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We consider a family of classification algorithms generated from a regularization kernel scheme associated with 𝑙1-regularizer and
convex loss function. Our main purpose is to provide an explicit convergence rate for the excess misclassification error of the
produced classifiers. The error decomposition includes approximation error, hypothesis error, and sample error. We apply some
novel techniques to estimate the hypothesis error and sample error. Learning rates are eventually derived under some assumptions
on the kernel, the input space, the marginal distribution, and the approximation error.

1. Introduction

Let 𝑋 be a compact subset of R𝑛, 𝑌 = {−1, 1}. Classification
algorithms produce binary classifiers C : 𝑋 → 𝑌, such a
classifier C labels a class C(𝑥) ∈ 𝑌 for each point 𝑥 ∈ 𝑋.
The prediction power of the classifier C is measured by its
misclassification error. If 𝜌 is a probability distribution on
𝑍 := 𝑋 × 𝑌, then the misclassification error of C is defined
by

R (C) := Prob {C (𝑥) ̸= 𝑦} = ∫
𝑋

𝜌 (𝑦 ̸=C (𝑥) | 𝑥) 𝑑𝜌
𝑋
. (1)

Here 𝜌
𝑋
is the marginal distribution on 𝑋 and 𝜌 (⋅ | 𝑥) is

the conditional probability measure at 𝑥 induced by 𝜌. The
classifier minimizing the misclassification error is called the
Bayes rule 𝑓

𝑐
and is given by

𝑓
𝑐
(𝑥) = {

1, if 𝜌 (𝑦 = 1 | 𝑥) ≥ 𝜌 (𝑦 = −1 | 𝑥) ,
−1, otherwise.

(2)

The classifiers considered in this paper have the form
sgn(𝑓), defined as sgn(𝑓)(𝑥) = 1, if 𝑓(𝑥) ≥ 0, and
sgn(𝑓)(𝑥) = −1, if 𝑓(𝑥) < 0, induced by real-valued
functions 𝑓 : 𝑋 → R. Those functions are generated from
a regularization scheme associated with convex loss function
(see [1]).

Definition 1. A continuous function 𝑉: R → R+ is called
a classifying loss (function) if it is convex, differentiable at 0
with 𝑉󸀠

(0) < 0, and 1 is the smallest real for which the value
of 𝑉 is zero.

Typical examples of classifying loss include

(1) hinge loss 𝑉
ℎ
(𝑡) = (1 − 𝑡)

+
= max{1 − 𝑡, 0} for the

classical support vector machines (SVM) classifier;
see [2–5];

(2) least square loss𝑉ls(𝑡) = (1−𝑡)
2; see for example [6, 7];

(3) 𝑞-norm (𝑞 > 1) SVM loss 𝑉
𝑞
(𝑡) = (1 − 𝑡)

𝑞

+
; see [8, 9].

The following concept describes the increment of 𝑉.

Definition 2. One says that𝑉has a increment exponent 𝜃 ≥ 1,
if there exists some 𝑐

𝜃
> 0 such that

|𝑉 (𝑡)| ≤ 𝑐𝜃(1 + |𝑡|)
𝜃
,

󵄨󵄨󵄨󵄨󵄨
𝑉

󸀠

±
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

𝜃
(1 + |𝑡|)

𝜃−1
,

∀𝑡 ∈ R,
(3)

where 𝑉󸀠

±
denotes the right and left derivatives of 𝑉.

It is easy to see that𝑉
ℎ
, 𝑉ls, and𝑉𝑞

satisfyDefinition 2with
increment exponent 1, 2, and 𝑞, respectively.
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Let z := {𝑧
𝑖
}
𝑚

𝑖=1
= {(𝑥

𝑖
, 𝑦

𝑖
)}

𝑚

𝑖=1
∈ 𝑍

𝑚 be a set of samples
independently drawn according to 𝜌; we call

Ez (𝑓) := E
𝑉

z (𝑓) =
1

𝑚

𝑚

∑

𝑖=1

𝑉 (𝑦
𝑖
𝑓 (𝑥

𝑖
)) (4)

the empirical error with respect to z. Regularized learning
schemes are implemented by minimizing a penalized version
of empirical error over a set of functions, called a hypothesis
space.

Definition 3. Given a classifying loss𝑉 and a hypothesis space
H, Ω : H → R+ is a penalty functional called regularizer
that reflects the constrains imposed on functions from H.
The regularized classifier is then defined as sgn(𝑓z), where 𝑓z
is a minimizer of the following regularization scheme:

𝑓z := argmin
𝑓∈H
{Ez (𝑓) + 𝜆Ω (𝑓)} . (5)

Here 𝜆 is a regularization parameter which may depend on
the sample size 𝜆 = 𝜆(𝑚) with lim

𝑚 → ∞
𝜆(𝑚) = 0.

Choosing different hypothesis spaces and regularizers in
(5) will lead to different regularization algorithms. These
learning algorithms are often based on a kernel function 𝐾 :
𝑋×𝑋 → R (see, e.g., [10]). One way appears naturally when
𝐾 is a Mercer kernel. Such a kernel is continuous, symmetric,
and positive semidefinite on 𝑋 × 𝑋. The reproducing kernel
Hilbert spaces (RKHS)H

𝐾
associatedwith theMercer kernel

𝐾 is defined [11] to be the completion of the linear span of
functions {𝐾

𝑥
:= 𝐾(𝑥, ⋅) : 𝑥 ∈ 𝑋} with the inner product:

⟨𝐾
𝑥
, 𝐾

𝑢
⟩

𝐾
= 𝐾 (𝑥, 𝑢) , (6)

and the reproducing property is given by

⟨𝐾
𝑥
, 𝑓⟩

𝐾
= 𝑓 (𝑥) , ∀𝑥 ∈ 𝑋, 𝑓 ∈H

𝐾
. (7)

By settingH = H
𝐾
, Ω(𝑓) = ‖𝑓‖2

𝐾
, (5) becomes the classical

regularized classification scheme:

𝑓z,𝜆 := arg min
𝑓∈H𝐾

{Ez (𝑓) + 𝜆
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐾
} . (8)

Its mathematical analysis has been well understood with
various techniques in extensive literature (see, e.g., [4, 5, 8, 12–
15]). In this paper we will consider a different regularization
scheme in RKHS for classification; in our setting, the regu-
larizer is 𝑙1-norm of the coefficients in the kernel expansions
over the sample points.

Definition 4. Let

H
𝐾,z := {

𝑚

∑

𝑖=1

𝑎
𝑖
𝐾

𝑥𝑖
: 𝑎

𝑖
∈ R} ,

Ωz (𝑓) := inf {
𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 : 𝑓 =

𝑚

∑

𝑖=1

𝑎
𝑖
𝐾

𝑥𝑖
} .

(9)

Then the 𝑙1-regularized classification scheme is given as

𝑓z,𝜆 := arg min
𝑓∈H𝐾,z

{Ez (𝑓) + 𝜆Ωz (𝑓)} . (10)

Algorithm (10) can be efficiently computed because it
reduces to solve a convex optimization problem in a finite
dimensional space H

𝐾,z, containing linear combinations of
kernels centered on the training points.

In the last ten years, learning with 𝑙1-regularization has
attracted much attention. The increasing interest is mainly
brought by the progress of the Lasso algorithm [16–18] and
compressive sensing [19, 20], in which 𝑙1-regularizer is able
to yield sparse representation of the resulting minimizer.
Kernel methods formulate learning and estimation problems
in RKHS of functions expanded in terms of kernels. There
have been a series of papers to investigate the learning ability
of coefficient-based regularization kernel regressionmethods
(see, e.g., [21–25]). However, as we know, there are currently
a few results on classification based on kernel designing. For
example, [26] studies classification problem with hinge loss
𝑉

ℎ
and 𝑙1 complexity regularization in a finite-dimensional

hypothesis space spanned by a set of base functions. While
it does not assume a kernel setting nor is it assumed that
the expansion must be in terms of the sample points, so the
problem of data-dependent hypothesis space is not present
there. Although [27] provided an error analysis for linear
programming SVM classifiers by means of a stepping-stone
from quadratic programming SVM to linear programming
SVM, no evidence shows that this method can still work for
other classifying losses.

