
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 497418, 7 pages
http://dx.doi.org/10.1155/2013/497418

Research Article
Binomial Transforms of the Padovan and
Perrin Matrix Sequences

Nazmiye Yilmaz and Necati Taskara

Department of Mathematics, Faculty of Science, Selcuk University, Campus, 42075 Konya, Turkey

Correspondence should be addressed to Nazmiye Yilmaz; nzyilmaz@selcuk.edu.tr

Received 18 July 2013; Accepted 13 September 2013

Academic Editor: Beong In Yun

Copyright © 2013 N. Yilmaz and N. Taskara. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We apply the binomial transforms to Padovan and Perrin matrix sequences. Also, the Binet formulas, summations, and generating
functions of these transforms are found by recurrence relations. Finally, we illustrate the relations between these transforms by
deriving new formulas.

1. Introduction and Preliminaries

There are so many studies in the literature that are concernes
about the special number sequences such as Fibonacci, Lucas,
Pell, Jacobsthal, Padovan, and Perrin (see, e.g., [1–4] and the
references cited therein). In Fibonacci numbers, there clearly
exists the term golden ratio which is defined as the ratio
of two consecutive of Fibonacci numbers that converges to
𝛼 = (1 + √5)/2. It is also clear that the ratio has so many
applications in, specially, physics, engineering, architecture,
and so forth [5, 6]. In a similar manner, the ratio of two
consecutive Padovan and Perrin numbers converges to
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that is named as plastic constant and was firstly defined in
1924 by Gérard Cordonnier. He described applications to
architecture and illustrated the use of the plastic constant in
many buildings.

Although the study of Perrin numbers started in the
beginning of the 19th. century under different names, the
master study was published in 2006 by Shannon et al. in [3].

The authors defined the Perrin {𝑅
𝑛
}
𝑛∈N and Padovan {𝑃

𝑛
}
𝑛∈N

sequences as in the forms
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(2)

respectively.
On the other hand, the matrix sequences have taken

so much interest for different types of numbers (cf. [7–9]).
For instance, in [7], authors defined new matrix general-
izations for Fibonacci and Lucas numbers, and by using
basic matrix approach they showed some properties of these
matrix sequences. In [9], authors defined a new sequence
which generalizes (𝑠, 𝑡)-Fibonacci and (𝑠, 𝑡)-Lucas sequences
at the same time. After that, by using it, they established
generalized (𝑠, 𝑡)-matrix sequence. Finally, they presented
some important relationships among this new generalization,
(𝑠, 𝑡)-Fibonacci and (𝑠, 𝑡)-Lucas sequences and their matrix
sequences. In [8], Gulec andTaskara gave newgeneralizations
for (𝑠, 𝑡)-Pell and (𝑠, 𝑡)-Pell Lucas sequences for Pell and Pell-
Lucas numbers. Considering these sequences, they defined
the matrix sequences which have elements of (𝑠, 𝑡)-Pell
and (𝑠, 𝑡)-Pell Lucas sequences. Also, they investigated their
properties. Moreover, in [10], authors develop the matrix
sequences that represent Padovan and Perrin numbers and
examined their properties.
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In addition, some matrix based transforms can be intro-
duced for a given sequence. Binomial transform is one of
these transforms, and there are also other ones such as rising
and falling binomial transforms (see [11–13]).

Motivated by [10, 12], the goal of this paper is to apply
the binomial transforms to the Padovan (P

𝑛
) and Perrin

matrix sequences (R
𝑛
). Also, the generating functions of

these transforms are found by recurrence relations. Finally,
the relations between these transforms are illustrated by
deriving new formulas.

