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Two new difference schemes are proposed for an initial-boundary-value problem of the Klein-Gordon-Zakharov (KGZ) equations.
They have the advantage that there is a discrete energy which is conserved. Their stability and convergence of difference solutions
are proved in order O(ℎ2 + 𝜏

2) on the basis of the prior estimates. Results of numerical experiments demonstrate the efficiency of
the new schemes.

1. Introduction

In this paper, we consider the following initial-boundary-
value problem of the KGZ equations (see [1]):

𝑈
𝑡𝑡
− 𝑈
𝑥𝑥

+ 𝑈 + 𝑁𝑈 + |𝑈|
2
𝑈 = 0,

− 𝑥
𝐿
< 𝑥 < 𝑥

𝑅
, 0 ≤ 𝑡 ≤ 𝑇,

(1)

𝑁
𝑡𝑡
− 𝑁
𝑥𝑥

= (|𝑈|
2
)
𝑥𝑥
, −𝑥

𝐿
< 𝑥 < 𝑥

𝑅
,

≤ 𝑡 ≤ 𝑇,

(2)

𝑈|
𝑡=0

= 𝑈
0
(𝑥) , 𝑈

𝑡
|
𝑡=0

= 𝑈
1
(𝑥) ,

𝑁|
𝑡=0

= 𝑁
0
(𝑥) , 𝑁

𝑡
|
𝑡=0

= 𝑁
1
(𝑥) ,

(3)

𝑈|
𝑥=𝑥𝐿

= 𝑈|
𝑥=𝑥𝑅

= 0, 𝑁|
𝑥=𝑥𝐿

= 𝑁|
𝑥=𝑥𝑅

= 0, (4)

where a complex unknown function 𝑈(𝑥, 𝑡) denotes the fast
time scale component of electric field raised by electrons
and a real unknown function 𝑁(𝑥, 𝑡) denotes the deviation
of ion density from its equilibrium; 𝑈

0
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1
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1
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The solutions 𝑈(𝑥, 𝑡) and 𝑁(𝑥, 𝑡) of the initial-bound-
ary-value problem (1)–(4) formally satisfy the following
energy identity:
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where the potential function 𝑉 is defined as

𝑉 = −𝑓
𝑥
, 𝑓
𝑥𝑥

= 𝑁
𝑡
. (6)

In [2] Ozawa et al. proved the well-posedness of the
equations in three-dimensional space. Adomian discussed
the existence of its nonperturbative solutions (see [3]). In
[4] Guo and Yuan studied the global smooth solutions for
the Cauchy problem of these equations. Furthermore, in
[5, 6] the authors proposed three difference schemes for the
KGZ equations. It is well known that a conservative scheme
performs better than a nonconservative one; for example,
Zhang et al. in [7] pointed out that the nonconservative
schemes may easily show nonlinear blowup and Li and Vu-
Quoc also said, “in some areas, the ability to preserve some
invariant properties of the original differential equation is
a criterion to judge the success of a numerical simulation”
(see [8]). Up to now, many conservative finite difference
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schemes have been studied for the Klein-Gordon equation,
Klein-Gordon-Schödinger equations, Sine-Gordon equation,
Zakharov equations, and so on (see [9–25]). Numerical
results of all the schemes are very good. Therefore, in this
paper we will generalize the technique of these methods
to propose two new conservative difference schemes which
are unconditionally stable and more accurate for the KGZ
equations.

The paper is organized as follows. In Section 2, a new
difference scheme (i.e., Scheme A) is proposed, and its
discrete conservative law is discussed. In Section 3, some
prior estimates for difference solutions aremade. In Section 4,
convergence and stability for the new scheme are proved
using discrete energy method. In Section 5, another con-
servative scheme (i.e., Scheme B) is constructed, and its
discrete conservative law is discussed. In Section 6, some
prior estimates of Scheme B are obtained by induction, then
convergence of the scheme is analyzed. Finally, in Section 7,
some numerical results are provided to demonstrate the
theoretical results.

2. Finite Difference Scheme and Its
Conservative Law

Before we propose the new difference scheme for the KGZ
(1)–(4), we give some notations as follows:
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where ℎ and 𝜏 are step size of space and time, respectively.
Also we define the following inner product and norms:
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In this paper, 𝐶 stands for a general positive constant
which may take different values on different occasions. For
briefness, we omit the subscript 2 of ‖ 𝑤𝑛‖

2
.
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It is easy to prove this lemma directly.

Now, we consider the following difference scheme for the
KGZ equations (1)–(4).

Scheme A.We consider the following:
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In the computation of (18) and (19), we have used the
boundary conditions and Lemma 1. Then, result (16) follows
from (18) and (19).

3. Some Prior Estimates for
Difference Solutions

In this section, we will estimate the difference solutions of
Scheme A after introducing two important lemmas proved
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0
(𝑥) ∈ 𝐻

1
, 𝑈
1
(𝑥) ∈ 𝐿

2
, 𝑁
0
(𝑥) ∈

𝐻
1, and𝑁

1
(𝑥) ∈ 𝐿

2
; then the following estimates hold:

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶,

‖ 𝑈
𝑛
‖
4
≤ 𝐶.