In this paperwewill present an elaborate error analysis for
algorithm (10), and we use a modified error decomposition
technique that was firstly introduced in [28], by dealing with
the approximation error, the hypothesis error, and the sample
error, and we derive an explicit learning rate for classification
scheme (10) under some assumptions.

2. Preliminaries

For a classifying loss 𝑉, we define the generalization error of
𝑓 : 𝑋 → R as

E (𝑓) := E
𝑉
(𝑓) = ∫

𝑍

𝑉 (𝑦𝑓 (𝑥)) 𝑑𝜌. (11)

Let 𝑓𝑉

𝜌
be a measurable function minimizing the generaliza-

tion error:

𝑓
𝑉

𝜌
:= arg minE (𝑓) , (12)

where the minimum is taken over all measurable functions.
According toTheorem 3(c) in [12], we may always choose an
𝑓

𝑉

𝜌
satisfying 𝑓𝑉

𝜌
(𝑥) ∈ [−1, 1] for each 𝑥 ∈ 𝑋. This choice will

be taken throughout the paper.
Estimating the excess misclassification error

R (sgn (𝑓z,𝜆)) −R (𝑓𝑐
) (13)

for classification scheme (10) is our main purpose. The
following comparison theorem (see [7, 8, 12]) describes the
relationship between excessmisclassification error and excess
generalization error.
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Proposition 5. If 𝑉 is a classifying loss, then, for any measur-
able function 𝑓,

R (sgn (𝑓)) −R (𝑓
𝑐
)

≤

{{

{{

{

E (𝑓) −E (𝑓
𝑐
) if 𝑉 (𝑡) = (1 − 𝑡)

+
,

𝑐
𝑉
√E (𝑓) −E (𝑓𝑉

𝜌
) if 𝑉󸀠󸀠

(0) ≥ 0,

(14)

where 𝑐
𝑉
is some constant dependent on 𝑉.

Since𝑓𝑉

𝜌
(𝑥) ∈ [−1, 1], we can improve the error estimates

by replacing values of 𝑓 by projections onto [−1, 1]. The idea
of the following projection operator was firstly introduced for
this purpose in [29].

Definition 6. The projection operator 𝜋 is defined on the
space of measurable functions 𝑓 : 𝑋 → R as

𝜋 (𝑓) (𝑥) =

{{

{{

{

1, if𝑓 (𝑥) > 1,
−1, if𝑓 (𝑥) < −1,
𝑓 (𝑥) , if − 1 ≤ 𝑓 (𝑥) ≤ 1.

(15)

The definition of classifying loss implies that
𝑉(𝑦𝜋(𝑓)(𝑥)) ≤ 𝑉(𝑦𝑓(𝑥)), so

E (𝜋 (𝑓)) ≤ E (𝑓) , Ez (𝜋 (𝑓)) ≤ Ez (𝑓) . (16)

It is trivial that sgn(𝜋(𝑓)) = sgn(𝑓). By Proposition 5,

R (sgn (𝑓)) −R (𝑓
𝑐
)

≤ {

E (𝜋 (𝑓)) −E (𝑓
𝑐
) if 𝑉 (𝑡) = (1 − 𝑡)

+
,

𝑐
𝑉
√E (𝜋 (𝑓)) −E (𝑓𝑉

𝜌
) if 𝑉󸀠󸀠

(0) ≥ 0.

(17)

So it is sufficient for us to bound (13) by means of
E(𝜋(𝑓z,𝜆)) − E(𝑓𝑉

𝜌
), which in turn can be estimated by an

error decomposition technique. However, there are essential
differences between algorithm (8) and (10). For example, the
hypothesis space H

𝐾,z and the regularizer Ωz(𝑓) in (10) are
dependent on samples z. This causes that the standard error
analysis methods of (8) (see, e.g., [8, 12, 13, 30]) cannot be
applied to (10) any more. This difficulty was overcome in
[28] by introducing a modified error decomposition with an
extra hypothesis error term. In this paper we apply the same
underlying idea to classification scheme (10). To this end, we
need to consider a Banach space containing all of the possible
hypothesis spaceH

𝐾,z.

Definition 7. The Banach spaceH
0
is defined as the function

set on𝑋 containing all functions of the form

𝑓 =

∞

∑

𝑗=1

𝑎
𝑗
𝐾

𝑢𝑗
, {𝑎

𝑗
}

∞

𝑗=1
∈ 𝑙

1
, {𝑢

𝑗
}

∞

𝑗=1
⊂ 𝑋, (18)

with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 := inf

{

{

{

∞

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎

𝑗

󵄨󵄨󵄨󵄨󵄨
: 𝑓 =

∞

∑

𝑗=1

𝑎
𝑗
𝐾

𝑢𝑗

}

}

}

. (19)

Obviously,

H
𝐾,z ⊂H0

, ∀z ∈ 𝑍𝑚
. (20)

By the continuity of𝐾 and compactness of𝑋, we have

𝜅 := sup
𝑥∈𝑋

𝐾 (𝑥, 𝑥) < ∞. (21)

It implies thatH
0
is a subset of the continuous function space

𝐶(𝑋), and
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞
≤ 𝜅
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 , ∀𝑓 ∈H0

. (22)

To formulate the error decomposition for scheme (10), we
introduce a regularization function as

𝑓
𝜆
:= arg min

𝑓∈H0

{E (𝑓) + 𝜆
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩} . (23)

Proposition 8. Let 𝑓z,𝜆 be defined in (10), 𝜆 > 0; then

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩

≤ 𝑆 (z, 𝜆) + 𝑃 (z, 𝜆) + 𝐷 (𝜆) .
(24)

Here
𝑆 (z, 𝜆) := {E (𝜋 (𝑓z,𝜆)) −Ez (𝜋 (𝑓z,𝜆))}

+ {Ez (𝑓𝜆
) −E (𝑓

𝜆
)} ,

𝑃 (z, 𝜆) := {Ez (𝜋 (𝑓z,𝜆)) + 𝜆Ωz (𝑓z,𝜆)}

− {Ez (𝑓𝜆
) + 𝜆

󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩} ,

(25)

𝐷 (𝜆) := {E (𝑓
𝜆
) −E (𝑓

𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩}

= inf
𝑓∈H0

{E (𝑓) −E (𝑓
𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩} .

(26)

Proof.

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩

≤ E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝑉

𝜌
) + 𝜆Ωz (𝑓z,𝜆)

= {E (𝜋 (𝑓z,𝜆)) −Ez (𝜋 (𝑓z,𝜆))}

+ {Ez (𝜋 (𝑓z,𝜆)) + 𝜆Ωz (𝑓z,𝜆)}

+ {Ez (𝑓𝜆
) −E (𝑓

𝜆
)} − {Ez (𝑓𝜆

) + 𝜆
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩}

+ {E (𝑓
𝜆
) −E (𝑓

𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩}

= 𝑆 (z, 𝜆) + 𝑃 (z, 𝜆) + 𝐷 (𝜆) .

(27)

𝑃(z, 𝜆) and 𝑆(z, 𝜆) are called hypothesis error and sample
error, and they will be estimated, respectively, in next two
sections. 𝐷(𝜆) is independent of samples and usually called
approximation error, and it characterizes the approximation
ability of the function space H

0
with respect to target

function𝑓𝑉

𝜌
. We will assume that, for some constants 0 < 𝛽 ≤

1 and 𝑐
𝛽
> 0,

𝐷(𝜆) ≤ 𝑐
𝛽
𝜆

𝛽
, ∀𝜆 > 0. (28)
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3. Estimating the Hypothesis Error

In this section we bound the hypothesis error 𝑃(z, 𝜆) by a
technique of scattered data interpolation which was firstly
used in kernel regression context in [25]. To this end, we need
some assumptions on input space𝑋, margin distribution 𝜌

𝑋
,

and kernel𝐾. Denote | ⋅ |
2
the Euclidean norm in R𝑛.

Definition 9. A subset 𝑋 of R𝑛 is said to satisfy an interior
cone condition if there exist an angle 𝜗 ∈ (0, 𝜋/2), a radius
𝑅 > 0, and a unit vector 𝜁(𝑥) for every 𝑥 ∈ 𝑋 such that the
cone
𝐶 (𝑥, 𝜁 (𝑥) , 𝜗, 𝑅)

= {𝑥 + 𝑡𝑤 : 𝑤 ∈ R
𝑛
, |𝑤|2 = 1, 𝑤

𝑇
𝜁 (𝑥) ≥ cos 𝜗, 𝑡 ∈ [0, 𝑅]}

(29)

is contained in𝑋.