Now, we give some preliminaries related to our study.
Given an integer sequence 𝑋 = {𝑥

0
, 𝑥
1
, 𝑥
2
, . . .}, the binomial

transform 𝐵 of the sequence𝑋, 𝐵(𝑋) = {𝑏
𝑛
}, is given by

𝑏
𝑛
=

𝑛

∑

𝑖=0

(

𝑛

𝑖
) 𝑥
𝑖
. (3)

In [10], for 𝑛 ≥ 0, , authors defined Padovan and Perrin
matrix sequences as in the form

P
𝑛+3

= P
𝑛+1

+P
𝑛
, (4)

where

P
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Proposition 1 (see [10]). Let one considers 𝑛 ≥ 0, the following
properties are held:
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(ii) for𝑚 > 𝑗 ≥ 0, the following statements are satisfied:
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(iii) for𝑚, 𝑛 ≥ 0,

(a) P
𝑚
P
𝑛
= P
𝑛+𝑚

,

(b) P
𝑚
R
𝑛
= R
𝑛
P
𝑚
= R
𝑛+𝑚

,

(c) R
𝑚
R
𝑛
= 2R

𝑚+𝑛−2
+R
𝑚+𝑛−5

, where 𝑚 > 4 or
𝑛 > 4,

(d) R
𝑚
R
𝑛
= 4P

𝑛+𝑚−4
+ 4P

𝑚+𝑛−7
+ P
𝑚+𝑛−10

,
for 𝑚, 𝑛 > 4.

2. Binomial Transform of Padovan
and Perrin Matrix Sequences

In this section, we will mainly focus on binomial transforms
of Padovan and Perrin matrix sequences to get some impor-
tant results. In fact, as a middle step, we will also present
the recurrence relations, Binet formulas, summations, and
generating functions.

Definition 2. Let P
𝑛
and R

𝑛
be the Padovan and Perrin

matrix sequences, respectively. The binomial transforms of
these matrix sequences can be expressed as follows:

(i) the binomial transform of the Padovan matrix
sequence is 𝑏

𝑛
= ∑
𝑛

𝑖=0
(
𝑛

𝑖 )P𝑖,

(ii) the binomial transform of the Perrin matrix sequence
is 𝑐
𝑛
= ∑
𝑛

𝑖=0
(
𝑛

𝑖 )R𝑖.
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We note that, fromDefinition 2 and (4) and (5), for 𝑛 ≥ 0,
we obtain

𝑏
0
= P
0
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𝑏
1
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+P
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3
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, . . . ,

𝑏
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𝑐
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0
,
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0
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1
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0
+ 2R
1
+R
2
= R
6
, . . . ,
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.

(10)

The following lemma will be the key of the proof of the
next theorems.

Lemma 3. For 𝑛 ≥ 0, the following equalities are held:

(i) 𝑏
𝑛+1

= ∑
𝑛

𝑖=0
(
𝑛

𝑖 ) (P𝑖 +P
𝑖+1
),

(ii) 𝑐
𝑛+1

= ∑
𝑛

𝑖=0
(
𝑛

𝑖 ) (R𝑖 +R
𝑖+1
).

Proof. Firstly, in here we will just prove (i), since (ii) can be
thought in the same manner with (i).

(i) By using Definition 2 and the well known binomial
equality

(
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𝑖
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which is a desired result.

From the previous Lemma, note that

(i) 𝑏
𝑛+1

also can be written as 𝑏
𝑛+1

= 𝑏
𝑛
+ ∑
𝑛

𝑖=0
(
𝑛

𝑖 )P𝑖+1,

(ii) 𝑐
𝑛+1

also can be written as 𝑐
𝑛+1

= 𝑐
𝑛
+ ∑
𝑛

𝑖=0
(
𝑛

𝑖 )R𝑖+1.

Theorem 4. For 𝑛 > 0,

(i) recurrence relation of sequences {𝑏
𝑛
} is

𝑏
𝑛+2

= 3𝑏
𝑛+1

− 2𝑏
𝑛
+ 𝑏
𝑛−1

, (13)

with initial conditions

𝑏
0
= (

1 0 0

0 1 0

0 0 1

) ,

𝑏
1
= (

1 1 0

0 1 1

1 1 1

) ,

𝑏
2
= (

1 2 1

1 2 2

2 3 2

) ,

(14)

(ii) recurrence relation of sequences {𝑐
𝑛
} is

𝑐
𝑛+2

= 3𝑐
𝑛+1

− 2𝑐
𝑛
+ 𝑐
𝑛−1

, (15)

with initial conditions

𝑐
0
= (

4 2 −3

−3 1 2

2 −1 1

) ,

𝑐
1
= (

1 3 −1

−1 0 3

3 2 0

) ,

𝑐
2
= (

0 3 2

2 2 3

3 5 2

) .

