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We investigate the wiretap channel in the presence of action-dependent states and noiseless feedback. Given the message to be
communicated, the transmitter chooses an action sequence that affects the formation of the channel states and then generates
the channel input sequence based on the state sequence, the message, and the noiseless feedback, where the noiseless feedback
is from the output of the main channel to the channel encoder. The main channel and the wiretap channel are two discrete
memoryless channels (DMCs), and they are connected with the legitimate receiver and the wiretapper, respectively. The transition
probability distribution of the main channel depends on the channel state. Measuring wiretapper’s uncertainty about the message
by equivocation, the capacity equivocation regions are provided both for the case where the channel inputs are allowed to depend
noncausally on the state sequence and the case where they are restricted to causal dependence. Furthermore, the secrecy capacities
for both cases are formulated, which provide the best transmission rate with perfect secrecy. The result is further explained via a
binary example.

1. Introduction

Equivocation was first introduced into channel coding by
Wyner in his study of wiretap channel [1], see Figure 1. It
is a kind of degraded broadcast channels. The object is to
transmit messages to the legitimate receiver, while keeping
the wiretapper as ignorant of the messages as possible.

After the publication of Wyner’s work, Csiszár and
Körner [2] investigated a more general situation: the broad-
cast channels with confidential messages, see Figure 2. The
model of [2] is to transmit confidential messages to receiver
1 at rate 𝑅

1
and common messages to both receivers at rate

𝑅
0
, while keeping receiver 2 as ignorant of the confidential

messages as possible. Measuring ignorance by equivocation,
a single-letter characterization of all the achievable triples
(𝑅

1
, 𝑅

𝑒
, 𝑅

0
) was provided in [2], where 𝑅

𝑒
is the second

receiver’s equivocation to the confidentialmessages.Note that
the model of [2] is also a generalization of [3], where no
confidentiality condition is imposed. In addition, Merhav [4]
studied a specified wiretap channel and obtained the capacity

region, where both the legitimate receiver and the wiretapper
have access to some leaked symbols from the source, but the
channels for thewiretapper aremore noisy than the legitimate
receiver, which shares a secret key with the encoder.

In communication systems there is often a feedback link
from the receiver to the transmitter, for example, the two-
way channels for telephone connections. It is well known that
feedback does not increase the capacity of discrete memo-
ryless channel (DMC). However, does the feedback increase
the capacity region of the wiretap channel? In order to solve
this problem, Ahlswede and Cai studied the general wiretap
channel (the wiretap channel does not need to be degraded)
with noiseless feedback from the legitimate receiver to the
channel encoder [5] (see Figure 3), and both upper and lower
bounds of the secrecy capacity were provided. Specifically, for
the degraded case, they showed that the secrecy capacity is
larger than that of Wyner’s wiretap channel (without feed-
back). In the achievability proof, Ahlswede and Cai [5] used
the noiseless feedback as a secret key shared by the transmitter
and the legitimate receiver, while the wiretapper had no
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Figure 1: Wiretap channel.
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Figure 3: The general wiretap channel with noiseless feedback.

additional knowledge about the key except his own received
symbols. Based on the work of [5], Dai et al. [6] studied
a special case of the general wiretap channel with noiseless
feedback and found that the noiseless feedback enhances the
secrecy capacity of the nondegradedwiretap channel. Besides
Ahlswede and Cai’s work, the wiretap channel with noisy
feedback was studied in [7], and the wiretap channel with
secure rate-limited feedback was studied in [8], and both of
them focused on bounds of the secrecy capacity. Since the
feedback in the model of wiretap channel is often used as a
shared secret key, the techniques used in the secret sharing
schemeplay an important role in the construction of the prac-
tical secure communication systems, see [9–11].

Communication through state-dependent channels, with
states known at the transmitter, was first investigated by
Shannon [12] in 1958. In [12], the capacity of the discrete
memoryless channel with causal (past and current) channel
state information at the encoderwas totally determined. After
that, in order to solve the problem of coding for a computer
memory with defective cells, Kuznecov and Cybakov [13]
considered a channel in the presence of noncausal channel
state information at the transmitter. They provided some
coding techniques without the determination of the capacity.

The capacity was found in 1980 by Gel’efand and Pinsker [14].
Furthermore, Costa [15] investigated a power-constrained
additive noise channel, where part of the noise is known
at the transmitter as side information. This channel is also
called dirty paper channel. The assumption in these seminar
papers, as well as in the work on communication with state-
dependent channels that followed, is that the channel states
are generated by nature and cannot be affected or controlled
by the communication system.