(23)

Proof. Applying Young’s inequality, it is easy to see that

−
ℎ
2

12

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥𝑡

󵄩󵄩󵄩󵄩
2

= −
ℎ
3

12

𝐽−1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑛

𝑗
)
𝑥𝑡

󵄨󵄨󵄨󵄨󵄨󵄨

2

= −
ℎ
3

12

𝐽−1

∑

𝑗=1

(𝑈
𝑛

𝑗
)
𝑥𝑡
(𝑈
𝑛

𝑗
)
𝑥𝑡

= −
ℎ

12

𝐽−1

∑

𝑗=1

(𝑈
𝑛

𝑗+1
− 𝑈
𝑛

𝑗
)
𝑡
(𝑈
𝑛

𝑗+1
− 𝑈
𝑛

𝑗
)
𝑡

≥ −
ℎ

6

𝐽−1

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑛

𝑗+1
)
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑛

𝑗
)
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨

2

) = −
1

3

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

,

(24)

and by (15), we have

−
ℎ
2

24

󵄩󵄩󵄩󵄩𝑁
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

= −
ℎ
3

24

𝐽−1

∑

𝑗=1

[(𝑁
𝑛

𝑗
)
𝑡
]
2

= −
ℎ
3

24

𝐽−1

∑

𝑗=1

[(𝑓
𝑛

𝑗
)
𝑥𝑥
]
2

= −
ℎ

24

𝐽−1

∑

𝑗=1

[(𝑓
𝑛

𝑗
)
𝑥
− (𝑓
𝑛

𝑗−1
)
𝑥
]
2

≥ −
ℎ

12

𝐽−1

∑

𝑗=1

{[(𝑓
𝑛

𝑗
)
𝑥
]
2

+ [(𝑓
𝑛

𝑗−1
)
𝑥
]
2

}

= −
1

6

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

;

(25)
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then from (16) we get

2

3

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
2

)

+
1

2
ℎ

𝐽−1

∑

𝑗=1

(𝑁
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑁
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

+
1

4
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4
+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
) +

1

3

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
1

4
(
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

) ≤ 𝐸
𝑛
= 𝐶.

(26)

Since

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
ℎ

𝐽−1

∑

𝑗=1

𝑁
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
ℎ

𝐽−1

∑

𝑗=1

((𝑁
𝑛

𝑗
)
2

+
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

4

)

≤
1

4
(
󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4
) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2
ℎ

𝐽−1

∑

𝑗=1

𝑁
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
(
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
) ,

(27)

it follows from (26) that

2

3

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
2

) +
1

3

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

≤ 𝐶.

(28)

Therefore

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩 ≤ 𝐶.

(29)

Besides, we can obtain the following estimates by Lemma 3:

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩4 ≤ 𝐶. (30)

On the other hand, by inequality 𝑎𝑏 ≤ (1/4) 𝑎
2
+ 𝑏
2, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ

𝐽−1

∑

𝑗=1

𝑁
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ℎ

𝐽−1

∑

𝑗=1

[
1

4
(𝑁
𝑛

𝑗
)
2

+
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

4

]

=
1

4

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4
,

(31)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ

𝐽−1

∑

𝑗=1

𝑁
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ℎ

𝐽−1

∑

𝑗=1

[
1

4
(𝑁
𝑛+1

𝑗
)
2

+
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

4

]

=
1

4

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
.

(32)

Thus, it follows from (26) that
󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶. (33)

This completes the proof.

4. Convergence and Stability of
the Difference Scheme

In this section, we will discuss the convergence and stability
of the difference scheme (10)–(15). First, we define the
truncation errors by

𝑟
𝑛

𝑗
= (𝑈 (𝑥

𝑗
, 𝑡
𝑛
))
𝑡𝑡
+
ℎ
2

12
(𝑈 (𝑥

𝑗
, 𝑡
𝑛
))
𝑥𝑥𝑡𝑡

−
1

2
(𝑈 (𝑥

𝑗
, 𝑡
𝑛+1

) + 𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

))
𝑥𝑥

+
1

2
(𝑈 (𝑥

𝑗
, 𝑡
𝑛+1

) + 𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

))

+
1

2
𝑁 (𝑥
𝑗
, 𝑡
𝑛
) (𝑈 (𝑥

𝑗
, 𝑡
𝑛+1

) + 𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

))

+
1

4
(
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛+1

)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

)
󵄨󵄨󵄨󵄨󵄨

2

)

× (𝑈 (𝑥
𝑗
, 𝑡
𝑛+1

) + 𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

)) ,

(34)

𝜎
𝑛

𝑗
= (𝑁(𝑥

𝑗
, 𝑡
𝑛
))
𝑡𝑡
+
ℎ
2

12
(𝑁 (𝑥

𝑗
, 𝑡
𝑛
))
𝑥𝑥𝑡𝑡

−
1

2
(𝑁 (𝑥

𝑗
, 𝑡
𝑛+1

) + 𝑁(𝑥
𝑗
, 𝑡
𝑛−1

))
𝑥𝑥

− (
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

)
𝑥𝑥

.

(35)

Lemma 6. Assume that the conditions of Theorem 5 are sat-
isfied and 𝑈(𝑥.𝑡) ∈ 𝐶

4,4
, 𝑁(𝑥, 𝑡) ∈ 𝐶

4,4
; then the truncation

errors of the difference scheme (10)–(15) satisfy |𝑟
𝑛

𝑗
| + |𝜎

𝑛

𝑗
| =

𝑂(𝜏
2
+ ℎ
2
) as 𝜏 → 0, ℎ → 0.

By Taylor’s expansion, Lemma 6 can be proved directly.
Besides, we note that the approximations of the initial
conditions (13) have truncation errors of order 𝑂(𝜏2), which
are consistent with the scheme.

Now, we are going to analyze the convergence of the
difference scheme (10)–(15).

Set the following:

𝑒
𝑛

𝑗
= 𝑈 (𝑥

𝑗
, 𝑡
𝑛
) − 𝑈
𝑛

𝑗
, 𝜂

𝑛

𝑗
= 𝑁(𝑥

𝑗
, 𝑡
𝑛
) − 𝑁

𝑛

𝑗
,

1

ℎ2
(𝐹
𝑛

𝑗+1
− 2𝐹
𝑛

𝑗
+ 𝐹
𝑛

𝑗−1
) =

1

𝜏
(𝜂
𝑛+1

𝑗
− 𝜂
𝑛

𝑗
) ,

𝑗 = 1, 2, . . . , 𝐽 − 1,

𝐹
𝑛

0
= 𝐹
𝑛

𝐽
= 0.

(36)

Theorem 7. Assume that the conditions of Lemma 6 are
satisfied; then the solutions of the difference scheme (10)–(15)
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converge to the solutions of the problem stated in (1)–(4) with
order 𝑂(𝜏2 +ℎ2) in the 𝐿

∞
norm for 𝑈𝑛 and in the 𝐿

2
norm

for 𝑁𝑛.