(16)

Proof. Similarly for the proof of the previous theorem, only
the first case (i) will be proved. We will omit the other cases
since the proofs will not be different.

(i) By considering the right-hand side of equality in (i)
and Definition 2, we obtain

3𝑏
𝑛+1

− 2𝑏
𝑛
+ 𝑏
𝑛−1

= 3
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𝑛

𝑖
)P
𝑖
+

𝑛−1
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(

𝑛 − 1

𝑖
)P
𝑖

=

𝑛+1

∑

𝑖=0

(

𝑛 + 1

𝑖
)P
𝑖
+ 2

𝑛+1

∑

𝑖=0

[(

𝑛 + 1

𝑖
) − (

𝑛

𝑖
)]P
𝑖

+

𝑛−1
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𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖

=

𝑛+1
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(

𝑛 + 1

𝑖
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𝑖
+ 2

𝑛+1
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𝑖=0
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𝑛

𝑖 − 1
)P
𝑖

+

𝑛−1
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𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖
.

(17)
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By taking, account equality ( 𝑛+1
𝑛
) = (

𝑛

−1 ) = 0, we get

3𝑏
𝑛+1

− 2𝑏
𝑛
+ 𝑏
𝑛−1

=

𝑛+1

∑

𝑖=0

(

𝑛 + 1

𝑖
)P
𝑖
+ 2

𝑛+1

∑

𝑖=1

(

𝑛

𝑖 − 1
)P
𝑖

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖

=

𝑛+1

∑

𝑖=0

(

𝑛 + 1

𝑖
)P
𝑖
+

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖+1

+

𝑛+1

∑

𝑖=1

(

𝑛

𝑖 − 1
)P
𝑖

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖

=

𝑛+1

∑

𝑖=0

(

𝑛 + 1

𝑖
)P
𝑖
+

𝑛+1

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖+1

+

𝑛+1

∑

𝑖=1

(

𝑛

𝑖 − 1
)P
𝑖

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖
+

𝑛+1

∑

𝑖=0

(

𝑛

𝑖 − 1
)P
𝑖+1

−

𝑛+1

∑

𝑖=0

(

𝑛

𝑖 − 1
)P
𝑖+1

=

𝑛+1

∑

𝑖=0

(

𝑛 + 1

𝑖
)P
𝑖
+

𝑛+1

∑

𝑖=0

[(

𝑛

𝑖
) + (

𝑛

𝑖 − 1
)]

×P
𝑖+1

+

𝑛+1

∑

𝑖=1

(

𝑛

𝑖 − 1
)P
𝑖

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖
−

𝑛+1

∑

𝑖=1

(

𝑛

𝑖 − 1
)P
𝑖+1

=

𝑛+1

∑

𝑖=0

(

𝑛 + 1

𝑖
)P
𝑖
+

𝑛+1

∑

𝑖=0

(

𝑛 + 1

𝑖
)P
𝑖+1

+

𝑛+1

∑

𝑖=1

(

𝑛

𝑖 − 1
)P
𝑖

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖
−

𝑛+1

∑

𝑖=1

(

𝑛

𝑖 − 1
)P
𝑖+1
.

(18)

From Lemma 3 and properties of binomial sum, we have

3𝑏
𝑛+1

− 2𝑏
𝑛
+ 𝑏
𝑛−1

= 𝑏
𝑛+2

+

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖+1

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖
−

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖+2
.

(19)

On the other hand, by using (4) and the equality ( 𝑛−1 ) = 0,
we get

3𝑏
𝑛+1

− 2𝑏
𝑛
+ 𝑏
𝑛−1

= 𝑏
𝑛+2

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖
−

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖−3

= 𝑏
𝑛+2

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖

−

𝑛

∑

𝑖=0

[(

𝑛 − 1

𝑖
) + (

𝑛 − 1

𝑖 − 1
)]P
𝑖−3

= 𝑏
𝑛+2

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖
−

𝑛

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖−3

−

𝑛

∑

𝑖=1

(

𝑛 − 1

𝑖 − 1
)P
𝑖−3

= 𝑏
𝑛+2

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖
−

𝑛

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖−3

−

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
)P
𝑖−2

= 𝑏
𝑛+2

+

𝑛−1

∑

𝑖=0

(

𝑛 − 1

𝑖
) (P
𝑖
−P
𝑖−2

−P
𝑖−3
)

= 𝑏
𝑛+2

,

(20)

which has completed the proof of this case.

