 (𝑔𝑥, 𝑔𝑦)) , 𝜙 (𝑑 (𝑔𝑥, 𝑓𝑥)) ,

𝜙 (𝑑 (𝑔𝑦, 𝑓𝑦)) , 𝜙 (𝑑 (𝑔𝑥, 𝑓𝑦)) , 𝜙 (𝑑 (𝑔𝑦, 𝑓𝑥)))

− 𝜉 (max {𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦)}) ,
(10)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑔𝑥 ⊑ 𝑔𝑦, where 𝜑 ∈ Θ, 𝜓 ∈ Ψ, 𝜙 ∈ Φ

and 𝜉 ∈ Ξ.

We now state the main fixed point theorem for the
(𝜑, 𝜓, 𝜙, 𝜉)-contraction in partially ordered metric spaces, as
follows.

Theorem 5. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, and let 𝑓, 𝑔 : 𝑋 → 𝑋 be such that 𝑓𝑋 ⊂ 𝑔𝑋, 𝑓
is 𝑔-nondecreasing and 𝑔𝑋 is closed. Suppose the pair (𝑓, 𝑔) is
a (𝜑, 𝜓, 𝜙, 𝜉)-contraction, and

𝜑 (𝑡) − 𝜙 (𝑡) + 𝜉 (𝑡) > 0 ∀𝑡 > 0,

𝜑 (𝑡) = 0 𝑖𝑓𝑓 𝑡 = 0, 𝜙 (0) = 𝜉 (0) = 0.
(11)

Also, if any nondecreasing sequence {𝑥
𝑛
} in 𝑋 converges to ],

then we assume that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (12)

If there exists 𝑥
0
∈ 𝑋 with 𝑔𝑥

0
⊑ 𝑓𝑥
0
, then 𝑓 and 𝑔 have a

coincidence point in𝑋.

Proof. Since 𝑓𝑋 ⊂ 𝑔𝑋 and there exists 𝑥
0
∈ 𝑋 with 𝑔𝑥

0
⊑

𝑓𝑥
0
, we can choose 𝑥

1
∈ 𝑋 such that 𝑔𝑥

1
= 𝑓𝑥
0
. Since 𝑓

is 𝑔-nondecreasing, we have 𝑓𝑥
0
⊑ 𝑓𝑥
1
. In this process, we

construct the sequence {𝑥
𝑛
} recursively as

𝑓𝑥
𝑛
= 𝑔𝑥
𝑛+1

∀𝑛 ∈ N. (13)

Thus, we also conclude that

𝑔𝑥
0
⊑ 𝑓𝑥
0
= 𝑔𝑥
1
⊑ 𝑓𝑥
1
= 𝑔𝑥
2
⊑ ⋅ ⋅ ⋅ ⊑ 𝑓𝑥

𝑛−1

= 𝑔𝑥
𝑛
⊑ 𝑓𝑥
𝑛
= 𝑔𝑥
𝑛+1

⊑ ⋅ ⋅ ⋅ .
(14)

If any two consecutive terms in (14) are equal, then the
conclusion of the theorem follows. So we may assume that

𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) ̸= 0, ∀𝑛 ∈ N. (15)

Now, we claim that 𝑑(𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) ≤ 𝑑(𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) for all 𝑛 ∈

N. If not, we assume that 𝑑(𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) < 𝑑(𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1

) for
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some 𝑛 ∈ N, substituting 𝑥 = 𝑥
𝑛
and 𝑦 = 𝑥

𝑛+1
in (10) and

using the definition of the function 𝜓, we have

𝜓 (𝜙 (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

)) , 𝜙 (𝑑 (𝑔𝑥
𝑛
, 𝑓𝑥
𝑛
)) ,

𝜙 (𝑑 (𝑔𝑥
𝑛+1

, 𝑓𝑥
𝑛+1

)) , 𝜙 (𝑑 (𝑔𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) ,

𝜙 (𝑑 (𝑔𝑥
𝑛+1

, 𝑓𝑥
𝑛
)))

= 𝜓 (𝜙 (𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)) , 𝜙 (𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
)) ,

𝜙 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) , 𝜙 (𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

)) ,

𝜙 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
)))

≤ 𝜓 (𝜙 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) , 𝜙 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) ,

𝜙 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) , 2𝜙 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) , 𝜙 (0))

≤ 𝜙 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) ,

𝜉 (max {𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛
, 𝑓𝑥
𝑛
) ,

𝑑 (𝑔𝑥
𝑛+1

, 𝑓𝑥
𝑛+1

)})

= 𝜉 (max {𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) , 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
) ,

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)})

= 𝜉 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) ,

(16)

and hence

𝜑 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) ≤ 𝜙 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) − 𝜉 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) .