Definition 10. The margin distribution 𝜌
𝑋
is said to satisfy

condition 𝐿
𝜏
with 0 < 𝜏 < ∞ if for some 𝑐

𝜏
> 0

𝜌
𝑋
({𝑢 ∈ 𝑋 : |𝑢 − 𝑥|2 < 𝑟}) ≥ 𝑐𝜏𝑟

𝜏
,

∀𝑥 ∈ 𝑋, 0 < 𝑟 ≤ 1.

(30)

Recall that, for 𝑠 ∈ N, the space 𝐶𝑠
(𝑋) consists of

functions 𝑓 whose partial derivative 𝐷𝑑
𝑓 is continuous for

every 𝑑 = (𝑑
1
, 𝑑

2
, . . . , 𝑑

𝑛
) ∈ N𝑛 with |𝑑| := 𝑑

1
+ ⋅ ⋅ ⋅ + 𝑑

𝑛
≤

𝑠, and ‖𝑓‖
𝐶
𝑠 := ∑|𝑑|≤𝑠

‖𝐷
𝑑
𝑓‖

∞
. Throughout the paper we

assume the kernel𝐾 ∈ 𝐶𝑠
(𝑋 × 𝑋) with 𝑠 > 0.

Definition 11. a set {𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑚
} ⊂ 𝑋 is said to beΔ-dense if

for any 𝑥 ∈ 𝑋 there exists some 1 ≤ 𝑖 ≤ 𝑚 such that |𝑥−𝑥
𝑖
|
2
<

Δ.

The following lemma derived from [31] describes a local
polynomial reproduction and it is the key point to bound the
hypothesis error.

Lemma 12. Suppose that 𝑋 ⊂ R𝑛 is compact and satisfies
an interior cone condition with some radius 𝑅 > 0 and angle
𝜗 ∈ (0, 𝜋/2). Fix 𝑠 ∈ N with 𝑠 ≥ 2. Assume that the point
set {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑚
} ⊂ 𝑋 is Δ-dense with Δ ≤ 𝑅/𝑐

0
for some

constant 𝑐
0
depending on 𝑋 and 𝑠; then, for any 𝑢 ∈ 𝑋, there

exist real number 𝑏
𝑖
(𝑢), 𝑖 = 1, 2, . . . , 𝑚, satisfying that

(1) ∑𝑚

𝑖=1
𝑏

𝑖
(𝑢)𝑝(𝑥

𝑖
) = 𝑝(𝑢), 𝑝(⋅) is any polynomial of

degree at most 𝑠 on R𝑛,
(2) ∑𝑚

𝑖=1
|𝑏

𝑖
(𝑢)| ≤ 2,

(3) 𝑏
𝑖
(𝑢) = 0 for those 𝑢 satisfying |𝑢 − 𝑥

𝑖
|
2
> 𝑐

0
Δ.

Proposition 13. Let 𝑉 be a classifying loss satisfying (3), 𝐾 ∈
𝐶

𝑠
(𝑋×𝑋) for some 𝑠 ∈ N, 𝑠 ≥ 2. If𝑋 satisfies the conditions in

Lemma 12 and {𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑚
} is Δ-dense in𝑋 with Δ ≤ 𝑅/𝑐

0
,

then
𝑃 (z, 𝜆) ≤ 𝐷 (𝜆) + 2𝑐

𝜃‖𝐾‖𝐶𝑠 (2
𝜃−1
+ (4𝜅)

𝜃−1
)

× ((
𝐷 (𝜆)

𝜆
)

𝜃

+
𝐷 (𝜆)

𝜆
) 𝑐

𝑠

0
Δ

𝑠
.

(31)

Proof. We know from (26) that ‖𝑓
𝜆
‖ ≤ 𝐷(𝜆)/𝜆. So for any

𝜂 > 0, 𝑓
𝜆
can be written as 𝑓

𝜆
= ∑

∞

𝑗=1
𝛽

𝑗
𝐾

𝑢𝑗
with 𝑢

𝑗
∈ 𝑋 and

󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩 ≤

∞

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽

𝑗

󵄨󵄨󵄨󵄨󵄨
<
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩 + 𝜂 ≤
𝐷 (𝜆)

𝜆
+ 𝜂. (32)

At the same time, there exists some 𝑁 ∈ N such that
∑

∞

𝑗=𝑁
|𝛽

𝑗
| < 𝜂, and thus
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑁

∑

𝑗=1

𝛽
𝑗
𝐾

𝑢𝑗
− 𝑓

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜅

∞

∑

𝑗=𝑁

󵄨󵄨󵄨󵄨󵄨
𝛽

𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝜅𝜂. (33)

Fix 𝑥 ∈ 𝑋 and 𝑗 ∈ {1, 2, . . . , 𝑁}, and we can take 𝑝
𝑥
as

the Taylor polynomial of 𝐾
𝑥
of degree 𝑠 − 1 at 𝑢

𝑗
. Then by

Lemma 12, there exists {𝑏
𝑖
(𝑢

𝑗
)}

𝑚

𝑖=1
∈ R𝑚 such that

∑

𝑖∈𝐼(𝑢𝑗)

𝑏
𝑖
(𝑢

𝑗
) 𝑝

𝑥
(𝑥

𝑖
) = 𝑝

𝑥
(𝑢

𝑗
) = 𝐾

𝑥
(𝑢

𝑗
) ,

∑

𝑖∈𝐼(𝑢𝑗)

󵄨󵄨󵄨󵄨󵄨
𝑏

𝑖
(𝑢

𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 2,

(34)

where 𝐼(𝑢
𝑗
) = {𝑖 ∈ {1, 2, . . . , 𝑚} : |𝑥

𝑖
− 𝑢

𝑗
|
2
≤ 𝑐

0
Δ}. Moreover,

max
𝑖∈𝐼(𝑢𝑗)

󵄨󵄨󵄨󵄨𝐾𝑥
(𝑥

𝑖
) − 𝑝

𝑥
(𝑥

𝑖
)
󵄨󵄨󵄨󵄨 ≤ ‖𝐾‖𝐶

𝑠(𝑐
0
Δ)

𝑠

. (35)

It follows from (34) that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾
𝑢𝑗
(𝑥) − ∑

𝑖∈𝐼(𝑢𝑗)

𝑏
𝑖
(𝑢

𝑗
)𝐾

𝑥𝑖
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐾
𝑥
(𝑢

𝑗
) − ∑

𝑖∈𝐼(𝑢𝑗)

𝑏
𝑖
(𝑢

𝑗
)𝐾

𝑥
(𝑥

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝑖∈𝐼(𝑢𝑗)

𝑏
𝑖
(𝑢

𝑗
) (𝑝

𝑥
(𝑥

𝑖
) − 𝐾

𝑥
(𝑥

𝑖
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2‖𝐾‖
𝐶
𝑠(𝑐

0
Δ)

𝑠

.

(36)

The above bound holds for every 𝑥 ∈ 𝑋 and 𝑗 ∈ {1, 2, . . . , 𝑁},
so

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑁

∑

𝑗=1

𝛽
𝑗
(𝐾

𝑢𝑗
− ∑

𝑖∈𝐼(𝑢𝑗)

𝑏
𝑖
(𝑢

𝑗
)𝐾

𝑥𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 2‖𝐾‖𝐶𝑠(𝑐0Δ)
𝑠

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽

𝑗

󵄨󵄨󵄨󵄨󵄨
.

(37)

This together with (33) and (32) implies
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑁

∑

𝑗=1

𝛽
𝑗
∑

𝑖∈𝐼(𝑢𝑗)

𝑏
𝑖
(𝑢

𝑗
)𝐾

𝑥𝑖
− 𝑓

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜅𝜂 + 2‖𝐾‖𝐶𝑠(𝑐0Δ)
𝑠

(
𝐷 (𝜆)

𝜆
+ 𝜂) .