The characteristic equation of sequences {𝑏
𝑛
} and {𝑐

𝑛
} in

(13) and (15) is 𝜆3 − 3𝜆
2
+ 2𝜆 − 1 = 0. Let 𝜆

1
, 𝜆
2
, and 𝜆

3
be

the roots of this equation.Then, Binet’s formulas of sequences
{𝑏
𝑛
} and {𝑐

𝑛
} can be expressed as

𝑏
𝑛
= 𝑋
1
𝜆
𝑛

1
+ 𝑌
1
𝜆
𝑛

2
+ 𝑍
1
𝜆
𝑛

3
,

𝑐
𝑛
= 𝑋
2
𝜆
𝑛

1
+ 𝑌
2
𝜆
𝑛

2
+ 𝑍
2
𝜆
𝑛

3
,

(21)

where

𝑋
1
=

1

𝜆
1
(𝜆
1
− 𝜆
2
) (𝜆
1
− 𝜆
3
)

×(

𝜆
2

1
− 2𝜆
1
+ 1 𝜆

2

1
− 𝜆
1

𝜆
1

𝜆
1

𝜆
2

1
− 𝜆
1
+ 1 𝜆

2

1
− 𝜆
1

𝜆
2

1
− 𝜆
1

𝜆
2

1
𝜆
2

1
− 𝜆
1
+ 1

) ,

𝑌
1
=

1

𝜆
2
(𝜆
2
− 𝜆
1
) (𝜆
2
− 𝜆
3
)

×(

𝜆
2

2
− 2𝜆
2
+ 1 𝜆

2

2
− 𝜆
2

𝜆
2

𝜆
2

𝜆
2

2
− 𝜆
2
+ 1 𝜆

2

2
− 𝜆
2

𝜆
2

2
− 𝜆
2

𝜆
2

2
𝜆
2

2
− 𝜆
2
+ 1

) ,
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𝑍
1
=

1

𝜆
3
(𝜆
3
− 𝜆
1
) (𝜆
3
− 𝜆
2
)

×(

𝜆
2

3
− 2𝜆
3
+ 1 𝜆

2

3
− 𝜆
3

𝜆
3

𝜆
3

𝜆
2

3
− 𝜆
3
+ 1 𝜆

2

3
− 𝜆
3

𝜆
2

3
− 𝜆
3

𝜆
2

3
𝜆
2

3
− 𝜆
3
+ 1

) ,

𝑋
2
=

1

𝜆
1
(𝜆
1
− 𝜆
2
) (𝜆
1
− 𝜆
3
)

×(

𝜆
2

1
− 3𝜆
1
+ 4 3𝜆

2

1
− 6𝜆
1
+ 2 −𝜆

2

1
+ 5𝜆
1
− 3

−𝜆
2

1
+ 5𝜆
1
− 3 2𝜆

1
+ 1 3𝜆

2

1
− 6𝜆
1
+ 2

3𝜆
2

1
− 6𝜆
1
+ 2 2𝜆

2

1
− 𝜆
1
− 1 2𝜆

1
+ 1

),

𝑌
2
=

1

𝜆
2
(𝜆
2
− 𝜆
1
) (𝜆
2
− 𝜆
3
)

×(

𝜆
2

2
− 3𝜆
2
+ 4 3𝜆

2

2
− 6𝜆
2
+ 2 −𝜆

2

2
+ 5𝜆
2
− 3

−𝜆
2

2
+ 5𝜆
2
− 3 2𝜆

2
+ 1 3𝜆

2

2
− 6𝜆
2
+ 2

3𝜆
2

2
− 6𝜆
2
+ 2 2𝜆

2

2
− 𝜆
2
− 1 2𝜆

2
+ 1

),

𝑍
2
=

1

𝜆
3
(𝜆
3
− 𝜆
1
) (𝜆
3
− 𝜆
2
)

×(

𝜆
2

3
− 3𝜆
3
+ 4 3𝜆

2

3
− 6𝜆
3
+ 2 −𝜆

2

3
+ 5𝜆
3
− 3

−𝜆
2

3
+ 5𝜆
3
− 3 2𝜆

3
+ 1 3𝜆

2

3
− 6𝜆
3
+ 2

3𝜆
2

3
− 6𝜆
3
+ 2 2𝜆

2

3
− 𝜆
3
− 1 2𝜆

3
+ 1

).