In 2010, Weissman [16] revisited the above problem
setting for the case where the transmitter can take actions
that affect the formation of the states, see Figure 4. Specifi-
cally, Weissman considered a communication system where
encoding is in two parts: given the message, an action
sequence is created. The actions affect the formation of the
channel states, which are accessible to the transmitter when
producing the channel input sequence. The capacity of this
model is totally determined both for the case where the
channel inputs are allowed to depend noncausally on the state
sequence and the case where they are restricted to causal
dependence. Meanwhile, Weissman [16] found that the feed-
back from the channel output to the channel encoder can-
not increase the channel capacity. This framework captures
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Figure 5: Wiretap channel with noncausal channel state information.

various new channel coding scenarios that may arise natu-
rally in recording for magnetic storage devices or coding for
computer memories with defects.

Inspired by the above works, Mitrpant et al. [17] studied
the transmission of confidential messages through the chan-
nels with channel state information (CSI). In [17], an inner
bound on the capacity-equivocation region was provided for
the Gaussian wiretap channel with CSI. Furthermore, Chen
and Vinck [18] investigated the discrete memoryless wiretap
channel with noncausal CSI (see Figure 5) and also provided
an inner bound on the capacity-equivocation region. Note
that the coding scheme of [18] is a combination of those in
[1, 14]. Based on the work of [18], Dai and Luo [19] provided
an outer bound on the wiretap channel with noncausal CSI
and determined the capacity-equivocation region for the
memoryless case.

In this paper, we study the wiretap channel in the pres-
ence of action-dependent states and noiseless feedback, see
Figure 6. This work is inspired by the wiretap channel with
CSI [18], the channel with action-dependent CSI [16], and the
wiretap channel with noiseless feedback [5]. The motivation
of this work is to investigate the transmission of confidential
messages through the channel with action-dependent CSI
and noiseless feedback.

More concretely, in Figure 6, the transmitted message
𝑊 is encoded as an action sequence 𝐴

𝑁, and 𝐴
𝑁 is the

input of a discrete memoryless channel (DMC). The output
of this DMC is the channel state sequence 𝑆𝑁. The main
channel is a DMCwith inputs𝑋𝑁 and 𝑆𝑁 and output𝑌𝑁.The
wiretap channel is also a DMCwith input𝑌𝑁 and output𝑍𝑁.
Moreover, there exists a noiseless feedback from the output of
themain channel to the channel encoder; that is, the inputs of
the channel encoder are the transmitted message𝑊, the state
sequence 𝑆𝑁, and the noiseless feedback, while the output is
𝑋

𝑁. Since the action-dependent state captures various new
coding scenarios for channels with a rewrite option that may
arise naturally in storage for computermemories with defects

or inmagnetic recording, it is natural to ask the following two
questions.

(i) How about the security of these channelmodels in the
presence of a wiretapper?

(ii) What can the noiseless feedback do in the model of
wiretap channel with action-dependent CSI?

Measuring wiretapper’s uncertainty about the transmitted
message by equivocation, the capacity-equivocation regions
of the model of Figure 6 are provided both for the case where
the channel input is allowed to depend noncausally on the
state sequence and the case where it is restricted to causal
dependence.

The contribution of this paper is as follows.

(i) Comparedwith the existingmodel of wiretap channel
with side information [18] (see Figure 5), the channel
state information in [18] is a special case of that in our
newmodel; that is, themodel of [18] is included in the
model of Figure 6. Therefore, our result generalizes
the result of [18].

(ii) Our new model also extends the model of Figure 4
by considering an additional secrecy constraint, and
therefore our result also generalizes the result of [16].

In this paper, random variab1es, sample values, and
alphabets are denoted by capital letters, lowercase, letters
and calligraphic letters, respectively. A similar convention is
applied to the random vectors and their sample values. For
example, 𝑈𝑁 denotes a random 𝑁-vector (𝑈

1
, . . . , 𝑈

𝑁
), and

𝑢
𝑁
= (𝑢

1
, . . . , 𝑢

𝑁
) is a specific vector value inU𝑁, that is the,

𝑁th Cartesian power of U. 𝑈𝑁

𝑖
denotes a random 𝑁 − 𝑖 + 1-

vector (𝑈
𝑖
, . . . , 𝑈

𝑁
), and 𝑢𝑁

𝑖
= (𝑢

𝑖
, . . . , 𝑢

𝑁
) is a specific vector

value inU𝑁

𝑖
. Let 𝑝

𝑉
(𝑣) denote the probability mass function

Pr{𝑉 = 𝑣}. Throughout the paper, the logarithmic function is
taken to the base 2.
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Figure 6: Wiretap channel with action-dependent channel state information and noiseless feedback.