Proof. Subtracting (10) from (34), we obtain

𝑟
𝑛

𝑗
= (𝑒
𝑛

𝑗
)
𝑡𝑡
+
ℎ
2

12
(𝑒
𝑛

𝑗
)
𝑥𝑥𝑡𝑡

−
1

2
(𝑒
𝑛+1

𝑗
+ 𝑒
𝑛−1

𝑗
)
𝑥𝑥

+
1

2
(𝑒
𝑛+1

𝑗
+ 𝑒
𝑛−1

𝑗
)

+
1

2
𝜂
𝑛

𝑗
(𝑈 (𝑥

𝑗
, 𝑡
𝑛+1

) + 𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

))

+
1

2
𝑁
𝑛

𝑗
(𝑒
𝑛+1

𝑗
+ 𝑒
𝑛+1

𝑗
) + 𝐿
1
;

(37)

that is,

(𝑒
𝑛

𝑗
)
𝑡𝑡
+
ℎ
2

12
(𝑒
𝑛

𝑗
)
𝑥𝑥𝑡𝑡

−
1

2
(𝑒
𝑛+1

𝑗
+ 𝑒
𝑛−1

𝑗
)
𝑥𝑥

+
1

2
(𝑒
𝑛+1

𝑗
+ 𝑒
𝑛−1

𝑗
)

= 𝑟
𝑛

𝑗
−
1

2
𝜂
𝑛

𝑗
(𝑈 (𝑥

𝑗
, 𝑡
𝑛+1

) + 𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

))

−
1

2
𝑁
𝑛

𝑗
(𝑒
𝑛+1

𝑗
+ 𝑒
𝑛+1

𝑗
) − 𝐿
1
,

(38)

where

𝐿
1
=
1

4
(
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛+1

)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

)
󵄨󵄨󵄨󵄨󵄨

2

)

× (𝑈 (𝑥
𝑗
, 𝑡
𝑛+1

) + 𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

))

−
1

4
(
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

) (𝑈
𝑛+1

𝑗
+ 𝑈
𝑛−1

𝑗
)

=
1

4
(
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛+1

)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

)
󵄨󵄨󵄨󵄨󵄨

2

) (𝑒
𝑛+1

𝑗
+ 𝑒
𝑛−1

𝑗
)

+
1

4
[
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛+1

)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

] ⋅ (𝑈
𝑛+1

𝑗
+ 𝑈
𝑛−1

𝑗
)

=
1

4
(
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛+1

)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

)
󵄨󵄨󵄨󵄨󵄨

2

) (𝑒
𝑛+1

𝑗
+ 𝑒
𝑛−1

𝑗
)

+
1

4
[𝑈 (𝑥

𝑗
, 𝑡
𝑛+1

) 𝑒
𝑛+1

𝑗

+ 𝑒
𝑛+1

𝑗
𝑈
𝑛+1

𝑗
+ 𝑒
𝑛−1

𝑗
𝑈
𝑛−1

𝑗

+𝑈 (𝑥
𝑗
, 𝑡
𝑛−1

) 𝑒
𝑛−1

𝑗
] ⋅ (𝑈

𝑛+1

𝑗
+ 𝑈
𝑛−1

𝑗
) .

(39)

Then computing the inner product of (38) with 𝑒
𝑛+1

−

𝑒
𝑛−1 and taking the real part, we have

‖ 𝑒
𝑛

𝑡
‖
2
− ‖ 𝑒
𝑛−1

𝑡
‖
2
−
ℎ
2

12
(‖ 𝑒
𝑛

𝑥𝑡
‖
2
− ‖ 𝑒
𝑛−1

𝑥𝑡
‖
2
)

+
1

2
(‖ 𝑒
𝑛+1

𝑥
‖
2
− ‖ 𝑒
𝑛−1

𝑥
‖
2
)

+
1

2
(‖ 𝑒
𝑛+1

‖
2
− ‖ 𝑒
𝑛−1

‖
2
)

≤ 𝐶𝜏 (‖ 𝑟
𝑛
‖
2
+ ‖ 𝜂
𝑛
‖
2
+ ‖ 𝑁

𝑛
(𝑒
𝑛+1

+ 𝑒
𝑛−1

) ‖
2

+ ‖ 𝑒
𝑛

𝑡
‖
2
+ ‖ 𝑒
𝑛−1

𝑡
‖
2
+ ‖ 𝑒
𝑛+1

‖
2
+ ‖ 𝑒
𝑛−1

‖
2
) .

(40)

From Lemma 3 andTheorem 5 it follows that
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛
(𝑒
𝑛+1

+ 𝑒
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩 ⋅

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

+ 𝑒
𝑛−1󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

𝑥
+ 𝑒
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩
+ 𝐶

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

+ 𝑒
𝑛−1󵄩󵄩󵄩󵄩󵄩

≤ 𝐶 (
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1󵄩󵄩󵄩󵄩󵄩

) .

(41)

So, substituting (41) into (40), we have

󵄩󵄩󵄩󵄩𝑒
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

−
ℎ
2

12
(
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑥𝑡

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑥𝑡

󵄩󵄩󵄩󵄩󵄩

2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

) +
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

)

≤ 𝐶𝜏 (
󵄩󵄩󵄩󵄩𝑟
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

) .

(42)

Next, subtracting (11) from (35), we obtain

(𝜂
𝑛

𝑗
)
𝑡𝑡
+
ℎ
2

12
(𝜂
𝑛

𝑗
)
𝑥𝑥𝑡𝑡

−
1

2
(𝜂
𝑛+1

𝑗
+ 𝜂
𝑛−1

𝑗
)
𝑥𝑥

= 𝜎
𝑛

𝑗
+ (

󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)
𝑥𝑥

.