(17)

Since 𝜑(𝑡) − 𝜙(𝑡) + 𝜉(𝑡) > 0 for all 𝑡 > 0, we have that
𝑑(𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) = 0, which contradicts to (15). Therefore, we
conclude that

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) ≤ 𝑑 (𝑓𝑥
𝑛−1

, 𝑥
𝑛
) ∀𝑛 ∈ N. (18)

From above argument, we also have that for each 𝑛 ∈ N

𝜑 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)) ≤ 𝜙 (𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
)) − 𝜉 (𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
)) .

(19)

It follows (18) that the sequence {𝑑(𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)} is monotone
decreasing, it must converge to some 𝜂 ≥ 0. Taking limit as
𝑛 → ∞ in (19) and using the continuities of 𝜑 and 𝜙 and the
lower semicontinuity of 𝜉, we get

𝜑 (𝜂) ≤ 𝜙 (𝜂) − 𝜉 (𝜂) , (20)

which implies that 𝜂 = 0. So we conclude that

lim
𝑛→∞

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) = 0. (21)

We next claim that {𝑓𝑥
𝑛
} is a Cauchy sequence, that is,

for every 𝜀 > 0, there exists 𝑛 ∈ N such that if 𝑝, 𝑞 ≥ 𝑛, then
𝑑(𝑓𝑥
𝑝
, 𝑓𝑥
𝑞
) < 𝜀.

Suppose the above statement is false.Then there exists 𝜖 >
0 such that for any 𝑛 ∈ N, there are 𝑝

𝑛
, 𝑞
𝑛
∈ N with 𝑝

𝑛
> 𝑞
𝑛
≥

𝑛 satisfying

𝑑 (𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛

) ≥ 𝜖. (22)

Further, corresponding to 𝑞
𝑛
≥ 𝑛, we can choose 𝑝

𝑛
in such

a way that it is the smallest integer with 𝑝
𝑛
> 𝑞
𝑛
≥ 𝑛 and

𝑑(𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛

) ≥ 𝜖. Therefore 𝑑(𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛
−1
) < 𝜖. Now we

have that for all 𝑛 ∈ N

𝜖 ≤ 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

)

≤ 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛
−1
) + 𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

)

< 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛
−1
) + 𝜖.

(23)

Letting 𝑛 → ∞, then we get

lim
𝑛→∞

𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

) = 𝜖. (24)

On the other hand, we have

𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

) ≤ 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛
−1
) + 𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
)

+ 𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

) ,

𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
) ≤ 𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

) + 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

)

+ 𝑑 (𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑞
𝑛
−1
) .

(25)

Letting 𝑛 → ∞, then we get

lim
𝑛→∞

𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
) = 𝜖. (26)

By (14), we have that the elements 𝑔𝑥
𝑝
𝑛

and 𝑔𝑥
𝑞
𝑛

are
comparable. Substituting 𝑥 = 𝑥

𝑝
𝑛

and 𝑦 = 𝑥
𝑞
𝑛

in (10), we
have that for all 𝑛 ∈ N,

𝜓 (𝜙 (𝑑 (𝑔𝑥
𝑝
𝑛

, 𝑔𝑥
𝑞
𝑛

)) , 𝜙 (𝑑 (𝑔𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛

)) ,

𝜙 (𝑑 (𝑔𝑥
𝑞
𝑛

, 𝑓𝑥
𝑞
𝑛

)) , 𝜙 (𝑑 (𝑔𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

)) ,

𝜙 (𝑑 (𝑔𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛

)))

≤ 𝜓 (𝜙 (𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
)) , 𝜙 (𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

)) ,

𝜙 (𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

)) , 𝜙 (𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

)) ,

𝜙 (𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

)))

≤ 𝜓 (𝜙 (𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
)) , 𝜙 (𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

)) ,

𝜙 (𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

)) , 𝜙 (𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

))

+ 𝜙 (𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

)) , 𝜙 (𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

))

+𝜙 (𝑑 (𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛

))) ,

𝑀 (𝑥
𝑝
𝑛

, 𝑥
𝑞
𝑛

) = max {𝑑 (𝑔𝑥
𝑝
𝑛

, 𝑔𝑥
𝑞
𝑛

) ,

𝑑 (𝑔𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛

) , 𝑑 (𝑔𝑥
𝑞
𝑛

, 𝑓𝑥
𝑞
𝑛

)}

= max {𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
) , 𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

) ,

𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

)} .