The remainder of this paper is organized as follows. In
Section 2, we present the basic definitions and themain result
on the capacity-equivocation region of wiretap channel with
action-dependent channel state information and noiseless
feedback. In Section 3, we provide a binary example of the
model of Figure 6. Final conclusions are presented in Sec-
tion 4.

2. Notations, Definitions, and the Main Results

In this section, the model of Figure 6 is considered into two
parts. The model of Figure 6 with noncausal channel state
information is described in Section 2.1, and the causal case
is described in Section 2.2, see the following.

2.1.TheModel of Figure 6 with Noncausal Channel State Infor-
mation. In this section, a description of the wiretap channel
with noncausal action-dependent channel state information
is given by Definition 1 to Definition 5. The capacity-equivo-
cation region C𝑛 composed of all achievable (𝑅, 𝑅

𝑒
) pairs

is given in Theorem 6, where the achievable (𝑅, 𝑅
𝑒
) pair is

defined in Definition 5.

Definition 1 (action encoder). Themessage𝑊 takes values in
W, and it is uniformly distributed over its range. The action
encoder is a deterministic mapping:

𝑓
𝑁

1
: W 󳨀→ A

𝑁
. (1)

The input of the action encoder is𝑊, while the output is 𝐴𝑁.

The channel state sequence 𝑆𝑁 is generated by a DMC
with input 𝐴𝑁 and output 𝑆𝑁. The transition probability dis-
tribution is given by

𝑝
𝑆
𝑁
|𝐴
𝑁 (𝑠

𝑁
| 𝑎

𝑁
) =

𝑁

∏

𝑖=1

𝑝
𝑆𝑖|𝐴𝑖

(𝑠
𝑖
| 𝑎

𝑖
) . (2)

Note that the components of the state sequence 𝑆𝑁 may not
be i.i.d. random variables, and this is due to the fact that 𝐴𝑁

is not i.i.d. generated. The transmission rate of the message is
log ‖W‖/𝑁.

Definition 2 (channel encoder and the main channel). The
main channel is a DMC with finite input alphabet X × S,
finite output alphabet Y, and transition probability 𝑄

𝑀
(𝑦 |

𝑥, 𝑠), where 𝑥 ∈ X, 𝑠 ∈ S, 𝑦 ∈ Y. 𝑄
𝑀
(𝑦

𝑁
| 𝑥

𝑁
, 𝑠

𝑁
) =

∏
𝑁

𝑛=1
𝑄

𝑀
(𝑦

𝑛
| 𝑥

𝑛
, 𝑠

𝑛
). The inputs of the main channel are 𝑋𝑁

and 𝑆𝑁, while the output is 𝑌𝑁.

There is a noiseless feedback from the output of the main
channel to the channel encoder. At the 𝑖th time, the feedback
𝑌

𝑖−1 (where 2 ≤ 𝑖 ≤ 𝑁 and 𝑌
𝑖−1 takes values in Y𝑖−1) is

the previous 𝑖 − 1 time output of the main channel. Since the
channel encoder knows the state sequence 𝑠𝑁 in a noncausal
manner, at the 𝑖th time, the inputs of the channel encoder
are 𝑊, 𝑌𝑖−1, and 𝑆𝑁, while the output is 𝑋

𝑖
; that is, the 𝑖th

time channel encoder is a conditional probability 𝑓𝑁

2,𝑖
(𝑥

𝑖
| 𝑤,

𝑠
𝑁
, 𝑦

𝑖−1
) that the message 𝑤, the feedback 𝑦

𝑖−1, and the
channel state sequence 𝑠𝑁 are encoded as the 𝑖th time channel
input 𝑥

𝑖
.

Definition 3 (wiretap channel). The wiretap channel is also a
DMC with finite input alphabetY, finite output alphabetZ,
and transition probability 𝑄

𝑊
(𝑧 | 𝑦), where 𝑦 ∈ Y, 𝑧 ∈ Z.