(38)
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Denote 𝑓
0
= ∑

𝑁

𝑗=1
𝛽

𝑗
∑

𝑖∈𝐼(𝑢𝑗)
𝑏

𝑖
(𝑢

𝑗
)𝐾

𝑥𝑖
∈ H

𝐾,z; we get from
(16), (10), and (32) that

Ez (𝜋 (𝑓z,𝜆)) + 𝜆Ωz (𝑓z,𝜆) ≤ Ez (𝑓z,𝜆) + 𝜆Ωz (𝑓z,𝜆)

≤ Ez (𝑓0
) + 𝜆Ωz (𝑓0

)

≤ Ez (𝑓0
) + 2𝜆 (

󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩 + 𝜂) .

(39)

Since𝑉 is convex and satisfies (3), we have, for any 𝑡
1
, 𝑡

2
∈ R,

󵄨󵄨󵄨󵄨𝑉 (𝑡1) − 𝑉 (𝑡2)
󵄨󵄨󵄨󵄨 ≤ max {󵄨󵄨󵄨󵄨󵄨𝑉

󸀠

±
(𝑡

1
)
󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝑉

󸀠

±
(𝑡

2
)
󵄨󵄨󵄨󵄨󵄨
}
󵄨󵄨󵄨󵄨𝑡1 − 𝑡2

󵄨󵄨󵄨󵄨

≤ 𝑐
𝜃
(1 +max {󵄨󵄨󵄨󵄨𝑡1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑡2
󵄨󵄨󵄨󵄨})

𝜃−1 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨 .

(40)

This in connect with (22), (32), and (38) yields

󵄨󵄨󵄨󵄨Ez (𝑓0
) −Ez (𝑓𝜆

)
󵄨󵄨󵄨󵄨

≤ 𝑐
𝜃
(1 + 2𝜅(

𝐷 (𝜆)

𝜆
+ 𝜂))

𝜃−1

󵄩󵄩󵄩󵄩𝑓0
− 𝑓

𝜆

󵄩󵄩󵄩󵄩∞

≤ 𝑐
𝜃
(1 + 2𝜅(

𝐷 (𝜆)

𝜆
+ 𝜂))

𝜃−1

× (𝜅𝜂 + 2‖𝐾‖𝐶𝑠(𝑐0Δ)
𝑠

(
𝐷 (𝜆)

𝜆
+ 𝜂)) .

(41)

Therefore

Ez (𝜋 (𝑓z,𝜆)) + 𝜆Ωz (𝑓z,𝜆)

≤ Ez (𝑓𝜆
) + 𝜆

󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩 + 𝐷 (𝜆) + 2𝜆𝜂

+ 𝑐
𝜃
(1 + 2𝜅(

𝐷 (𝜆)

𝜆
+ 𝜂))

𝜃−1

× (𝜅𝜂 + 2‖𝐾‖𝐶𝑠(𝑐0Δ)
𝑠

(
𝐷 (𝜆)

𝜆
+ 𝜂)) .

(42)

Let 𝜂 → 0, and we then derive

𝑃 (z, 𝜆) ≤ 𝐷 (𝜆) + 2𝑐
𝜃‖𝐾‖𝐶𝑠 (2

𝜃−1
+ (4𝜅)

𝜃−1
)

×((
𝐷 (𝜆)

𝜆
)

𝜃

+
𝐷 (𝜆)

𝜆
) 𝑐

𝑠

0
Δ

𝑠
.

(43)

We can now bound 𝑃(z, 𝜆) by the following theorem.

Theorem 14. Let 𝑉 be a classifying loss satisfying (3), 𝐾 ∈
𝐶

𝑠
(𝑋 × 𝑋) for some 𝑠 ∈ N, 𝑠 ≥ 2. Suppose that 𝑋 satisfies

the conditions in Lemma 12 and 𝜌
𝑋
satisfies condition 𝐿

𝜏
with

some 𝜏 > 0, and (28) is valid; then, for any 0 < 𝛿 < 1 and 𝑚
satisfying

𝑚 ≥ 𝐶
1
(log(2

𝛿
) + log (𝑚 + 1)) , (44)

with confidence 1 − 𝛿/2,

𝑃 (z, 𝜆)

≤ 𝐶
2
(𝜆

𝛽
+ (𝜆

𝛽−1
+ 𝜆

(𝛽−1)𝜃
)

×(
log (2/𝛿) + log (𝑚 + 1)

𝑚
)

𝑠/𝜏

) ,

(45)

where 𝐶
1
, 𝐶

2
are some constants independent of 𝜆,𝑚, or 𝛿.

Proof. Applying Lemma 3 in [21], we get that, with
confidence 1 − 𝛿/2, the point set {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑚
} is

𝐴((log(2/𝛿) + log(𝑚 + 1))/𝑚)1/𝜏-dense in 𝑋, where
𝐴 is a constant depending on 𝑋, 𝜏, and 𝑐

𝜏
. Taking

Δ = 𝐴((log(2/𝛿) + log(𝑚 + 1))/𝑚)1/𝜏, 𝐶
1
= (𝑐

0
𝐴/𝑅)

𝜏.
If𝑚 ≥ 𝐶

1
(log(2/𝛿) + log(𝑚 + 1)), then we have Δ ≤ 𝑅/𝑐

0
. So

Proposition 13 ensures us that, with confidence 1 − 𝛿/2,

𝑃 (z, 𝜆)

≤ 𝑐
𝛽
𝜆

𝛽
+ 2𝑐

𝜃‖𝐾‖𝐶𝑠 (2
𝜃−1
+ (4𝜅)

𝜃−1
)

× (𝑐
𝜃

𝛽
𝜆

(𝛽−1)𝜃
+ 𝑐

𝛽
𝜆

(𝛽−1)
) 𝑐

𝑠

0
𝐴

𝑠
(
log (2/𝛿) + log (𝑚 + 1)

𝑚
)

𝑠/𝜏

.

(46)

This proves the theorem by setting𝐶
2
:= 𝑐

𝛽
+2𝑐

𝜃
‖𝐾‖

𝐶
𝑠(2

𝜃−1
+

(4𝜅)
𝜃−1
)𝑐

𝑠

0
𝐴

𝑠
(𝑐

𝜃

𝛽
+ 𝑐

𝛽
).

4. Estimating the Sample Error

In this section we focus on the sample error, it is the major
improvement we make in this paper for the error analysis of
algorithm (10).

Definition 15. Let F be a class of functions on 𝑍 and z :=
{𝑧

𝑖
}
𝑚

𝑖=1
∈ 𝑍

𝑚. The 𝑙2-metric 𝑑
2,z is defined onF by

𝑑
2,z (𝑓, 𝑔) := {

1

𝑚

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓(𝑧𝑖) − 𝑔(𝑧𝑖)
󵄨󵄨󵄨󵄨

2

}

1/2

. (47)

For every 𝜀 > 0, the covering number of F with respect to
𝑑

2,z is

N
2,z (F, 𝜀)

:= inf {𝑙 ∈ N : ∃{𝑓
𝑖
}

𝑙

𝑖=1

such thatF = ∪𝑙

𝑖=1
{𝑓 ∈ F : 𝑑

2,z (𝑓, 𝑓𝑖
) ≤ 𝜀}} .

(48)

The function sets in our situation are balls of H
0
in the

form ofB
𝑅
= {𝑓 ∈H

0
: ‖𝑓‖ ≤ 𝑅}. We need the 𝑙2-empirical

covering number ofB
1
defined as

N
2
(B

1
, 𝜀) := sup

𝑚∈N

sup
x∈𝑋
𝑚

N
2,x (B1

, 𝜀) . (49)
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According to a bound for 𝑙2-empirical covering number
derived in [32], we know that if𝐾 ∈ 𝐶𝑠

(𝑋 × 𝑋), then

logN
2
(B

1
, 𝜀) ≤ 𝑐

𝑝
(
1

𝜀
)

𝑝

, ∀𝜀 > 0, (50)

where 𝑐
𝑝
is a constant independent of 𝜀 > 0, and 𝑝 ∈ (0, 2) is

a power index defined dy

𝑝 =

{{{{{{{

{{{{{{{

{

2𝑛

2𝑛 + 𝑠
, when 0 < 𝑠 ≤ 1,

2𝑛

2𝑛 + 2
, when 1 < s ≤ 1 + 𝑛

2
,

𝑛

𝑠
, when 𝑠 > 1 + 𝑛

2
.