(27)
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By above argument and using inequality (10), we can con-
clude that

𝜑 (𝜖) ≤ 𝜓 (𝜙 (𝜖) , 0, 0, 𝜙 (𝜖) , 𝜙 (𝜖)) − 𝜉 (𝜖)

≤ 𝜙 (𝜖) − 𝜉 (𝜖) ,
(28)

which implies that 𝜖 = 0, a contradiction. Therefore, the
sequence {𝑓𝑥

𝑛
} is a Cauchy sequence.

Since 𝑋 is complete and 𝑔𝑋 is closed, there exists ] ∈ 𝑋
such that

lim
𝑛→∞

𝑔𝑥
𝑛
= lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑔]. (29)

Later, we prove that ] is a coincidence point of 𝑓 and 𝑔. From
(14) and (29), we deduce that

𝑔𝑥
𝑛
⊑ 𝑔], ∀𝑛 ∈ N. (30)

Substituting 𝑥 = 𝑥
𝑛
and 𝑦 = ] in (10), we have that

𝜑 (𝑑 (𝑓𝑥
𝑛
, 𝑓]))

≤ 𝜓 (𝜙 (𝑑 (𝑔𝑥
𝑛
, 𝑔])) , 𝜙 (𝑑 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
)) ,

𝜙 (𝑑 (𝑔], 𝑓])) , 𝜙 (𝑑 (𝑔𝑥
𝑛
, 𝑓])) ,

𝜙 (𝑑 (𝑔], 𝑓𝑥
𝑛
)))

− 𝜉 (max {𝑑 (𝑔𝑥
𝑛
, 𝑔]) , 𝑑 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (𝑔], 𝑓])}) .

(31)

Taking 𝑛 → ∞ in the above inequality, we have

𝜑 (𝑑 (𝑔], 𝑓])) ≤ 𝜓 (0, 0, 𝜙 (𝑑 (𝑔], 𝑓])) , 𝜙 (𝑑 (𝑔], 𝑓])) , 0)

− 𝜉 (𝑑 (𝑔], 𝑓])) ≤ 𝜙 (𝑑 (𝑔], 𝑓]))

− 𝜉 (𝑑 (𝑔], 𝑓])) ,
(32)

which implies that 𝑑(𝑔], 𝑓]) = 0, that is, 𝑔] = 𝑓]. So we
complete the proof.

We give the following example to illustrate Theorem 5.

Example 6. Let𝑋 = [0, 1]. We define a partial order “⊑” on𝑋
as 𝑥 ⊑ 𝑦 if and only if 𝑥 ≥ 𝑦 for all 𝑥, 𝑦 ∈ 𝑋.We take the usual
metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝑋. Let 𝑓, 𝑔 : 𝑋 → 𝑋

be defined as

𝑓 (𝑥) =
1

16
𝑥
2

, 𝑔 (𝑥) =
1

4
𝑥
2

. (33)

Let 𝜑, 𝜙, 𝜉 : R+ → R+ be defined as

𝜑 (𝑡) = 𝜙 (𝑡) = 𝑡, 𝜉 (𝑡) =
𝑡

8
∀𝑡 ∈ [0, 1] , (34)

and let 𝜓 : R+
5

→ R+ denote

𝜓 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) =

1

2
⋅max {𝑡

1
, 𝑡
2
, 𝑡
3
,
𝑡
4

2
,
𝑡
5

2
} . (35)

Without loss of generality, we assume that 𝑥 > 𝑦 and verity
inequality (10).

For all 𝑥, 𝑦 ∈ [0, 1] with 𝑥 > 𝑦, we have

𝜑 (𝑑 (𝑓𝑥, 𝑓𝑦)) =
1

16
(𝑥
2

− 𝑦
2

) ,

𝜙 (𝑑 (𝑔𝑥, 𝑔𝑦)) =
1

4
(𝑥
2

− 𝑦
2

) ,

𝜙 (𝑑 (𝑔𝑥, 𝑓𝑥)) =
1

4
𝑥
2

−
1

16
𝑥
2

=
3

16
𝑥
2

,

𝜙 (𝑑 (𝑔𝑦, 𝑓𝑦)) =
1

4
𝑦
2

−
1

16
𝑦
2

=
3

16
𝑦
2

,

𝜙 (𝑑 (𝑔𝑥, 𝑓𝑦)) =
1

4
𝑥
2

−
1

16
𝑦
2

>
3

16
𝑥
2

,

𝜙 (𝑑 (𝑓𝑥, 𝑔𝑦)) =


1

16
𝑥
2

−
1

4
𝑦
2


,

𝜉 (max 𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦))