The input and output of the wiretap channel are 𝑌𝑁 and 𝑍𝑁,
respectively. The equivocation to the wiretapper is defined as

Δ =

𝐻(𝑊 | 𝑍
𝑁
)

𝑁
. (3)

The cascade of the main channel and the wiretap channel is
another DMC with transition probability:

𝑄
𝑀𝑊

(𝑧 | 𝑥, 𝑠) = ∑

𝑦∈Y

𝑄
𝑊
(𝑧 | 𝑦)𝑄

𝑀
(𝑦 | 𝑥, 𝑠) . (4)

Note that 𝑊 → 𝐴
𝑁

→ (𝑋
𝑁
, 𝑆

𝑁
) → 𝑌

𝑁
→ 𝑍

𝑁 is a
Markov chain in the model of Figure 6.

Definition 4 (decoder). The decoder for the legitimate recei-
ver is a mapping 𝑓

𝐷
: Y𝑁

→ W, with input 𝑌𝑁 and output
𝑊̂. Let 𝑃

𝑒
be the error probability of the receiver, and it is

defined as Pr{𝑊 ̸= 𝑊̂}.

Definition 5 (achievable (𝑅, 𝑅
𝑒
) pair in themodel of Figure 6).

A pair (𝑅, 𝑅
𝑒
) (where 𝑅, 𝑅

𝑒
> 0) is called achievable if, for any
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𝜖 > 0 (where 𝜖 is an arbitrary small positive real number and
𝜖 → 0), there exist channel encoders decoders (𝑁, 𝑃

𝑒
) such

that

lim
𝑁→∞

log ‖W‖

𝑁
= 𝑅, lim

𝑁→∞

Δ ≥ 𝑅
𝑒
, 𝑃

𝑒
≤ 𝜖. (5)

The capacity-equivocation regionR𝑛 is a set composed of
all achievable (𝑅, 𝑅

𝑒
) pairs, and it is characterized by the fol-

lowing Theorem 6. The proof of Theorem 6 is in Appendices
A and B.

Theorem 6. A single-letter characterization of the region R𝑛

is as follows:

R
(𝑛)

= {(𝑅, 𝑅
𝑒
) : 0 ≤ 𝑅

𝑒
≤ 𝑅,

𝑅 ≤ 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) ,

𝑅
𝑒
≤ 𝐻 (𝑌 | 𝑍) ,

𝑅
𝑒
≤ 𝐻 (𝐴 | 𝑍)} ,

(6)

where 𝑝
𝑈𝐴𝑆𝑋𝑌𝑍

(𝑢, 𝑎, 𝑠, 𝑥, 𝑦, 𝑧) = 𝑝
𝑍|𝑌

(𝑧 | 𝑦)𝑝
𝑌|𝑋,𝑆

(𝑦 | 𝑥, 𝑠)

𝑝
𝑈𝐴𝑋𝑆

(𝑢, 𝑎, 𝑥, 𝑠), which implies that (𝐴, 𝑈) → (𝑋, 𝑆) →

𝑌 → 𝑍.

Remark 7. There are some notes on Theorem 6, see the fol-
lowing.

(i) The region R(𝑛) is convex, and the proof is directly
obtained by introducing a time-sharing random vari-
able intoTheorem6, and, therefore, we omit the proof
here.

(ii) The range of the random variable 𝑈 satisfies

‖U‖ ≤ ‖X‖ ‖A‖ ‖S‖ + 1. (7)

The proof is in Appendix C.
(iii) Without the equivocation parameter, the capacity of

the main channel with feedback is given by

𝐶
𝑀

= max
𝑝𝑋|𝑈,𝑆(𝑥|𝑢,𝑠)𝑝𝑈|𝐴,𝑆(𝑢|𝑎,𝑠)𝑝𝐴(𝑎)

(𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴)) .
(8)

The formula (8) is proved by Weissman [16], and it is
omitted here.

(iv) Secrecy capacity: the points inR(𝑛) for which 𝑅
𝑒
= 𝑅

are of considerable interest, which imply the perfect
secrecy𝐻(𝑊) = 𝐻(𝑊 | 𝑍

𝑁
).