(22)

Now, we give the sums of binomial transforms for Padovan
and Perrin matrix sequences.

Theorem 5. Sums of sequences {𝑏
𝑛
} and {𝑐

𝑛
} are

(i) ∑𝑛−1
𝑘=0

𝑏
𝑘
= P
3𝑛−1

− 2P
1
,

(ii) ∑𝑛−1
𝑘=0

𝑐
𝑘
= R
3𝑛−1

− 2R
1
.

Proof. (i) By considering (9), we have
𝑛−1

∑

𝑘=0

𝑏
𝑘
=

𝑛−1

∑

𝑘=0

P
3𝑘
. (23)

Now, if we take 𝑚 = 3, and 𝑗 = 0 in first equality of
Proposition 1-(ii), then we obtain

𝑛−1

∑

𝑘=0

𝑏
𝑘
= (P
3𝑛+3

+P
3𝑛−3

+ (1 − 3)P3𝑛

− 2P
3
+ (3 − 1)P0) × (3 − 2)

−1
.

(24)

Afterwards, by taking into account (4), we conclude
𝑛−1

∑

𝑘=0

𝑏
𝑘
= P
3𝑛−1

− 2P
1
. (25)

(ii)The proof of the binomial transform of Perrin
matrix sequences can be seen by taking into account (10),
Proposition 1-(ii) and (5), similarly to the proof of (i).

Theorem 6. The generating functions of the binomial trans-
forms for {P

𝑛
} and {R

𝑛
} are

(i)
∞

∑

𝑖=0

𝑏
𝑖
𝑥
𝑖
=

1

1 − 3𝑥 + 2𝑥
2
− 𝑥
3

× (

1 − 2𝑥 𝑥 − 𝑥
2

𝑥
2

𝑥
2

1 − 2𝑥 + 𝑥
2

𝑥 − 𝑥
2

𝑥 − 𝑥
2

𝑥 1 − 2𝑥 + 𝑥
2

) ,

(26)

(ii)
∞

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖
=

1

1 − 3𝑥 + 2𝑥
2
− 𝑥
3

× (

4 − 11𝑥 + 5𝑥
2

2 − 3𝑥 − 2𝑥
2

−3 + 8𝑥 − 𝑥
2

−3 + 8𝑥 − 𝑥
2

1 − 3𝑥 + 4𝑥
2

2 − 3𝑥 − 2𝑥
2

2 − 3𝑥 − 2𝑥
2

−1 + 5𝑥 − 3𝑥
2
1 − 3𝑥 + 4𝑥

2

) ,

(27)

respectively.

Proof. We omit Padovan case since the proof will be quite
similar.

Assume that 𝑐(𝑥) is the generating function of the
binomial transform for {R

𝑛
}. Then, we have

𝑐 (𝑥) =

∞

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖
. (28)

FromTheorem 4, we obtain

𝑐 (𝑥) = 𝑐
0
+ 𝑐
1
𝑥 + 𝑐
2
𝑥
2
+

∞

∑

𝑖=3

(3𝑐
𝑖−1

− 2𝑐
𝑖−2

+ 𝑐
𝑖−3
) 𝑥
𝑖

= 𝑐
0
+ 𝑐
1
𝑥 + 𝑐
2
𝑥
2
− 3𝑐
0
𝑥 − 3𝑐

1
𝑥
2
+ 2𝑐
0
𝑥
2
+ 3𝑥

∞

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖

− 2𝑥
2

∞

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖
+ 𝑥
3

∞

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖

= 𝑐
0
+ (𝑐
1
− 3𝑐
0
) 𝑥 + (𝑐

2
− 3𝑐
1
+ 2𝑐
0
) 𝑥
2

+ 3𝑥𝑐 (𝑥) − 2𝑥
2
𝑐 (𝑥) + 𝑥

3
𝑐 (𝑥) .