=

{{{

{{{

{

1

4
(𝑥2 − 𝑦2) , if 𝑥 > 2𝑦,

3

16
𝑥
2
, if 𝑥 ≤ 2𝑦,

𝜓 (𝜙 (𝑑 (𝑔𝑥, 𝑔𝑦)) , 𝜙 (𝑑 (𝑔𝑥, 𝑓𝑥)) , 𝜙 (𝑑 (𝑔𝑦, 𝑓𝑦)) ,

𝜙 (𝑑 (𝑔𝑥, 𝑓𝑦)) , 𝜙 (𝑑 (𝑓𝑥, 𝑔𝑦)))

=
1

8
𝑥
2

−
1

32
𝑦
2

.

(36)

Therefore, inequality (10) is satisfied and all the conditions
of Theorem 5 are satisfied, and we obtained that 0 is a
coincidence point of 𝑓 and 𝑔.

Applying Definition 4, Theorem 5, and Example 6, if we
let
𝜓 (𝜙 (𝑑 (𝑔𝑥, 𝑔𝑦)) , 𝜙 (𝑑 (𝑔𝑥, 𝑓𝑥)) , 𝜙 (𝑑 (𝑔𝑦, 𝑓𝑦)) ,

𝜙 (𝑑 (𝑔𝑥, 𝑓𝑦)) , 𝜙 (𝑑 (𝑔𝑦, 𝑓𝑥)))

= max {𝜙 (𝑑 (𝑔𝑥, 𝑔𝑦)) , 𝜙 (𝑑 (𝑔𝑥, 𝑓𝑥)) , 𝜙 (𝑑 (𝑔𝑦, 𝑓𝑦)) ,

1

2
𝜙 (𝑑 (𝑔𝑥, 𝑓𝑦)) ,

1

2
𝜙(𝑑 (𝑓𝑥, 𝑔𝑦)} ,

(37)
we are easy to get the following theorem.

Theorem 7. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, and let 𝑓, 𝑔 : 𝑋 → 𝑋 be such that 𝑓𝑋 ⊂ 𝑔𝑋, 𝑓
is 𝑔-nondecreasing, 𝑔𝑋 is closed, and
𝜑 (𝑑 (𝑓𝑥, 𝑓𝑦))

≤ max {𝜙 (𝑑 (𝑔𝑥, 𝑔𝑦)) , 𝜙 (𝑑 (𝑔𝑥, 𝑓𝑥)) ,

𝜙 (𝑑 (𝑔𝑦, 𝑓𝑦)) , 𝜙 (𝑑 (𝑔𝑥, 𝑓𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑔𝑦))}

− 𝜉 (max {𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦)}) ,
(38)
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for all 𝑥, 𝑦 ∈ 𝑋 such that 𝑔𝑥 ⊑ 𝑔𝑦, where 𝜑 ∈ Θ,𝜓 ∈ Ψ, 𝜙 ∈ Φ
and 𝜉 ∈ Ξ, and

𝜑 (𝑡) − 𝜙 (𝑡) + 𝜉 (𝑡) > 0 ∀𝑡 > 0,

𝜑 (𝑡) = 0 𝑖𝑓𝑓 𝑡 = 0, 𝜙 (0) = 𝜉 (0) = 0.
(39)

Also, if any nondecreasing sequence {𝑥
𝑛
} in 𝑋 converges to ],

then one assumes that
𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (40)

If there exists 𝑥
0
∈ 𝑋 with 𝑔𝑥

0
⊑ 𝑓𝑥
0
, then 𝑓 and 𝑔 have a

coincidence point in𝑋.
In the other research of this paper, we recall the Meir-

Keeler-type contraction [10] and 𝛼-admissible mapping [11].
In 1969,Meir and Keeler [10] introduced the following notion
of Meir-Keeler-type contraction in a metric space (𝑋, 𝑑).

Definition 8. Let (𝑋, 𝑑) be a metric space, 𝑓 : 𝑋 → 𝑋. Then
𝑓 is called a Meir-Keeler-type contraction whenever for each
𝜂 > 0 there exists 𝛾 > 0 such that

𝜂 ≤ 𝑑 (𝑥, 𝑦) < 𝜂 + 𝛾 ⇒ 𝑑 (𝑓𝑥, 𝑓𝑦) < 𝜂. (41)
And, the following definition was introduced in [11].