(51)

For a measurable function 𝑓 : 𝑍 → R, denote E𝑓 :=
∫

𝑍
𝑓(𝑧)𝑑𝜌. The following definition is a variance-expectation

condition for the pair (𝑉, 𝜌), which is generally used to
achieve tight bounds.

Definition 16. A variance power 𝛼 of the pair (𝑉, 𝜌) is a
number in [0, 1] such that for any 𝑓 : 𝑋 → [−1, 1], there
exists some constant 𝑐

𝛼
> 0 satisfying

E[𝑉 (𝑦𝑓 (𝑥)) − 𝑉 (𝑦𝑓
𝑉

𝜌
(𝑥))]

2

≤ 𝑐
𝛼
[E (𝑓) −E (𝑓

𝑉

𝜌
)]

𝛼

.

(52)
Remark 17. It is easy to see that (52) always holds for𝛼 = 0 and
𝑐
𝛼
= 𝑉

2
(−1). Larger𝛼 is possible when𝑉 has strong convexity

or 𝜌 satisfies some noise condition (see [1, 5]).

We are in a position to bound the sample error. Write
𝑆(z, 𝜆) as
𝑆 (z, 𝜆)

= {[E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝑉

𝜌
)] − [Ez (𝜋 (𝑓z,𝜆)) −Ez (𝑓

𝑉

𝜌
)]}

+ {[Ez (𝑓𝜆
) −Ez (𝑓

𝑉

𝜌
)] − [E (𝑓

𝜆
) −E (𝑓

𝑉

𝜌
)]}

:= 𝑆
1
(z, 𝜆) + 𝑆

2
(z, 𝜆) .

(53)
We will first bound 𝑆

2
(z, 𝜆), and to this end we need the

following one-side Bernstein inequality (see [33]).
Let 𝜉 be a random variable on a probability space 𝑍 with

mean E𝜉 = 𝜇 and variance 𝜎2
(𝜉) = 𝜎

2. If |𝜉 − 𝜇| ≤ 𝐵 almost
everywhere, then for all 𝜂 > 0

Probz∈𝑍
𝑚 {
1

𝑚

𝑚

∑

𝑖=1

𝜉 (𝑧
𝑖
) − 𝜇 ≥ 𝜂}

≤ exp{−
𝑚𝜂

2

2 (𝜎
2
+ (1/3) 𝐵𝜂)

} .

(54)

Proposition 18. Suppose that classifying loss 𝑉 satisfies (3). If
(28) and (52) hold, then, for any 0 < 𝛿 < 1 with confidence
1 − 𝛿/4,

𝑆
2
(z, 𝜆) ≤ 𝐶

3
log 8
𝛿
((
1

𝑚
)

1/(2−𝛼)

+ 𝜆
𝛽
+
𝜆

(𝛽−1)𝜃

𝑚
) , (55)

where 𝐶
3
is a constant independent of 𝜆,𝑚, or 𝛿.

Proof. Denote 𝜉
1
:= 𝑉(𝑦𝑓

𝜆
(𝑥)) − 𝑉(𝑦𝜋(𝑓

𝜆
)(𝑥)), 𝜉

2
:=

𝑉(𝑦𝜋(𝑓
𝜆
)(𝑥)) − 𝑉(𝑦𝑓

𝑉

𝜌
(𝑥)). Then

𝑆
2
(z, 𝜆) = { 1

𝑚

𝑚

∑

𝑖=1

𝜉
1
(𝑧

𝑖
) − E𝜉

1
} + {

1

𝑚

𝑚

∑

𝑖=1

𝜉
2
(𝑧

𝑖
) − E𝜉

2
} .

(56)

By (22) and (26), we can see that

󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩∞
≤ 𝜅
󵄩󵄩󵄩󵄩𝑓𝜆

󵄩󵄩󵄩󵄩 ≤ 𝜅
𝐷 (𝜆)

𝜆
. (57)

We may assume |𝑓
𝜆
(𝑥)| > 1, since otherwise 𝜉

1
= 0. Then

from (3), we can derive that

0 ≤ 𝜉
1
≤ 𝑉 (𝑦𝑓

𝜆
(𝑥)) ≤ 𝑐

𝜃
2

𝜃
(𝜅
𝐷 (𝜆)

𝜆
)

𝜃

,

𝜎
2
(𝜉

1
) ≤ 𝑐

𝜃
2

𝜃
(𝜅
𝐷 (𝜆)

𝜆
)

𝜃

E𝜉
1
.

(58)

Applying the one-side Bernstein inequality to 𝜉
1
we have,

for any 𝑡 > 1 with confidence 1 − 𝑒−𝑡,

1

𝑚

𝑚

∑

𝑖=1

𝜉
1
(𝑧

𝑖
) − E𝜉

1

≤
2𝑐

𝜃
2

𝜃
𝜅

𝜃
𝑡

3𝑚
(
𝐷 (𝜆)

𝜆
)

𝜃

+ √
2𝑐

𝜃
2

𝜃
𝜅

𝜃
𝑡

𝑚
(
𝐷 (𝜆)

𝜆
)

𝜃

E𝜉
1

≤
2𝑐

𝜃
2

𝜃
𝜅

𝜃
𝑡

3𝑚
(
𝐷 (𝜆)

𝜆
)

𝜃

+
𝑐
𝜃
2

𝜃
𝜅

𝜃
𝑡

2𝑚
(
𝐷 (𝜆)

𝜆
)

𝜃

+ E𝜉
1

=
7𝑐

𝜃
2

𝜃
𝜅

𝜃
𝑡

6𝑚
(
𝐷 (𝜆)

𝜆
)

𝜃

+ E𝜉
1
.

(59)

On the other hand, both 𝜋(𝑓
𝜆
)(𝑥) and 𝑓𝑉

𝜌
(𝑥) are con-

tained in [−1, 1], and we know from (3) and (52) that
󵄨󵄨󵄨󵄨𝜉2
󵄨󵄨󵄨󵄨 ≤ 𝑐𝜃2

𝜃
, 𝜎

2
(𝜉

2
) ≤ 𝑐

𝛼
(E𝜉

2
)

𝛼

. (60)

Applying the one-side Bernstein inequality again, we have,
with confidence 1 − 𝑒−𝑡,

1

𝑚

𝑚

∑

𝑖=1

𝜉
2
(𝑧

𝑖
) − E𝜉

2
≤
4𝑐

𝜃
2

𝜃
𝑡

3𝑚
+ √
2𝑡𝑐

𝛼
(E𝜉

2
)

𝛼

𝑚

≤
4𝑐

𝜃
2

𝜃
𝑡

3𝑚
+
𝛼

2
E𝜉

2
+ (1 −

𝛼

2
) (
2𝑐

𝛼
𝑡

𝑚
)

1/(2−𝛼)

≤
4𝑐

𝜃
2

𝜃
𝑡

3𝑚
+ (
2𝑐

𝛼
𝑡

𝑚
)

1/(2−𝛼)

+ E𝜉
2
,

(61)

where in the second inequality we have used the elementary
inequality

1

󰜚
+
1

󰜚
∗
= 1,

with 󰜚, 󰜚∗ > 1 󳨐⇒ 𝑎𝑏 ≤ 1
󰜚
𝑎

󰜚
+
1

󰜚
∗
𝑏

󰜚
∗

, ∀𝑎, 𝑏 > 0.

(62)
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Since E𝜉
1
+ E𝜉

2
= E(𝑓

𝜆
) − E(𝑓𝑉

𝜌
) ≤ 𝐷(𝜆), combining the

estimates above, we can get that, under assumption (28) with
confidence 1 − 2𝑒−𝑡,

𝑆
2
(z, 𝜆) ≤

7𝑐
𝜃
2

𝜃
𝜅

𝜃
𝑐

𝜃

𝛽
𝜆

(𝛽−1)
𝜃

𝑡

6𝑚
+
4𝑐

𝜃
2

𝜃
𝑡

3𝑚

+ (
2𝑐

𝛼
𝑡

𝑚
)

1/(2−𝛼)

+ 𝑐
𝛽
𝜆

𝛽
.