(43)

Computing the inner product of (43) with (1/2)(𝐹
𝑛
+ 𝐹
𝑛−1

),
we get

−
1

2𝜏
(
󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

) +
ℎ
2

24𝜏
(
󵄩󵄩󵄩󵄩𝜂
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

)

−
1

4𝜏
(
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

)

= (𝜎
𝑛

𝑗
,
1

2
(𝐹
𝑛
+ 𝐹
𝑛−1

))

+ ( (
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)
𝑥𝑥

,

1

2
(𝐹
𝑛
+ 𝐹
𝑛−1

)) .

(44)
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Note that

((
󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)
𝑥𝑥

,
1

2
(𝐹
𝑛
+ 𝐹
𝑛−1

))

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩
2

) ,

(𝜎
𝑛
,
1

2
(𝐹
𝑛
+ 𝐹
𝑛−1

)) =
1

2
ℎ

𝐽−1

∑

𝑗=1

𝜎
𝑛

𝑗
(𝐹
𝑛

𝑗
+ 𝐹
𝑛−1

𝑗
)

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝜎
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

) .

(45)

Then substituting (45) into (44) we have

󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

−
ℎ
2

12
(
󵄩󵄩󵄩󵄩𝜂
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

)

≤ 𝐶𝜏 (
󵄩󵄩󵄩󵄩𝜎
𝑛󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩
2

) .

(46)

Now, adding (42) to(46), we get

󵄩󵄩󵄩󵄩𝑒
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

−
ℎ
2

12
(
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑥𝑡

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑥𝑡

󵄩󵄩󵄩󵄩󵄩

2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

) +
󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

−
ℎ
2

12
(
󵄩󵄩󵄩󵄩𝜂
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

) +
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

)

≤ 𝐶𝜏 (
󵄩󵄩󵄩󵄩𝑟
𝑛󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜎
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

) .

(47)

Let

𝐵
𝑛
=
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

−
ℎ
2

12

󵄩󵄩󵄩󵄩𝑒
𝑛

𝑥𝑡

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩
2

) +
󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

−
ℎ
2

12

󵄩󵄩󵄩󵄩𝜂
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩
2

) .

(48)

It is easy to see that

𝐵
𝑛
≥
2

3

󵄩󵄩󵄩󵄩𝑒
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩
2

) +
2

3

󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩
2

) .

(49)

Then by (47) and Lemma 6 we have

𝐵
𝑛
− 𝐵
𝑛−1

≤ 𝐶𝜏 (
󵄩󵄩󵄩󵄩𝑟
𝑛󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜎
𝑛󵄩󵄩󵄩󵄩
2

) + 𝐶𝜏 (𝐵
𝑛
+ 𝐵
𝑛−1

)

≤ 𝐶𝜏(ℎ
2
+ 𝜏
2
)
2

+ 𝐶𝜏 (𝐵
𝑛
+ 𝐵
𝑛−1

) .

(50)

Summing (50) up for 𝑛 and applying Lemma 4, we get

𝐵
𝑁
≤ (𝐵
0
+ 𝐶(ℎ

2
+ 𝜏
2
)
2

) exp (𝐶𝑁𝜏)

≤ 𝐶 (𝐵
0
+ (ℎ
2
+ 𝜏
2
)
2

) .

(51)

Therefore, it follows from (49) that

2

3

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁

𝑡

󵄩󵄩󵄩󵄩󵄩

2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁

𝑥

󵄩󵄩󵄩󵄩󵄩

2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁󵄩󵄩󵄩󵄩󵄩

2

) +
2

3

󵄩󵄩󵄩󵄩𝐹
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑁+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝜂
𝑁󵄩󵄩󵄩󵄩󵄩

2

)

≤ 𝐶 (𝐵
0
+ (ℎ
2
+ 𝜏
2
)
2

) .

(52)

Note that 𝑒0, 𝑒1, 𝜂0, and 𝜂
1 are two-order precision

and ‖𝐹
0

𝑥
‖ = 𝑂(ℎ

2
+ 𝜏
2
) (see [22]). Thus 𝐵0 = 𝑂(ℎ

2
+ 𝜏
2
)
2.

Hence, the following inequalities can be obtained by (52):

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁

𝑥

󵄩󵄩󵄩󵄩󵄩
≤ 𝑂 (ℎ

2
+ 𝜏
2
) ,

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁󵄩󵄩󵄩󵄩󵄩

≤ 𝑂 (ℎ
2
+ 𝜏
2
) , (53)

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁

𝑡

󵄩󵄩󵄩󵄩󵄩
≤ 𝑂 (ℎ

2
+ 𝜏
2
) ,

󵄩󵄩󵄩󵄩󵄩
𝜂
𝑁󵄩󵄩󵄩󵄩󵄩

≤ 𝑂 (ℎ
2
+ 𝜏
2
) . (54)

Then, applying Lemma 3, we get

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑁

𝑥

󵄩󵄩󵄩󵄩󵄩∞
≤ 𝑂 (ℎ

2
+ 𝜏
2
) . (55)

So the proof of Theorem 7 is complete.

In the same way, we can prove that the solutions of the
difference schemes (10)–(15) are unconditionally stable for
initial data.

5. Another Conservative Difference Scheme

In this section, we will propose another conservative differ-
ence scheme for the problem given in (1)–(4) and discuss the
discrete conservative law of this scheme.
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Now, we consider the finite difference simulations for (1)
and (2) as follows.

Scheme B.We consider the following:

(𝑈
𝑛

𝑗
)
𝑡𝑡
−
1

2
(𝑈
𝑛+1

𝑗
+ 𝑈
𝑛−1

𝑗
)
𝑥𝑥

+
1

2
(𝑈
𝑛+1

𝑗
+ 𝑈
𝑛−1

𝑗
)

+
1

2
𝑁
𝑛

𝑗
(𝑈
𝑛+1

𝑗
+ 𝑈
𝑛−1

𝑗
) +

1

8
(
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 2
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

× (𝑈
𝑛+1

𝑗
+ 𝑈
𝑛−1

𝑗
) = 0,

(56)

1

2
(𝑁
𝑛

𝑗
)
𝑡𝑡
+
1

4
(𝑁
𝑛

𝑗+1
+ 𝑁
𝑛

𝑗−1
)
𝑡𝑡

−
1

2
(𝑁
𝑛+1

𝑗
+ 𝑁
𝑛−1

𝑗
)
𝑥𝑥

= (
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)
𝑥𝑥

.