Definition 9. Let𝑓 : 𝑋 → 𝑋 be a self-mapping of a set𝑋 and
𝛼 : 𝑋×𝑋 → R+. Then 𝑓 is called a 𝛼-admissible mapping if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑥, 𝑦) ≥ 1 ⇒ 𝛼 (𝑓𝑥, 𝑓𝑦) ≥ 1. (42)
We introduce the notion of 𝛼-𝑔-admissible mapping, as

follows.

Definition 10. Let 𝑓, 𝑔 : 𝑋 → 𝑋 be a self-mapping of a set
𝑋 and 𝛼 : 𝑋 × 𝑋 → R+. Then 𝑓 is called a 𝛼-𝑔-admissible
mapping if

𝑥, 𝑦 ∈ 𝑋, 𝛼 (𝑔𝑥, 𝑔𝑦) ≥ 1 ⇒ 𝛼 (𝑓𝑥, 𝑓𝑦) ≥ 1. (43)
We give the following example to illustrate Definition 10.

Example 11. Let𝑋 = R+ and we define

𝑔 (𝑥) = 𝑥 +
1

2
, 𝑓 (𝑥) = 𝑔 (𝑥) +

1

𝑥 + 1
,

𝛼 (𝑥, 𝑦) = 𝑥 + 𝑦.

(44)

Then 𝑓 is a 𝛼-𝑔-admissible mapping.

Wenow state the newnotions of generalizedMeir-Keeler-
type 𝜓-contractions and generalized Meir-Keeler-type 𝛼-𝜓-
contractions in partially ordered complete metric spaces, as
follows.

Definition 12. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, and let 𝑓, 𝑔 : 𝑋 → 𝑋. Then the pair
(𝑓, 𝑔) is called a generalized Meir-Keeler-type 𝜓-contraction
whenever for each 𝜂 > 0, there exists 𝛿 > 0 such that

𝜂 ≤ 𝜓 (𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦) ,

𝑑 (𝑔𝑥, 𝑓𝑦) , 𝑑 (𝑔𝑦, 𝑓𝑥))

< 𝜂 + 𝛿 ⇒ 𝑑 (𝑓𝑥, 𝑓𝑦) < 𝜂,

(45)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑔𝑥 ⊑ 𝑔𝑦, where 𝜓 ∈ Ψ.

Definition 13. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, let 𝑓, 𝑔 : 𝑋 → 𝑋, and 𝛼 : 𝑋 × 𝑋 →

R+. Then (𝑓, 𝑔) is called a generalized Meir-Keeler-type 𝛼-
𝜓-contraction if the following conditions hold:

(1) 𝑓 is 𝛼-𝑔-admissible;
(2) for each 𝜂 > 0 there exists 𝛿 > 0 such that

𝜂 ≤ 𝜓 (𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦) ,

𝑑 (𝑔𝑥, 𝑓𝑦) , 𝑑 (𝑔𝑦, 𝑓𝑥))

< 𝜂 + 𝛿 ⇒ 𝛼 (𝑓𝑥, 𝑓𝑥) 𝛼 (𝑔𝑦, 𝑔𝑦) 𝑑 (𝑓𝑥, 𝑓𝑦) < 𝜂,

(46)

for all 𝑥, 𝑦 ∈ 𝑋 with 𝑔𝑥 ⊑ 𝑔𝑦, where 𝜓 ∈ Ψ.

Remark 14. Note that if 𝑓 is a generalized Meir-Keeler-type
𝛼-𝜓-contraction, then we have that for all 𝑥, 𝑦 ∈ 𝑋

𝛼 (𝑓𝑥, 𝑓𝑥) 𝛼 (𝑔𝑦, 𝑔𝑦) 𝑑 (𝑓𝑥, 𝑓𝑦)

≤ 𝜓 (𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦) ,

𝑑 (𝑔𝑥, 𝑓𝑦) , 𝑑 (𝑔𝑦, 𝑓𝑥)) .

(47)

Further, if

𝜓 (𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦) ,

𝑑 (𝑔𝑥, 𝑓𝑦) , 𝑑 (𝑔𝑦, 𝑓𝑥)) = 0,
(48)

then 𝑑(𝑓𝑥, 𝑓𝑦) = 0.
On the other hand, if

𝜓 (𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦) ,

𝑑 (𝑔𝑥, 𝑓𝑦) , 𝑑 (𝑔𝑦, 𝑓𝑥)) > 0,
(49)

then

𝛼 (𝑓𝑥, 𝑓𝑥) 𝛼 (𝑔𝑦, 𝑔𝑦) 𝑑 (𝑓𝑥, 𝑓𝑦)

< 𝜓 (𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑓𝑥) , 𝑑 (𝑔𝑦, 𝑓𝑦) ,

𝑑 (𝑔𝑥, 𝑓𝑦) , 𝑑 (𝑔𝑦, 𝑓𝑥)) .