(29)

Now, the rearrangement of the equation implies that

𝑐 (𝑥) =

𝑐
0
+ (𝑐
1
− 3𝑐
0
) 𝑥 + (𝑐

2
− 3𝑐
1
+ 2𝑐
0
) 𝑥
2

1 − 3𝑥 + 2𝑥
2
− 𝑥
3

, (30)

which is equal to the ∑∞
𝑖=0

𝑐
𝑖
𝑥
𝑖 in theorem.

Hence, the result is obtained.
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3. The Relationships between New
Binomial Transforms

In this section, we present the relationship between these
binomial transforms.

Theorem 7. For 𝑛,𝑚 ≥ 0, one has

(i) 𝑏
𝑛
𝑏
𝑚
= 𝑏
𝑛+𝑚

, where 𝑛 ≤ 𝑚,

(ii) 𝑏
𝑛
𝑐
𝑚
= 𝑐
𝑛
𝑏
𝑚
= 𝑐
𝑛+𝑚

,

(iii) 𝑐
𝑛
𝑐
𝑚
= 2𝑐
𝑛+𝑚

− 𝑐
𝑛+𝑚−1

− 𝑐
𝑛+𝑚−2

, where𝑚 > 1 or 𝑛 > 1,

(iv) 𝑐
𝑛
𝑐
𝑚
= 8𝑏
𝑛+𝑚

− 15𝑏
𝑛+𝑚−1

+ 2𝑏
𝑛+𝑚−2

, where𝑚, 𝑛 > 1.

Proof. (i) From Definition 2, we have

𝑏
𝑛
𝑏
𝑚
= (

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖
)(

𝑚

∑

𝑗=0

(

𝑚

𝑗
)P
𝑗
)

= [(

𝑛

0
)P
0
+ (

𝑛

1
)P
1
+ ⋅ ⋅ ⋅ + (

𝑛

𝑛
)P
𝑛
]

× [(

𝑚

0
)P
0
+ (

𝑚

1
)P
1
+ ⋅ ⋅ ⋅ + (

𝑚

𝑚
)P
𝑚
] .

(31)

By considering Proposition 1-(iii), we obtain

𝑏
𝑛
𝑏
𝑚
= (

𝑛

0
)(

𝑚

0
)P
0
+ (

𝑛

0
)(

𝑚

1
)P
1
+ ⋅ ⋅ ⋅ + (

𝑛

0
)(

𝑚

𝑚
)P
𝑚

+ (

𝑛

1
)(

𝑚

0
)P
1
+ (

𝑛

1
)(

𝑚

1
)P
2
+ ⋅ ⋅ ⋅

+ (

𝑛

1
)(

𝑚

𝑚
)P
𝑚+1

+

...

+ (

𝑛

𝑛
)(

𝑚

0
)P
𝑛
+ (

𝑛

𝑛
)(

𝑚

1
)P
𝑛+1

+ ⋅ ⋅ ⋅

+ (

𝑛

𝑛
)(

𝑚

𝑚
)P
𝑛+𝑚

= (

𝑛

0
)(

𝑚

0
)P
0
+ [(

𝑛

0
)(

𝑚

1
) + (

𝑛

1
)(

𝑚

0
)]P
1

+ [(

𝑛

0
)(

𝑚

2
) + (

𝑛

1
)(

𝑚

1
) + (

𝑛

2
)(

𝑚

0
)]P
2
+ ⋅ ⋅ ⋅

+ [(

𝑛

0
)(

𝑚

𝑘
) + (

𝑛

1
)(

𝑚

𝑘 − 1
)

+ ⋅ ⋅ ⋅ + (

𝑛

𝑘
)(

𝑚

0
)]P
𝑘
+ ⋅ ⋅ ⋅

+ (

𝑛

𝑛
)(

𝑚

𝑚
)P
𝑛+𝑚

.