Definition 8 (the secrecy capacity 𝐶(𝑛)

𝑠
). The secrecy capacity

𝐶
(𝑛)

𝑠
of the model of Figure 6 with noncausal channel state

information is denoted by

𝐶
(𝑛)

𝑠
= max

(𝑅,𝑅𝑒=𝑅)∈R
(𝑛)

𝑅. (9)

Clearly, we can easily determine the secrecy capacity𝐶𝑛

𝑠
of the

model of Figure 6 with noncausal channel state information
by

𝐶
𝑛

𝑠
= max min {𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) ,

𝐻 (𝑌 | 𝑍) ,𝐻 (𝐴 | 𝑍)} .

(10)

Proof of (10). Substituting 𝑅
𝑒
= 𝑅 into the region R(𝑛) in

Theorem 6, we have

𝑅 ≤ 𝐻 (𝑌 | 𝑍) ,

𝑅 ≤ 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) ,

𝑅 ≤ 𝐻 (𝐴 | 𝑍) .

(11)

Therefore, the secrecy capacity 𝐶(𝑛)

𝑠
= max

(𝑅,𝑅𝑒=𝑅)∈R
(𝑛)𝑅 =

max min{𝐼(𝑈; 𝑌) − 𝐼(𝑈; 𝑆 | 𝐴),𝐻(𝑌 | 𝑍),𝐻(𝐴 | 𝑍)}. Thus
the proof is completed.

2.2. The Model of Figure 6 with Causal Channel State Infor-
mation. The model of Figure 6 with causal channel state
information is similar to the model with noncausal channel
state information in Section 2.1, except that the state sequence
𝑆
𝑁 in Definition 1 is known to the channel encoder in a causal
manner, that is, at the 𝑖th time (1 ≤ 𝑖 ≤ 𝑁), the output of the
encoder 𝑥

𝑖
= 𝑓

2,𝑖
(𝑤, 𝑠

𝑖
, 𝑦

𝑖−1
), where 𝑠𝑖 = (𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑖
) and𝑓

2,𝑖

is the probability that the message 𝑤, the feedback 𝑦𝑖−1, and
the state 𝑠𝑖 are encoded as the channel input 𝑥

𝑖
at time 𝑖.

The capacity-equivocation region R𝑐 for the model of
Figure 6 with causal channel state information is charac-
terized by the following Theorem 9, and it is proved in
Appendices D and E.

Theorem 9. A single-letter characterization of the region R𝑐

is as follows:

R
(𝑐)
= {(𝑅, 𝑅

𝑒
) : 0 ≤ 𝑅

𝑒
≤ 𝑅,

𝑅 ≤ 𝐼 (𝑈; 𝑌) ,

𝑅
𝑒
≤ 𝐻 (𝑌 | 𝑍) ,

𝑅
𝑒
≤ 𝐻 (𝐴 | 𝑍)} ,

(12)

where 𝑝
𝑈𝐴𝑆𝑋𝑌𝑍

(𝑢, 𝑎, 𝑠, 𝑥, 𝑦, 𝑧) = 𝑝
𝑍|𝑌

(𝑧 | 𝑦)𝑝
𝑌|𝑋,𝑆

(𝑦 |

𝑥, 𝑠)𝑝
𝑈𝐴𝑋𝑆

(𝑢, 𝑎, 𝑥, 𝑠), which implies that (𝐴, 𝑈) → (𝑋, 𝑆) →

𝑌 → 𝑍.

Remark 10. There are some notes on Theorem 9, see the
following.

(i) The regionR(𝑐) is convex.
(ii) The range of the random variable 𝑈 satisfies

‖U‖ ≤ ‖X‖ ‖A‖ ‖S‖ . (13)

The proof is similar to that in Theorem 6, and it is
omitted here.
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(iii) Without the equivocation parameter, the capacity of
the main channel with feedback is given by

𝐶
∗

𝑀
= max

𝑝𝑋|𝑈,𝑆(𝑥|𝑢,𝑠)𝑝𝑈|𝐴,𝑆(𝑢|𝑎,𝑠)𝑝𝐴(𝑎)

𝐼 (𝑈; 𝑌) . (14)

The formula (14) is proved byWeissman [16], and it is
omitted here.

(iv) Secrecy capacity: the points inR(𝑐) for which 𝑅
𝑒
= 𝑅

are of considerable interest, which imply the perfect
secrecy𝐻(𝑊) = 𝐻(𝑊 | 𝑍

𝑁
).