(63)

Then we prove the proposition by setting 𝑡 = log(8/𝛿), and

𝐶
3
=

7𝑐
𝜃
2

𝜃
𝜅

𝜃
𝑐

𝜃

𝛽

6
+
4𝑐

𝜃
2

𝜃

3
+ (2𝑐

𝛼
)

1/(2−𝛼)

+ 𝑐
𝛽
. (64)

It is more difficult to bound 𝑆
1
(z, 𝜆), because it involves

the samples z and thus runs over a set of functions. To get a
better error estimation, An iteration technique is often used
to shrink the radius of the ball containing 𝑓z,𝜆 (see, e.g.,
[5, 12, 30, 32]); however this process is rather tough and
complicated. In this paper We succeed to avoid the prolix
iteration by considering the following reweighted empirical
process

{𝜔
𝑟
(𝑓) [(E (𝜋 (𝑓)) −E (𝑓

𝑉

𝜌
)) − (Ez (𝜋 (𝑓)) −Ez (𝑓

𝑉

𝜌
))]

: 𝑓 ∈H
0
} .

(65)

Here 𝜔
𝑟
(𝑓) = (𝑟 + 𝜔(𝑓))

−1 for a threshold 𝑟 > 0 and
𝜔(𝑓) = E(𝜋(𝑓)) −E(𝑓𝑉

𝜌
) + 𝜆‖𝑓‖. Different from the classical

weight function, 𝜔(𝑓) contains the regularization term 𝜆‖𝑓‖
and thus makes it possible to control the variances and ‖𝑓‖
by the threshold 𝑟 simultaneously.

The following concentration inequality is a scaled version
of Theorem 2.3 in [34], where the case 𝐵 = 1 is given.

Lemma 19. Assume that 𝑧
1
, . . . , 𝑧

𝑚
are identically distributed

according to𝜌. LetF be a countable set ofmeasurable functions
from 𝑍 to [−𝐵, 𝐵] and assume that all functions 𝑔 inF satisfy
E𝑔 = 0, 𝜎2

(𝑔) ≤ 𝜎
2 for some positive real number 𝜎. Denote

𝜉 = sup
𝑔∈F

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑚

𝑚

∑

𝑖=1

𝑔 (𝑧
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (66)

Then, for all 𝑡 > 0, one has

Prob
{

{

{

𝜉 ≥ E𝜉 + √
2𝑡 (𝜎

2
+ 2𝐵E𝜉)

𝑚
+
𝐵𝑡

3𝑚

}

}

}

≤ 𝑒
−𝑡
. (67)

This lemma allows us to take care of the deviation of
the supremum of a empirical process with respect to its
expectation.

Proposition 20. Let 𝑟 ≥ 0 and

Φ
𝑟
:= sup

𝑓∈H0

𝜔
𝑟
(𝑓)
󵄨󵄨󵄨󵄨󵄨
[E (𝜋 (𝑓)) −E (𝑓

𝑉

𝜌
)]

− [Ez (𝜋 (𝑓)) −Ez (𝑓
𝑉

𝜌
)]
󵄨󵄨󵄨󵄨󵄨
.

(68)

If (3) and (52) are satisfied, then, for any 𝑡 > 0 with confidence
1 − 𝑒

−𝑡,

Φ
𝑟
≤ 2EΦ

𝑟
+ √
2𝑡𝑐

𝛼
𝑟

𝛼−2

𝑚
+
8𝑐

𝜃
2

𝜃
𝑡

3𝑚𝑟
. (69)

Proof. Before presenting the proof, let us first introduce some
additional notations:

𝑔
𝑓
(𝑧) := 𝑉 (𝑦𝜋 (𝑓) (𝑥)) − 𝑉 (𝑦𝑓

𝑉

𝜌
(𝑥)) ,

ℎ
𝑟

𝑓
(𝑧) := 𝜔

𝑟
(𝑓) [E𝑔

𝑓
− 𝑔

𝑓
(𝑧)]

=
1

E𝑔
𝑓
+ 𝜆
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 + 𝑟

[E𝑔
𝑓
− 𝑔

𝑓
(𝑧)] .

(70)

Then

Φ
𝑟
= sup

𝑓∈H0

1

𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∑

𝑖=1

ℎ
𝑟

𝑓
(𝑧

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (71)

By (3) and (52), we can see that

󵄨󵄨󵄨󵄨󵄨
ℎ

𝑟

𝑓
(𝑧)
󵄨󵄨󵄨󵄨󵄨
≤
2𝑐

𝜃
2

𝜃

𝑟
,

𝜎
2
(ℎ

𝑟

𝑓
) ≤

E(𝑔
𝑓
)

2

(E𝑔
𝑓
+ 𝑟)

2

≤

𝑐
𝛼
(E𝑔

𝑓
)

𝛼

((2/𝛼)E𝑔
𝑓
)

𝛼

((2/ (2 − 𝛼)) 𝑟)
2−𝛼
≤ 𝑐

𝛼
𝑟

𝛼−2
.

(72)

Here in the second inequality of (72), we have used the
elementary inequality (62) again with 󰜚 = 2/𝛼, 𝑎 = (󰜚E𝑔

𝑓
)
1/󰜚

and 𝑏 = (󰜚∗𝑟)1/󰜚
∗

. So applying Lemma 19 to Φ
𝑟
, we get with

confidence 1 − 𝑒−𝑡

Φ
𝑟
≤ EΦ

𝑟
+
√
2𝑡 (𝑐

𝛼
𝑟

𝛼−2
+ (4𝑐

𝜃
2

𝜃EΦ
𝑟
/𝑟))

𝑚
+
2𝑐

𝜃
2

𝜃
𝑡

3𝑚𝑟

≤ EΦ
𝑟
+ √
2𝑡𝑐

𝛼
𝑟

𝛼−2

𝑚
+ √
8𝑡𝑐

𝜃
2

𝜃EΦ
𝑟

𝑚𝑟
+
2𝑐

𝜃
2

𝜃
𝑡

3𝑚𝑟

≤ 2EΦ
𝑟
+ √
2𝑡𝑐

𝛼
𝑟

𝛼−2

𝑚
+
8𝑐

𝜃
2

𝜃
𝑡

3𝑚𝑟
.

(73)

So we can bound Φ
𝑟
through bounding its expectation.

To this end, we need some preparations.

Definition 21. Let (𝑍, 𝜌) be a probability space, and F is a
class of measurable functions from𝑍 toR. Set {𝑧

𝑖
}
𝑚

𝑖=1
to be𝑚

independent randomvariables distributed according to 𝜌 and
{𝜖

𝑖
}
𝑚

𝑖=1
to be 𝑚 independent Rademacher random variables.
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Then for 𝜂 > 0 the local Rademacher average ofF is defined
by

Rad (F, 𝑚, 𝜂) := E sup
𝑓∈F

E𝑓
2
≤𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑚

𝑚

∑

𝑖=1

𝜖
𝑖
𝑓 (𝑧

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (74)

The following lemma was given in [35].

Lemma 22. Let F be a class of measurable functions from 𝑍
to [−𝐵, 𝐵]. If for some 𝑎 > 0 and 𝑝 ∈ (0, 2)

sup
𝑚∈N

sup
z∈𝑍
𝑚

logN
2,z (F, 𝜀) ≤ 𝑎𝜀

−𝑝
, ∀𝜀 > 0, (75)

then there exists a constant 𝑐󸀠
𝑝
depending only on 𝑝 such that

Rad (F, 𝑚, 𝜂)

≤ 𝑐
󸀠

𝑝
max{𝜂1/2−𝑝/4

(
𝑎

𝑚
)

1/2

, 𝐵
(2−𝑝)/(2+𝑝)

(
𝑎

𝑚
)

2/(2+𝑝)

} .