(57)

In addition, the initial and boundary conditions (3) and
(4) are also, respectively, approximated as

𝑈
0

𝑗
= 𝑈
0
(𝑥
𝑗
) , 𝑁

0

𝑗
= 𝑁
0
(𝑥
𝑗
) ,

𝑈
𝑛

0
= 𝑈
𝑛

𝐽
= 0, 𝑁

𝑛

0
= 𝑁
𝑛

𝐽
= 0,

(58)

𝑈
1

𝑗
− 𝑈
−1

𝑗
= 2𝜏𝑈

1
(𝑥
𝑗
) , 𝑁

1

𝑗
− 𝑁
−1

𝑗
= 2𝜏𝑁

1
(𝑥
𝑗
) . (59)

We also define the function {𝑓
𝑛

𝑗
} by

(𝑓
𝑛

𝑗
)
𝑥𝑥

= (𝑁
𝑛

𝑗
)
𝑡
, 𝑗 = 1, 2, . . . , 𝐽 − 1, 𝑓

𝑛

0
= 𝑓
𝑛

𝐽
= 0. (60)

In (56) and (57), let 𝑛 = 0. Then eliminating 𝑈
−1 and

𝑁
−1 from (58) and (59), we get

2

𝜏2
(𝑈
1

𝑗
− 𝑈
0

𝑗
− 𝜏𝑈
1
(𝑥
𝑗
)) − (𝑈

1

𝑗
− 𝜏𝑈
1
(𝑥
𝑗
))
𝑥𝑥

+ (𝑈
1

𝑗
− 𝜏𝑈
1
(𝑥
𝑗
)) + 𝑁

0

𝑗
(𝑈
1

𝑗
− 𝜏𝑈
1
(𝑥
𝑗
))

+
1

4
(
󵄨󵄨󵄨󵄨󵄨
𝑈
1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 2
󵄨󵄨󵄨󵄨󵄨
𝑈
0

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈
1

𝑗
− 2𝜏𝑈

1
(𝑥
𝑗
)
󵄨󵄨󵄨󵄨󵄨

2

)

× (𝑈
1

𝑗
− 𝜏𝑈
1
(𝑥
𝑗
)) = 0,

1

𝜏2
(𝑁
1

𝑗
− 𝑁
0

𝑗
− 𝜏𝑁
1
(𝑥
𝑗
))

+
1

2𝜏2
(𝑁
1

𝑗+1
− 𝑁
0

𝑗+1
− 𝜏𝑁
1
(𝑥
𝑗+1

)

+𝑁
1

𝑗−1
− 𝑁
0

𝑗−1
− 𝜏𝑁
1
(𝑥
𝑗−1

))

− (𝑁
1

𝑗
− 𝜏𝑁
1
(𝑥
𝑗
))
𝑥𝑥

= (
󵄨󵄨󵄨󵄨󵄨
𝑈
0

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)
𝑥𝑥

.

(61)

Theorem 8. Scheme B admits the following invariant:

𝐸
𝑛
= 𝐸
𝑛−1

= ⋅ ⋅ ⋅ = 𝐸
0
= 𝑐𝑜𝑛𝑠𝑡, (62)

where

𝐸
𝑛
=
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
2

) +
1

4

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
1

2
ℎ

𝐽−1

∑

𝑗=1

(𝑁
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑁
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

+
1

4
ℎ

𝐽−1

∑

𝑗=1

(𝑓
𝑛

𝑗
)
𝑥
(𝑓
𝑛

𝑗−1
)
𝑥
+
1

4
(
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

)

+
1

8
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4
+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
+2ℎ

𝐽−1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

) .

(63)

Proof. Computing the inner product of (56) with 𝑈
𝑛+1

−

𝑈
𝑛−1 and taking the real part, we have

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−1

𝑡

󵄩󵄩󵄩󵄩󵄩

2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

)

+
1

2
ℎ

𝐽−1

∑

𝑗=1

𝑁
𝑛

𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

) + 𝐿
1
= 0,

(64)

where

𝐿
1
=
1

8
Re

{

{

{

ℎ

𝐽−1

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 2
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

× (𝑈
𝑛+1

𝑗
+ 𝑈
𝑛−1

𝑗
) (𝑈
𝑛+1

𝑗
− 𝑈
𝑛−1

𝑗
)
}

}

}

=
1

8
ℎ

𝐽−1

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+ 2
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

× (
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

=
1

8
ℎ

𝐽−1

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

4

+ 2
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

−2
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

4

)

=
1

8
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4
+ 2ℎ

𝐽−1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

− 2ℎ

𝐽−1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

−
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛−1󵄩󵄩󵄩󵄩󵄩

4

4
) .

(65)
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Next, computing the inner product of (57)
with (1/2)(𝑓

𝑛
+ 𝑓
𝑛−1

) and by (60), we obtain

−
1

4𝜏
(
󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

)

+ 𝐿
2
−

1

4𝜏
(
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

)

=
ℎ

2𝜏

𝐽−1

∑

𝑗=1

(𝑁
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

− 𝑁
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

) ,

(66)

where

𝐿
2
=
1

4
ℎ

𝐽−1

∑

𝑗=1

(𝑁
𝑛

𝑗+1
+ 𝑁
𝑛

𝑗−1
)
𝑡𝑡
⋅
1

2
(𝑓
𝑛

𝑗
+ 𝑓
𝑛−1

𝑗
)

=
1

4𝜏
ℎ

𝐽−1

∑

𝑗=1

[(𝑓
𝑛

𝑗+1
+ 𝑓
𝑛

𝑗−1
)
𝑥𝑥

− (𝑓
𝑛−1

𝑗+1
+ 𝑓
𝑛−1

𝑗−1
)
𝑥𝑥
]

⋅
1

2
(𝑓
𝑛

𝑗
+ 𝑓
𝑛−1

𝑗
)

= −
1

4𝜏
ℎ

𝐽−1

∑

𝑗=1

[(𝑓
𝑛

𝑗+1
+ 𝑓
𝑛

𝑗−1
)
𝑥
− (𝑓
𝑛−1

𝑗+1
+ 𝑓
𝑛−1

𝑗−1
)
𝑥
]

⋅
1

2
(𝑓
𝑛

𝑗
+ 𝑓
𝑛−1

𝑗
)
𝑥

= −
1

4𝜏
ℎ

𝐽−1

∑

𝑗=1

[(𝑓
𝑛

𝑗
)
𝑥
(𝑓
𝑛

𝑗−1
)
𝑥
− (𝑓
𝑛−1

𝑗
)
𝑥
(𝑓
𝑛−1

𝑗−1
)
𝑥
] .