(32)

By taking into account Vandermonde’s identity
∑
𝑘

𝑗=0
(
𝑥

𝑗 ) (

𝑦

𝑘−𝑗
) = (
𝑥+𝑦

𝑘
), we get

𝑏
𝑛
𝑏
𝑚
= (

𝑛 + 𝑚

0
)P
0
+ (

𝑛 + 𝑚

1
)P
1
+ (

𝑛 + 𝑚

2
)P
2
+ ⋅ ⋅ ⋅

+ (

𝑛 + 𝑚

𝑘
)P
𝑘
+ ⋅ ⋅ ⋅ + (

𝑛 + 𝑚

𝑛 + 𝑚
)P
𝑛+𝑚

=

𝑛+𝑚

∑

𝑖=0

(

𝑛 + 𝑚

𝑖
)P
𝑖

= 𝑏
𝑛+𝑚

.

(33)

(ii) Here, we will just show that the truthness of the
equality 𝑏

𝑛
𝑐
𝑚
= 𝑐
𝑛+𝑚

, since the other can be done similarly.
By considering (9), (10), and Proposition 1-(iii), we obtain

𝑏
𝑛
𝑐
𝑚
= P
3𝑛
R
3𝑚

= R
3𝑛+3𝑚

= 𝑐
𝑛+𝑚

. (34)

(iii) By considering (10) and Proposition 1-(iii), we obtain

𝑐
𝑛
𝑐
𝑚
= R
3𝑛
R
3𝑚

= 2R
3𝑛+3𝑚−2

+R
3𝑛+3𝑚−5

. (35)

From (5), we have

𝑐
𝑛
𝑐
𝑚
= 2 (R

3𝑛+3𝑚
−R
3𝑛+3𝑚−3

)

+R
3𝑛+3𝑚−3

−R
3𝑛+3𝑚−6

= 2R
3𝑛+3𝑚

−R
3𝑛+3𝑚−3

−R
3𝑛+3𝑚−6

.

(36)

Now, by taking into account again (10), we get 𝑐
𝑛
𝑐
𝑚

=

2𝑐
𝑛+𝑚

− 𝑐
𝑛+𝑚−1

− 𝑐
𝑛+𝑚−2

, as required.
The final part of the proof can be seen similarly as in the

proof of (iii).

Theorem 8. The properties of the transforms {𝑏
𝑛
} and {𝑐

𝑛
}

would be illustrated by following way:

(i) 𝑏
𝑛+1

− 𝑏
𝑛
= P
1
𝑏
𝑛
,

(ii) 𝑐
𝑛+1

− 𝑐
𝑛
= P
1
𝑐
𝑛
,

(iii) 𝑐
𝑛+1

− 𝑐
𝑛
= R
1
𝑏
𝑛
.

Proof. We will omit the proof of (ii) and (iii), since it is
quite similar to (i).Therefore, by consideringDefinition 2 and
Lemma 3-(i), we have

𝑏
𝑛+1

− 𝑏
𝑛
=

𝑛

∑

𝑖=0

(

𝑛

𝑖
) (P
𝑖+1

+P
𝑖
) −

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖

=

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖+1
.

(37)

From Proposition 1-(iii), we get

𝑏
𝑛+1

− 𝑏
𝑛
=

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
1
P
𝑖
= P
1
𝑏
𝑛
. (38)
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Theorem 9. For 𝑛,𝑚 ≥ 0, the relation between the transforms
{𝑏
𝑛
} and {𝑐

𝑛
} is

R
𝑚
𝑏
𝑛
= P
𝑚
𝑐
𝑛
. (39)

Proof. By considering Definition 2, we have

R
𝑚
𝑏
𝑛
= R
𝑚

𝑛

∑

𝑖=0

(

𝑛

𝑖
)P
𝑖

=

𝑛

∑

𝑖=0

(

𝑛

𝑖
)R
𝑚
P
𝑖
.

(40)

From Proposition 1-(iii), we get

R
𝑚
𝑏
𝑛
=

𝑛

∑

𝑖=0

(

𝑛

𝑖
)R
𝑚+𝑖

=

𝑛

∑

𝑖=0

(

𝑛

𝑖
)R
𝑖
P
𝑚

= P
𝑚
𝑐
𝑛
.

(41)

By choosing 𝑚 = 0 in Theorem 9 and using the initial
conditions of (4) and (5), we obtain the following corollary.

Corollary 10. The following equalities are held:

(i) 𝑐
𝑛
= R
0
𝑏
𝑛
,

(ii) 𝑏
𝑛
= R−1
0
𝑐
𝑛
.
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