(76)

Lemma 23. Let 𝑧 be a nonnegative stochastic process indexed
by 𝑇 and 𝜔(𝑡) a nonnegative nonrandom function defined on
𝑇. Define 𝑟∗ = inf

𝑡∈𝑇
𝜔(𝑡). Let 𝜓 : [𝑟∗, +∞) → [0, +∞) be a

function such that 𝜓(4𝑟) ≤ 4]𝜓(𝑟) for some 0 < ] < 1, and

E
[
[

[

sup
𝑡∈𝑇

𝜔(𝑡)≤𝑟

𝑧 (𝑡)
]
]

]

≤ 𝜓 (𝑟) , ∀𝑟 ≥ 𝑟
∗
. (77)

Then, for any 𝑟 ≥ 𝑟∗, we have

E[sup
𝑡∈𝑇

𝑧 (𝑡)

𝜔 (𝑡) + 𝑟
] ≤ (1 +

4
]

1 − 4
]−1
)
𝜓 (𝑟)

𝑟
. (78)

Proof. For 𝑟 ≥ 𝑟∗, we obtain by a standard peeling approach

sup
𝑡∈𝑇

𝑧 (𝑡)

𝜔 (𝑡) + 𝑟
≤ sup

𝑡∈𝑇

𝜔(𝑡)≤𝑟

𝑧 (𝑡)

𝑟
+

∞

∑

𝑖=0

sup
𝑡∈𝑇

𝜔(𝑡)∈(4
𝑖
𝑟,4
𝑖+1

𝑟]

𝑧 (𝑡)

4
𝑖
𝑟 + 𝑟
. (79)

Therefore,

E[sup
𝑡∈𝑇

𝑧 (𝑡)

𝜔 (𝑡) + 𝑟
] ≤
𝜓 (𝑟)

𝑟
+

∞

∑

𝑖=0

𝜓 (4
𝑖+1
𝑟)

(1 + 4
𝑖
) 𝑟

≤
𝜓 (𝑟)

𝑟
+
𝜓 (𝑟)

𝑟

∞

∑

𝑖=0

4
(𝑖+1)]

1 + 4
𝑖

≤
𝜓 (𝑟)

𝑟
(1 +

∞

∑

𝑖=0

4
(]−1)𝑖+]

)

= (1 +
4
]

1 − 4
]−1
)
𝜓 (𝑟)

𝑟
.

(80)

Now we can give a bound ofΦ
𝑟
.

Proposition 24. Let 𝑉 be a classifying loss that satisfies (3),
𝐾 ∈ 𝐶

𝑠
(𝑋 ×𝑋) with 𝑠 > 0, and 𝑝 ∈ (0, 2) given by (51). Under

assumption (52), for any 𝑡 > 0 and 𝑟 > 0 satisfying

𝑟 ≥ max
{{

{{

{

[𝐶
4
(
1

𝑚𝜆
𝑝
)

1/2

]

4/(2−𝑝)(2−𝛼)

,

[𝐶
4
(
1

𝑚𝜆
𝑝
)

2/(2+𝑝)

]

(2+𝑝)/(2−𝑝)

,

(
32𝑡𝑐

𝛼

𝑚
)

1/(2−𝛼)

,
𝑐
𝜃
2

𝜃+5
𝑡

3𝑚
,𝐷 (𝜆)

}}

}}

}

,

(81)

where 𝐶
4
:= 16(1 + (4

]
/(1 − 4

]−1
)))𝑐

󸀠

𝑝
max{𝑐(2−𝑝)/4

𝛼

(𝑐
𝑝
(𝑐

𝜃
2

𝜃−1
)
𝑝
)
1/2
, (𝑐

𝜃
2

𝜃
)
(2−𝑝)/(2+𝑝)

(𝑐
𝑝
(𝑐

𝜃
2

𝜃−1
)
𝑝
)
2/(2+𝑝)

} with ] =
max{((2−𝑝)𝛼/4)+𝑝/2, 2𝑝/(2+𝑝)}. We have, with confidence
1 − 𝑒

−𝑡,

Φ
𝑟
≤
3

4
. (82)

Proof. Using the notations in the proof of Proposition 20, the
weight function

𝜔 (𝑓) = E𝑔
𝑓
+ 𝜆
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ,

𝑟
∗
:= inf

𝑓∈H0

𝜔 (𝑓) = 𝐷 (𝜆) .
(83)

Hence 𝑟 ≥ 𝑟∗, and

E
[
[
[

[

sup
𝑓∈H0
𝜔(𝑓)≤𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

E𝑔
𝑓
−
1

𝑚

𝑚

∑

𝑖=1

𝑔
𝑓
(𝑧

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]
]
]

]

≤ E
[
[
[

[

sup
𝑓∈B𝑟/𝜆
E𝑔𝑓≤𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

E𝑔
𝑓
−
1

𝑚

𝑚

∑

𝑖=1

𝑔
𝑓
(𝑧

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]
]
]

]

.

(84)

Denote G := {𝑔
𝑓
: 𝑓 ∈ B

𝑟/𝜆
}. Standard symmetrization

argument (see Lemma 2.3.1 of [36]) and Assumption (52)
then yield

E
[
[
[

[

sup
𝑓∈B𝑟/𝜆
E𝑔𝑓≤𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

E𝑔
𝑓
−
1

𝑚

𝑚

∑

𝑖=1

𝑔
𝑓
(𝑧

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]
]
]

]

≤ 2Rad (G, 𝑚, 𝑐
𝛼
𝑟

𝛼
) . (85)

By (3) we know |𝑔
𝑓
(𝑧)| ≤ 𝑐

𝜃
2

𝜃, and

󵄨󵄨󵄨󵄨󵄨
𝑔

𝑓1
(𝑧) − 𝑔

𝑓2
(𝑧)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨𝑉 (𝑦𝜋 (𝑓1

) (𝑥)) − 𝑉 (𝑦𝜋 (𝑓
2
) (𝑥))

󵄨󵄨󵄨󵄨

≤ 𝑐
𝜃
2

𝜃−1 󵄨󵄨󵄨󵄨𝜋 (𝑓1
) (𝑥) − 𝜋 (𝑓

2
) (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝑐
𝜃
2

𝜃−1 󵄨󵄨󵄨󵄨𝑓1
(𝑥) − 𝑓

2
(𝑥)
󵄨󵄨󵄨󵄨 ,

(86)
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for any 𝑓
1
, 𝑓

2
∈B

𝑟/𝜆
, so

N
2,z (G, 𝜀) ≤N2,x (B𝑟/𝜆

,
𝜀

𝑐
𝜃
2

𝜃−1
) =N

2,x (B1
,
𝜀𝜆

𝑐
𝜃
2

𝜃−1
𝑟
) .

(87)

This together with (50) implies that

sup
𝑚∈N

sup
z∈𝑍
𝑚

logN
2,z (G, 𝜀) ≤ 𝑐𝑝(𝑐𝜃2

𝜃−1
)

𝑝

(
𝑟

𝜆
)

𝑝

𝜀
−𝑝
. (88)

By Lemma 22, we obtain

Rad (G, 𝑚, 𝑐
𝛼
𝑟

𝛼
)

≤ 𝑐
󸀠

𝑝
max
{

{

{

𝑐
1/2−𝑝/4

𝛼
𝑟

𝛼(1/2−𝑝/4)
(

𝑐
𝑝
(𝑐

𝜃
2

𝜃−1
)
𝑝

𝑚
(
𝑟

𝜆
)

𝑝

)

1/2

,

(𝑐
𝜃
2

𝜃
)

(2−𝑝)/(2+𝑝)

(

𝑐
𝑝
(𝑐

𝜃
2

𝜃−1
)

𝑝

𝑚
(
𝑟

𝜆
)

𝑝

)

2/(2+𝑝)

}}

}}

}

:=
𝜓 (𝑟)

2
.

(89)

Setting ] = max{((2 − 𝑝)𝛼/4) + 𝑝/2, 2𝑝/(2 + 𝑝)} ∈ (0, 1), it is
easy to see 𝜓(4𝑟) ≤ 4]𝜓(𝑟). So Lemma 23 tells us

EΦ
𝑟
= E[ sup

𝑓∈H0

󵄨󵄨󵄨󵄨󵄨
E𝑔

𝑓
− (1/𝑚)∑

𝑚

𝑖=1
𝑔

𝑓
(𝑧

𝑖
)
󵄨󵄨󵄨󵄨󵄨

𝜔 (𝑓) + 𝑟
]

≤ (1 +
4
]

1 − 4
]−1
)
𝜓 (𝑟)

𝑟
.

(90)

By the choice of 𝑟, we can easily check that

(1 +
4
]

1 − 4
]−1
)
𝜓 (𝑟)

𝑟
≤
1

8
, √

2𝑡𝑐
𝛼
𝑟

𝛼−2

𝑚
≤
1

4
,

8𝑐
𝜃
2

𝜃
𝑡

3𝑚𝑟
≤
1

4
.