(67)

Then
1

4
(
󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑛−1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

)

+
1

4
ℎ

𝐽−1

∑

𝑗=1

[(𝑓
𝑛

𝑗
)
𝑥
(𝑓
𝑛

𝑗−1
)
𝑥
− (𝑓
𝑛−1

𝑗
)
𝑥
(𝑓
𝑛−1

𝑗−1
)
𝑥
]

+
1

4
(
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛−1󵄩󵄩󵄩󵄩󵄩

2

)

+
ℎ

2𝜏

𝐽−1

∑

𝑗=1

(𝑁
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

− 𝑁
𝑛−1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

) = 0.

(68)

Hence, result (62) is obtained by adding (68) to (64). This
completes the proof.

6. Convergence and Stability of the Scheme

Before we prove the convergence of Scheme B, we estimate
the difference solutions of this scheme.

Theorem 9. Assume that the conditions of Theorem 5 are
satisfied; then the following estimates hold:

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩4 ≤ 𝐶.

(69)

Proof (by induction). First, because of the inequality

𝑎 ⋅ 𝑏 ≤
1

𝑝
(𝜀𝑎)
𝑝
+
1

𝑞
(
1

𝜀
𝑏)

𝑞

,
1

𝑝
+
1

𝑞
= 1, 𝑝, 𝑞, 𝜀 > 0,

(70)

we have

1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ

𝐽−1

∑

𝑗=1

𝑁
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜀
1

2

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

+
1

8𝜀
1

‖ 𝑈
𝑛+1

‖
4

4
,

1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ

𝐽−1

∑

𝑗=1

𝑁
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

8

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
1

2

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
.

(71)

Then, substituting (71) into (62) and choosing 𝜀
1
= √2𝜀 > 1,

we get the following inequality:

‖ 𝑈
𝑛

𝑡
‖
2
+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

) +
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
2

)

+
1

4

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
1

4
ℎ

𝐽−1

∑

𝑗=1

(𝑓
𝑛

𝑗
)
𝑥
(𝑓
𝑛

𝑗−1
)
𝑥

+
1

4
(
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

)

+
1

8
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4
+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
+ 2ℎ

𝐽−1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

)

≤ 𝐶 +
1

8

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
1

2

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
+
𝜀
1

2

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

+
1

8𝜀
1

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4
.

(72)

That is,

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩
2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

)

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
2

)

+
1

4

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

+
1

4
ℎ

𝐽−1

∑

𝑗=1

(𝑓
𝑛

𝑗
)
𝑥
(𝑓
𝑛

𝑗−1
)
𝑥

+
1

8

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
1

4

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

+ (
1

8
−

1

8𝜀
1

)
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4

+
1

8

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
+
2ℎ

8

𝐽−1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐶 +
1

2

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
+
𝜀
1

2

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

.

(73)

Note that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

4
ℎ

𝐽−1

∑

𝑗=1

(𝑓
𝑛

𝑗
)
𝑥
(𝑓
𝑛

𝑗−1
)
𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
ℎ

𝐽−1

∑

𝑗=1

1

2
[(𝑓
𝑛

𝑗
)
2

𝑥
+ (𝑓
𝑛

𝑗−1
)
2

𝑥
] =

1

4

󵄩󵄩󵄩󵄩𝑓
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

,

(74)
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so we have

‖ 𝑈
𝑛

𝑡
‖
2
+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩
2

) +
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
2

)

+
1

8

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑛+1󵄩󵄩󵄩󵄩󵄩

2

+
1

4

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

+ (
1

8
−

1

8𝜀
1

)
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑛+1󵄩󵄩󵄩󵄩󵄩

4

4

+
1

8

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
+
2ℎ

8

𝐽−1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐶 +
1

2

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩
4

4
+
𝜀
1

2

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩
2

.

(75)

Obviously, by (58), (59), and the conditions ofTheorem 5,
the following inequalities hold:

󵄩󵄩󵄩󵄩󵄩
𝑈
−1

𝑡

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
0

𝑡

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
0

𝑥

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
0󵄩󵄩󵄩󵄩󵄩

≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
0󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶,
󵄩󵄩󵄩󵄩󵄩
𝑁
0󵄩󵄩󵄩󵄩󵄩

≤ 𝐶,
󵄩󵄩󵄩󵄩󵄩
𝑈
0󵄩󵄩󵄩󵄩󵄩4

≤ 𝐶.

(76)

Assume that Theorem 9 holds when 𝑛 = 𝑘; that is,
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘−1

𝑡

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘󵄩󵄩󵄩󵄩󵄩

≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶,
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑘󵄩󵄩󵄩󵄩󵄩

≤ 𝐶,
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘󵄩󵄩󵄩󵄩󵄩4

≤ 𝐶.