(50)

We now state our main result for the generalized Meir-
Keeler-type 𝛼-𝜓-contraction, as follows.

Theorem 15. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, let 𝛼 : 𝑋 × 𝑋 → R+ be continuous in each
coordinate, and let 𝑓, 𝑔 : 𝑋 → 𝑋 be such that 𝑓𝑋 ⊂

𝑔𝑋, 𝑓 is 𝑔-nondecreasing, and 𝑔𝑋 is closed. Suppose the pair
(𝑓, 𝑔) is a generalized Meir-Keeler-type 𝛼-𝜓-contraction and
the following conditions hold.

(i) If any nondecreasing sequence {𝑥
𝑛
} in𝑋 converges to ],

then we assume that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (51)

(ii) There exists 𝑥
0
∈ 𝑋with 𝑔𝑥

0
⊑ 𝑓𝑥
0
and 𝛼(𝑓𝑥

0
, 𝑓𝑥
0
) ≥

1.
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(iii) If 𝛼(𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) ≥ 1 for all 𝑛 ∈ N, then

lim
𝑛→∞

𝛼(𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) ≥ 1.

Then 𝑓 and 𝑔 have a coincidence point in 𝑋.

Proof. Since 𝑓𝑋 ⊂ 𝑔𝑋 and by (ii), there exists 𝑥
0
∈ 𝑋 with

𝑔𝑥
0
⊑ 𝑓𝑥

0
and 𝛼(𝑓𝑥

0
, 𝑓𝑥
0
) ≥ 1, we can choose 𝑥

1
∈ 𝑋

such that 𝑔𝑥
1
= 𝑓𝑥
0
. Since 𝑓 is 𝑔-nondecreasing, we have

𝑓𝑥
0
⊑ 𝑓𝑥
1
. In this process, we construct the sequence {𝑥

𝑛
}

recursively as

𝑓𝑥
𝑛
= 𝑔𝑥
𝑛+1

∀𝑛 ∈ N. (52)

Thus, we also conclude that

𝑔𝑥
0
⊑ 𝑓𝑥
0
= 𝑔𝑥
1
⊑ 𝑓𝑥
1
= 𝑔𝑥
2
⊑ ⋅ ⋅ ⋅ ⊑ 𝑓𝑥

𝑛−1

= 𝑔𝑥
𝑛
⊑ 𝑓𝑥
𝑛
= 𝑔𝑥
𝑛+1

⊑ ⋅ ⋅ ⋅ .
(53)

If any two consecutive terms in (53) are equal, then the
conclusion of the theorem follows. So we may assume that

𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) ̸= 0, ∀𝑛 ∈ N. (54)

On the other hand, since 𝑓 is 𝛼-𝑔-admissible and
𝛼(𝑓𝑥
0
, 𝑓𝑥
0
) = 𝛼(𝑔𝑥

1
, 𝑔𝑥
1
) ≥ 1, we have

𝛼 (𝑓𝑥
1
, 𝑓𝑥
1
) = 𝛼 (𝑔𝑥

2
, 𝑔𝑥
2
) ≥ 1. (55)

By continuing this process, we get

𝛼 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) = 𝛼 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+1

) ≥ 1 ∀𝑛 ∈ N ∪ {0} . (56)

By (53), (54), and (56), substituting 𝑥 = 𝑥
𝑛
and 𝑦 = 𝑥

𝑛+1
in

(50), we have

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)

≤ 𝛼 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) 𝛼 (𝑔𝑥

𝑛+1
, 𝑔𝑥
𝑛+1

) 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)

< 𝜓 (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (𝑔𝑥

𝑛+1
, 𝑓𝑥
𝑛+1

) ,

(𝑔𝑥
𝑛
, 𝑓𝑥
𝑛+1

) , 𝑑 (𝑔𝑥
𝑛+1

, 𝑓𝑥
𝑛
))

= 𝜓 (𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) , 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
) , 𝑑 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1

) ,

𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

) , 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
)) .