(91)

Then the conclusion follows from Proposition 20.

Corollary 25. Under the condition of Proposition 24, if (28) is
satisfied, then for any 0 < 𝛿 < 1, with confidence 1− 𝛿/4, there
holds

𝑆
1
(z, 𝜆)

≤
3

4
[E (𝜋 (𝑓z,𝜆)) −E (𝑓

𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩]

+ 𝐶
5
log 4
𝛿
[(
1

𝑚𝜆
𝑝
)

2/(2−𝑝)(2−𝛼)

+ (
1

𝑚𝜆
𝑝
)

2/(2−𝑝)

+(
1

𝑚
)

1/(2−𝛼)

+ 𝜆
𝛽
] ,

(92)

where 𝐶
5
is a constant independent of 𝜆,𝑚, or 𝛿.

Proof. Taking

𝑟 = [𝐶
4
(
1

𝑚𝜆
𝑝
)

1/2

]

4/(2−𝑝)(2−𝛼)

+ [𝐶
4
(
1

𝑚𝜆
𝑝
)

2/(2+𝑝)

]

(2+𝑝)/(2−𝑝)

+(
32𝑡𝑐

𝛼

𝑚
)

1/(2−𝛼)

+
𝑐
𝜃
2

𝜃+5
𝑡

3𝑚
+ 𝐷 (𝜆)

(93)

in Proposition 24, then, for any 𝑡 > 1 with confidence 1 − 𝑒−𝑡,

𝜔
𝑟
(𝑓z,𝜆) {[E (𝜋 (𝑓z,𝜆)) −E (𝑓

𝑉

𝜌
)]

− [Ez (𝜋 (𝑓z,𝜆)) −Ez (𝑓
𝑉

𝜌
)]} ≤ Φ

𝑟
≤
3

4
.

(94)

It follows that

𝑆
1
(z, 𝜆) ≤ 3

4
(𝜔 (𝑓z,𝜆) + 𝑟)

=
3

4
[E (𝜋 (𝑓z,𝜆)) −E (𝑓

𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩] +
3

4
𝑟.

(95)

Then the corollary is proved by setting 𝑡 = log(4/𝛿), and

𝐶
5
:=
3

4
(𝐶

4/(2−𝑝)(2−𝛼)

4
+ 𝐶

(2+𝑝)/(2−𝑝)

4

+(32𝑐
𝛼
)

1/(2−𝛼)

+
𝑐
𝜃
2

𝜃+5

3
+ 𝑐

𝛽
) .

(96)

5. Deriving Learning Rates

We may now present the main results by combining the
results obtained in the previous two sections. The following
theorem gives the bounds for the excess generalization error.

Theorem 26. Let 𝑉 be a classifying loss satisfying (3), 𝐾 ∈
𝐶

𝑠
(𝑋 × 𝑋) for some 𝑠 ∈ N, 𝑠 ≥ 2, and 𝑝 ∈ (0, 2) given by

(51). Suppose that 𝑋 satisfies an interior cone conditions, and
𝜌

𝑋
satisfies condition 𝐿

𝜏
with some 𝜏 > 0. If (28) is valid, then

for any 0 < 𝛿 < 1 and 𝑚 satisfying (44), by taking 𝜆 = 𝑚−𝛾

with 𝛾 = min{𝑠/𝜏(𝛽+ (1−𝛽)𝜃), 1/(𝛽+ (1−𝛽)𝜃), 2/(2−𝛼)(2−
𝑝)𝛽 + 2𝑝}, we have, with confidence 1 − 𝛿,

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝑉

𝜌
)

≤ 𝐶(log 8
𝛿
+ log (𝑚 + 1))

max{1,𝑠/𝜏}

(
1

𝑚
)

𝛾𝛽

,

(97)

where 𝐶 is a constant independent of𝑚 or 𝛿.
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Proof. Putting the estimates of Theorem 14, Proposition 18,
and Corollary 25 into the error decomposition (24), we see
that, with confidence 1 − 𝛿,

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩

≤ 𝐶
2
(𝜆

𝛽
+ (𝜆

𝛽−1
+ 𝜆

(𝛽−1)𝜃
) (

log (2/𝛿) + log (𝑚 + 1)
𝑚

)

𝑠/𝜏

)

+ 𝐶
3
log 8
𝛿
((
1

𝑚
)

1/(2−𝛼)

+ 𝜆
𝛽
+
𝜆

(𝛽−1)𝜃

𝑚
)

+
3

4
[E (𝜋 (𝑓z,𝜆)) −E (𝑓

𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩]

+ 𝐶
5
log 4
𝛿
[(
1

𝑚𝜆
𝑝
)

2/(2−𝑝)(2−𝛼)

+ (
1

𝑚𝜆
𝑝
)

2/(2−𝑝)

+(
1

𝑚
)

1/(2−𝛼)

+ 𝜆
𝛽
] .

(98)

Therefore, with the same confidence

E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝑉

𝜌
)

≤ E (𝜋 (𝑓z,𝜆)) −E (𝑓
𝑉

𝜌
) + 𝜆

󵄩󵄩󵄩󵄩𝑓z,𝜆
󵄩󵄩󵄩󵄩

≤ 4 (𝐶
2
+ 𝐶

3
+ 𝐶

5
) (log 8

𝛿
+ log (𝑚 + 1))

max{1,𝑠/𝜏}

× [𝜆
𝛽
+ (
1

𝑚
)

𝑠/𝜏

(𝜆
𝛽−1
+ 𝜆

(𝛽−1)𝜃
) + (

1

𝑚
)

1/(2−𝛼)

+
𝜆

(𝛽−1)𝜃

𝑚
+ (

1

𝑚𝜆
𝑝
)

2/(2−𝑝)(2−𝛼)

+ (
1

𝑚𝜆
𝑝
)

2/(2−𝑝)

] .

(99)

By the choice of 𝜆, we can easily check that

(
1

𝑚
)

𝑠/𝜏

𝜆
𝛽−1
≤ (
1

𝑚
)

𝑠/𝜏

𝜆
(𝛽−1)𝜃

≤ 𝜆
𝛽
,

(
1

𝑚
)

1/(2−𝛼)

≤ 𝜆
𝛽
,

𝜆
(𝛽−1)𝜃

𝑚
≤ 𝜆

𝛽
, (

1

𝑚𝜆
𝑝
)

2/(2−𝑝)(2−𝛼)

≤ 𝜆
𝛽
,

(
1

𝑚𝜆
𝑝
)

2/(2−𝑝)

≤ 𝜆
𝛽
.

(100)

So our theorem follows by taking 𝐶 = 28(𝐶
2
+ 𝐶

3
+ 𝐶

5
).

Theorem 26 together with (17) allows us to give an explicit
learning rate for misclassification error of scheme (10).

Corollary 27. If the conditions in Theorem 26 are satisfied,
then for any 0 < 𝛿 < 1, with confidence 1 − 𝛿, there holds

R (sgn (𝑓z,𝜆)) −R (𝑓𝑐
)

≤

{{{{{{{{{{

{{{{{{{{{{

{

𝐶(log 8
𝛿
+ log (𝑚 + 1))

max{1,𝑠/𝜏}

(
1

𝑚
)

𝛾𝛽

if 𝑉 (𝑡) = (1 − 𝑡)
+
,

𝐶(log 8
𝛿
+ log (𝑚 + 1))

max{1/2,𝑠/2𝜏}

(
1

𝑚
)

𝛾𝛽/2

if 𝑉󸀠󸀠
(0) ≥ 0,

(101)

where 𝐶 := 𝑐
𝑉
√𝐶.

Remark 28. For the hinge loss𝑉
ℎ
(𝑡) = (1− 𝑡)

+
, the increment

exponent 𝜃 = 1. If𝐾 ∈ 𝐶∞
(𝑋×𝑋), then one can take 𝑠 → ∞

and 𝑝 → 0. This is the case for polynomial kernel (see [13,
14]) or Gaussian kernel (see [5, 15]), usually used in practice.
So Corollary 27 tells us the learning rate of the 1-norm SVM
is O(𝑚−𝜍

) with 𝜍 arbitrarily close to min{𝛽, 1/(2 − 𝛼)}.
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