(77)

By (75) and (77), we get
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘

𝑡

󵄩󵄩󵄩󵄩󵄩

2

+
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘+1

𝑥

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘

𝑥

󵄩󵄩󵄩󵄩󵄩

2

) +
1

2
(
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘󵄩󵄩󵄩󵄩󵄩

2

)

+
1

8

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

+
1

4

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ (
1

8
−

1

8𝜀
1

)
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘+1󵄩󵄩󵄩󵄩󵄩

4

4
+
1

8

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘󵄩󵄩󵄩󵄩󵄩

4

4

+
2ℎ

8

𝐽−1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑈
𝑘+1

𝑗

󵄨󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨󵄨
𝑈
𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐶 +
1

2

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘󵄩󵄩󵄩󵄩󵄩

4

4
+
𝜀
1

2

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑘󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐶,

(78)

from which the following inequalities are obtained,
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘

𝑡

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘+1

𝑥

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘+1󵄩󵄩󵄩󵄩󵄩

≤ 𝐶,

󵄩󵄩󵄩󵄩󵄩
𝑁
𝑘+1󵄩󵄩󵄩󵄩󵄩

≤ 𝐶,
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘+1󵄩󵄩󵄩󵄩󵄩4

≤ 𝐶,

(79)

and applying Lemma 3, we have
󵄩󵄩󵄩󵄩󵄩
𝑈
𝑘+1󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶. (80)

Then, for any 𝑛 ∈ {0, 1, 2, . . . , 𝑁}, the following estimates are
obtained:

󵄩󵄩󵄩󵄩𝑈
𝑛

𝑡

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑈
𝑛

𝑥

󵄩󵄩󵄩󵄩 ≤ 𝐶,
󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑁
𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶,

󵄩󵄩󵄩󵄩𝑈
𝑛󵄩󵄩󵄩󵄩4 ≤ 𝐶.

(81)

This completes the proof.

Theorem 10. Assume that the conditions of Lemma 6 are
satisfied; then the solutions of the difference scheme (56)–(61)
converge to the solutions of the problem given in (1)–(4) with
order 𝑂(𝜏2 +ℎ2) in the 𝐿

∞
norm for 𝑈𝑛 and in the 𝐿

2
norm

for 𝑁𝑛.

Here, we omit details of the proof of this theorem because
it can be proved in the same way as that used to prove
Theorem 7.

7. Numerical Experiments

In this section, we compute the following numerical exam-
ple to demonstrate the effectiveness of our two difference
schemes:

𝑈
𝑡𝑡
− 𝑈
𝑥𝑥

+ 𝑈 + 𝑁𝑈 + |𝑈|
2
𝑈 = 0,

− 20 < 𝑥 < 20, 0 ≤ 𝑡 ≤ 𝑇,

𝑁
𝑡𝑡
− 𝑁
𝑥𝑥

= (|𝑈|
2
)
𝑥𝑥
, −20 < 𝑥 < 20, 0 ≤ 𝑡 ≤ 𝑇,

𝑈 (−20, 𝑡) = 𝑈 (20, 𝑡) = 0, 𝑁 (−20, 𝑡) = 𝑁 (20, 𝑡) = 0,

0 ≤ 𝑡 ≤ 𝑇,

𝑈 (𝑥, 0) =
√10 − √2

2
sech(√

1 + √5

2
𝑥)

⋅ exp[𝑖(√ 2

1 + √5
𝑥)] , −20 ≤ 𝑥 ≤ 20,

𝑁 (𝑥, 0) = −2sech2 (√
1 + √5

2
𝑥) , −20 ≤ 𝑥 ≤ 20.

(82)

The analytic solution of KGZ equations, which is derived in
[27], will be used in our computation for comparison. The
solution can be written as

𝑈 (𝑥, 𝑡) =
√10 − √2

2
sech(√

1 + √5

2
𝑥 − 𝑡)

⋅ exp[𝑖(√ 2

1 + √5
𝑥 − 𝑡)] ,

(83)

𝑁(𝑥, 𝑡) = −2sech2(√
1 + √5

2
𝑥 − 𝑡) . (84)
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Figure 1: |𝑈| and 𝑁 computed by Scheme Awith ℎ = 𝜏 = 0.1. Comparison between analytic solution and numerical solution at time 𝑇 = 1.
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Figure 2: |𝑈| and 𝑁 computed by Scheme B with ℎ = 0.1, 𝜏 = 0.05. Comparison between analytic solution and numerical solution at
time 𝑇 = 5.

In order to quantify the numerical results, we define the
“error” functions and “rate of convergence” as

𝑒 (ℎ, 𝜏) =
󵄩󵄩󵄩󵄩𝑒
𝑛󵄩󵄩󵄩󵄩∞ = sup

0≤𝑗≤𝐽

󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡
𝑛
) − 𝑈
𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨
,

rate
1
= log
2
(

𝑒 (ℎ, 𝜏)

𝑒 (ℎ/2, 𝜏/2)
) ,

(85)

𝜂 (ℎ, 𝜏) =
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩 = √ℎ

𝐽

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑈 (𝑥
𝑗
, 𝑡𝑛) − 𝑁𝑛

𝑗

󵄨󵄨󵄨󵄨󵄨

2

,

rate2 = log
2
(

𝜂 (ℎ, 𝜏)

𝜂 (ℎ/2, 𝜏/2)
) .

(86)

For the two iterative schemes, we use an error restrictor 𝜀 ≤

0.000001 to control the iterative procedures.
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Figure 3: Discrete energy 𝐸
𝑛 computed by Scheme A and Scheme B with ℎ = 0.05, 𝜏 = 0.05.

Table 1: Errors and rates of convergence for Scheme A with different ℎ and 𝜏 at time 𝑇 = 1.

(ℎ, 𝜏) 𝑒(ℎ, 𝜏) rate
1

𝜂(ℎ, 𝜏) rate
2

(0.2, 0.1) 1.1043𝑒 − 002 — 2.8775𝑒 − 002 —
(0.1, 0.05) 2.8652𝑒 − 003 1.95 7.4419𝑒 − 003 1.95
(0.05, 0.025) 7.2560𝑒 − 004 1.98 1.8886𝑒 − 003 1.98
(0.025, 0.0125) 1.8673𝑒 − 004 1.96 4.7767𝑒 − 004 1.98

Table 2: Errors and rates of convergence for Scheme B with different ℎ and 𝜏 at time 𝑇 = 5.