(57)

If 𝑑(𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) ≤ 𝑑(𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1

), then the inequality (57)
becomes

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

)

< 𝜓 (𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) , 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
) , 𝑑 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1

) ,

𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

) , 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
))

≤ 𝜓 (𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) , 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) , 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) ,

2𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) , 0)

≤ 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) ,

(58)

which implies a contradiction, and we get that 𝑑(𝑓𝑥
𝑛
,

𝑓𝑥
𝑛+1

) < 𝑑(𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
).

From the argument above, we have that the sequence
{𝑑(𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1

)} is decreasing, and it must converge to some
𝜂 ≥ 0, that is,

lim
𝑛→∞

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) = 𝜂. (59)

It follow from that (57) and (59), we have

lim
𝑛→∞

𝜓 (𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛
) , 𝑑 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
) , 𝑑 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑛+1

) ,

𝑑 (𝑓𝑥
𝑛−1

, 𝑓𝑥
𝑛+1

) , 𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
)) = 𝜂.

(60)

Notice that 𝜂 = inf {𝑑(𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) : 𝑛 ∈ N ∪ {0}}. We
claim that 𝜂 = 0. Suppose, to the contrary, that 𝜂 > 0. Since
(𝑓, 𝑔) is a generalized Meir-Keeler-type 𝛼-𝜓-contraction,
corresponding to 𝜂 use, and taking into account the above
inequality (60), there exist 𝛿 > 0 and a natural number 𝑘 such
that

𝜂 ≤ 𝜓 (𝑑 (𝑓𝑥
𝑘−1

, 𝑓𝑥
𝑘
) , 𝑑 (𝑓𝑥

𝑘−1
, 𝑓𝑥
𝑘
) ,

𝑑 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘+1
) , 𝑑 (𝑓𝑥

𝑘−1
, 𝑓𝑥
𝑘+1

) ,

𝑑 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘
))

< 𝜂 + 𝛿 ⇒ 𝛼 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘
) 𝛼 (𝑔𝑥

𝑘+1
, 𝑔𝑥
𝑘+1

)

× 𝑑 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘+1

) < 𝜂,

(61)

which implies

𝑑 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘+1

) ≤ 𝛼 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘
)

× 𝛼 (𝑔𝑥
𝑘+1

, 𝑔𝑥
𝑘+1

) 𝑑 (𝑓𝑥
𝑘
, 𝑓𝑥
𝑘+1

) < 𝜂.

(62)

So we get a contradiction, since 𝜂 = inf {𝑑(𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) : 𝑛 ∈

N ∪ {0}}. Thus we have that

lim
𝑛→∞

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛+1

) = 0. (63)

We next claim that {𝑓𝑥
𝑛
} is a Cauchy sequence, that is,

for every 𝜀 > 0, there exists 𝑛 ∈ N such that if 𝑝, 𝑞 ≥ 𝑛, then
𝑑(𝑓𝑥
𝑝
, 𝑓𝑥
𝑞
) < 𝜀.

Suppose the above statement is false.Then there exists 𝜖 >
0 such that for any 𝑛 ∈ N, there are 𝑝

𝑛
, 𝑞
𝑛
∈ N with 𝑝

𝑛
> 𝑞
𝑛
≥

𝑛 satisfying

𝑑 (𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛

) ≥ 𝜖. (64)

Further, corresponding to 𝑞
𝑛
≥ 𝑛, we can choose 𝑝

𝑛
in such

a way that is it the smallest integer with 𝑝
𝑛
> 𝑞
𝑛
≥ 𝑛 and

𝑑(𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛

) ≥ 𝜖. Therefore 𝑑(𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛
−1
) < 𝜖. Now we

have that for all 𝑛 ∈ N

𝜖 ≤ 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

) ≤ 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛
−1
)

+ 𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

)

< 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛
−1
) + 𝜖.

(65)
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Letting 𝑛 → ∞, then we get

lim
𝑛→∞

𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

) = 𝜖. (66)

On the other hand, we have

𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

) ≤ 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛
−1
) + 𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
)

+ 𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

) ,

𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
) ≤ 𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

) + 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

)

+ 𝑑 (𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑞
𝑛
−1
) .