(ℎ, 𝜏) 𝑒(ℎ, 𝜏) rate
1

𝜂(ℎ, 𝜏) rate
2

(0.1, 0.1) 5.4233𝑒 − 002 — 0.1237 —
(0.05, 0.05) 1.4050𝑒 − 002 1.95 3.1279𝑒 − 002 1.98
(0.025, 0.025) 3.4925𝑒 − 003 2.00 7.7549𝑒 − 003 2.01
(0.0125, 0.0125) 8.0729𝑒 − 004 2.11 1.8386𝑒 − 003 2.08

Table 3: Error comparison for Scheme A and scheme in [6] with 𝜃 = 0.5 at time 𝑇 = 5.

Spatial step size Time step size Scheme A Scheme in [6]
𝑒(ℎ, 𝜏) × 10

2
𝜂(ℎ, 𝜏) × 10

2
𝑒(ℎ, 𝜏) × 10

2
𝜂(ℎ, 𝜏) × 10

2

ℎ = 0.1
𝜏 = 0.05 1.3527 3.8829 1.6527 5.5376
𝜏 = 0.025 0.4430 1.2845 1.1721 3.6144

ℎ = 0.05
𝜏 = 0.025 0.3390 0.9655 0.4148 1.3785
𝜏 = 0.0125 0.1096 0.3189 0.2960 0.9170

ℎ = 0.025 𝜏 = 0.0125 0.0849 0.2428 0.1081 0.3728

Table 4: Error comparison for Scheme B and Scheme I in [5] at time 𝑇 = 10.

Spatial step size Time step size Scheme A Scheme I in [5]
𝑒(ℎ, 𝜏) × 10

2
𝜂(ℎ, 𝜏) × 10

2
𝑒(ℎ, 𝜏) × 10

2
𝜂(ℎ, 𝜏) × 10

2

ℎ = 0.1 𝜏 = 0.01 0.9742 2.4407 2.0623 6.3507

ℎ = 0.05
𝜏 = 0.025 0.5894 1.8270 4.2819 8.0020
𝜏 = 0.0125 0.3483 0.5278 2.1097 4.1693

ℎ = 0.025
𝜏 = 0.025 0.4753 1.4006 4.3735 7.7397
𝜏 = 0.0125 0.1839 0.3526 2.1330 3.8573
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Firstly, in Figures 1 and 2, the solitary waves computed
by Scheme A and Scheme B are compared with the waves
of analytic solution, respectively. From (12) and (58), we
will see that the the boundary conditions discretization
produces no error in computation, so it is harmless to discrete
energy 𝐸

𝑛. The curves of discrete energy 𝐸
𝑛 obtained by the

two schemes are plotted in Figure 3. Secondly, Tables 1 and 2
give the errors and the rates of convergence for SchemeA and
Scheme B with various ℎ and 𝜏. Finally, errors produced by
our two schemes and the schemes in [5, 6] are compared in
Tables 3 and 4.

In Figures 1 and 2, it is obvious that the solitary waves
computed by Scheme A and Scheme B agree with the ones
computed by exact solutions quite well. Figure 3 shows that
both Schemes A and B possess satisfactory conservative
property. Tables 1 and 2 verify the second-order convergence
and good stability for the two schemes. Furthermore, Tables
3 and 4 show that our two schemes are more accurate than
schemes in [5, 6]. Therefore, it is clear that our two new
difference schemes are efficient and accurate for the studied
problem.

8. Conclusion

In this paper, we study the finite difference method for
the KGZ equations. We propose two difference schemes,
both of them are conservative on discrete energy law. The
two schemes are shown to possess second-order accu-
racy for 𝑈 in 𝐿

∞
norm and for 𝑁 in 𝐿

2
norm. Numerical

results demonstrate that the two schemes are accurate and
efficient. It is worth mentioning that our methods can be
directly extended to two dimensions and/or three dimen-
sions, but some new techniques are required to be used to
deal with the prior estimates.
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[7] F. Zhang, V. M. Pérez-Garćıa, and L. Vázquez, “Numerical sim-
ulation of nonlinear Schrödinger systems: a new conservative
scheme,” Applied Mathematics and Computation, vol. 71, no. 2-
3, pp. 165–177, 1995.

[8] S. Li and L. Vu-Quoc, “Finite difference calculus invariant
structure of a class of algorithms for the nonlinear Klein-
Gordon equation,” SIAM Journal on Numerical Analysis, vol. 32,
no. 6, pp. 1839–1875, 1995.

[9] Q. S. Chang and L. B. Xu, “A numerical method for a system
of generalized nonlinear Schrödinger equations,” Journal of
Computational Mathematics, vol. 4, no. 3, pp. 191–199, 1986.

[10] Q. Chang, E. Jia, and W. Sun, “Difference schemes for solving
the generalized nonlinear Schrödinger equation,” Journal of
Computational Physics, vol. 148, no. 2, pp. 397–415, 1999.

[11] T. Wang and L. Zhang, “Analysis of some new conservative
schemes for nonlinear Schrödinger equation with wave oper-
ator,” Applied Mathematics and Computation, vol. 182, no. 2, pp.
1780–1794, 2006.

[12] T. Wang, T. Nie, L. Zhang, and F. Chen, “Numerical simulation
of a nonlinearly coupled Schrödinger system: a linearly uncou-
pled finite difference scheme,” Mathematics and Computers in
Simulation, vol. 79, no. 3, pp. 607–621, 2008.

[13] L. Zhang and Q. Chang, “A conservative numerical scheme for
a class of nonlinear Schrödinger equation with wave operator,”
Applied Mathematics and Computation, vol. 145, no. 2-3, pp.
603–612, 2003.

[14] D. Furihata, “Finite-difference schemes for nonlinear wave
equation that inherit energy conservation property,” Journal of
Computational and Applied Mathematics, vol. 134, no. 1-2, pp.
37–57, 2001.

[15] Y. S. Wong, Q. Chang, and L. Gong, “An initial-boundary
value problem of a nonlinear Klein-Gordon equation,” Applied
Mathematics and Computation, vol. 84, no. 1, pp. 77–93, 1997.
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