(67)

Letting 𝑛 → ∞, then we get

lim
𝑛→∞

𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
) = 𝜖. (68)

By (53), we have that the elements 𝑔𝑥
𝑝
𝑛

and 𝑔𝑥
𝑞
𝑛

are
comparable. Substituting 𝑥 = 𝑥

𝑝
𝑛

and 𝑦 = 𝑥
𝑞
𝑛

in (50), we
have that for all 𝑛 ∈ N,

𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

)

≤ 𝛼 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛

) 𝛼 (𝑔𝑥
𝑞
𝑛

, 𝑔𝑥
𝑞
𝑛

) 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

)

< 𝜓 (𝑑 (𝑔𝑥
𝑝
𝑛

, 𝑔𝑥
𝑞
𝑛

) , 𝑑 (𝑔𝑥
𝑝
𝑛

, 𝑓𝑥
𝑝
𝑛

) , 𝑑 (𝑔𝑥
𝑞
𝑛

, 𝑓𝑥
𝑞
𝑛

) ,

𝑑 (𝑔𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

) , 𝑑 (𝑔𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛

))

≤ 𝜓 (𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
) , 𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

) ,

𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

) , 𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

) ,

𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

))

≤ 𝜓 (𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑞
𝑛
−1
) , 𝑑 (𝑓𝑥

𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

) ,

𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

) , 𝑑 (𝑓𝑥
𝑝
𝑛
−1
, 𝑓𝑥
𝑝
𝑛

) + 𝑑 (𝑓𝑥
𝑝
𝑛

, 𝑓𝑥
𝑞
𝑛

) ,

𝑑 (𝑓𝑥
𝑞
𝑛
−1
, 𝑓𝑥
𝑞
𝑛

) + 𝑑 (𝑓𝑥
𝑞
𝑛

, 𝑓𝑥
𝑝
𝑛

)) .

(69)

Letting 𝑛 → ∞ in (69), then we get

𝜖 < 𝜓 (𝜖, 0, 0, 𝜖, 𝜖) ≤ 𝜖, (70)

which implies a contradiction. Thus, {𝑓𝑥
𝑛
} is a Cauchy

sequence.
Since 𝑋 is complete and 𝑔𝑋 is closed, there exists ] ∈ 𝑋

such that

lim
𝑛→∞

𝑔𝑥
𝑛
= lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑔]. (71)

Since 𝛼 is continuous in each coordinate and by the condition
(iii), we have

𝛼 (𝑔], 𝑔]) = lim
𝑛→∞

𝛼 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑛
) ≥ 1. (72)

Later, we prove that ] is a coincidence point of 𝑓 and 𝑔.
From (53) and (71), we deduce that

𝑔𝑥
𝑛
⊑ 𝑔], ∀𝑛 ∈ N. (73)

By (72) and substituting 𝑥 = 𝑥
𝑛
and 𝑦 = ] in (50), we have

that

𝑑 (𝑓𝑥
𝑛
, 𝑓]) ≤ 𝛼 (𝑓𝑥

𝑛
, 𝑓𝑥
𝑛
) 𝛼 (𝑔], 𝑔]) 𝑑 (𝑓𝑥

𝑛
, 𝑓])

< 𝜓 (𝑑 (𝑔𝑥
𝑛
, 𝑔]) , 𝑑 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
) ,

𝑑 (𝑔], 𝑓]) , 𝑑 (𝑔𝑥
𝑛
, 𝑓]) , 𝑑 (𝑔], 𝑓𝑥

𝑛
)) .

(74)

Taking 𝑛 → ∞ in the above inequality, we have

𝑑 (𝑔], 𝑓]) < 𝜓 (𝑑 (𝑔], 𝑔]) , 𝑑 (𝑔], 𝑔]) ,

𝑑 (𝑔], 𝑓]) , 𝑑 (𝑔], 𝑓]) , 𝑑 (𝑔], 𝑔]))

≤ 𝑑 (𝑔], 𝑓]) .

(75)

This implies that 𝑔] = 𝑓]. So we complete the proof.

Apply Theorem 15, we are easy to get the following
theorem.

Theorem 16. Let (𝑋, ⊑, 𝑑) be a partially ordered complete
metric space, and let𝑓, 𝑔 : 𝑋 → 𝑋 be such that𝑓𝑋 ⊂ 𝑔𝑋,𝑓 is
𝑔-nondecreasing, and 𝑔𝑋 is closed. Suppose the pair (𝑓, 𝑔) is a
generalized Meir-Keeler-type 𝜓-contraction and the following
conditions hold.

(i) If any nondecreasing sequence {𝑥
𝑛
} in𝑋 converges to ],

then we assume that

𝑥
𝑛
⊑ ] ∀𝑛 ∈ N. (76)

(ii) There exists 𝑥
0
∈ 𝑋 with 𝑔𝑥

0
⊑ 𝑓𝑥
0
.

Then 𝑓 and 𝑔 have a coincidence point in 𝑋.
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