Definition 11 (the secrecy capacity 𝐶(𝑐)

𝑠
). The secrecy capacity

𝐶
(𝑐)

𝑠
of the model of Figure 6 with causal channel state infor-

mation is denoted by

𝐶
(𝑐)

𝑠
= max

(𝑅,𝑅𝑒=𝑅)∈R
(𝑐)

𝑅. (15)

Clearly, we can easily determine the secrecy capacity 𝐶(𝑐)

𝑠
of

the model of Figure 6 with causal channel state information
by

𝐶
(𝑐)

𝑠
= max min {𝐼 (𝑈; 𝑌) ,𝐻 (𝑌 | 𝑍) ,𝐻 (𝐴 | 𝑍)} . (16)

Proof of (16). Substituting 𝑅
𝑒
= 𝑅 into the region R(𝑐) in

Theorem 9, we have

𝑅 ≤ 𝐻 (𝑌 | 𝑍) ,

𝑅 ≤ 𝐼 (𝑈; 𝑌) ,

𝑅 ≤ 𝐻 (𝐴 | 𝑍) .

(17)

Therefore, the secrecy capacity 𝐶(𝑐)

𝑠
= max

(𝑅,𝑅𝑒=𝑅)∈R
(𝑐)𝑅 =

max min{𝐼(𝑈; 𝑌),𝐻(𝑌 | 𝑍),𝐻(𝐴 | 𝑍)}. Thus the proof is
completed.

3. A Binary Example for the Model of Figure 6
with Causal Channel State Information

In this section, we calculate the secrecy capacity of a special
case of the model of Figure 6 with causal channel state infor-
mation.

Suppose that the channel state information 𝑆𝑁 is available
at the channel encoder in a casual manner. Meanwhile, the
random variables 𝑈, 𝐴, 𝑋, 𝑆, 𝑌, and 𝑍 take values in {0, 1},
and the transition probability of the main channel is defined
as follows.

When 𝑠 = 0,

𝑝
𝑌|𝑋,𝑆

(𝑦 | 𝑥, 𝑠 = 0) = {
1 − 𝑝, if 𝑦 = 𝑥,
𝑝, otherwise.

(18)

When 𝑠 = 1,

𝑝
𝑌|𝑋,𝑆

(𝑦 | 𝑥, 𝑠 = 1) = {
𝑝, if 𝑦 = 𝑥,
1 − 𝑝, otherwise.

(19)

Note that here 0 ≤ 𝑝 ≤ 1.

The wiretap channel is a (binary symmetric channel) BSC
with crossover probability 𝑞 (0 ≤ 𝑞 ≤ 1/2), that is,

𝑝
𝑍|𝑌

(𝑧 | 𝑦) = {
1 − 𝑞, if 𝑦 = 𝑥,
𝑞, otherwise.

(20)

The channel for generating the state sequence 𝑆𝑁 is a BSC
with crossover probability 𝑟 (0 ≤ 𝑟 ≤ 1), that is,

𝑝
𝑆|𝐴

(𝑠 | 𝑎) = {
1 − 𝑟, if 𝑦 = 𝑥,
𝑟, otherwise.

(21)

FromRemark 10we know that the secrecy capacity for the
causal case is given by

𝐶
𝑐

𝑠
= max min {𝐼 (𝑈; 𝑌) ,𝐻 (𝑌 | 𝑍) ,𝐻 (𝐴 | 𝑍)} . (22)

Note that max 𝐼(𝑈; 𝑌), max𝐻(𝐴 | 𝑍), and max𝐻(𝑌 | 𝑍) are
achieved if 𝐴 is a function of 𝑈 and 𝑋 is a function of 𝑈 and
𝑆, and this is similar to the argument in [16]. Define 𝑎 = 𝑔(𝑢)
and 𝑥 = 𝑓(𝑢, 𝑠), then (22) can be written as

𝐶
𝑐

𝑠
= max

𝑓,𝑔,𝑝𝑈(𝑢)

min {𝐼 (𝑈; 𝑌) ,𝐻 (𝐴 | 𝑍) ,𝐻 (𝑌 | 𝑍)} , (23)

and this is because the joint probability distribution
𝑝
𝐴𝑈𝑆𝑋𝑌𝑍

(𝑎, 𝑢, 𝑠, 𝑥, 𝑦, 𝑧) can be calculated by

𝑝
𝐴𝑈𝑆𝑋𝑌𝑍

(𝑎, 𝑢, 𝑠, 𝑥, 𝑦, 𝑧)

= 𝑝
𝑍|𝑌

(𝑧 | 𝑦) 𝑝
𝑌|𝑋,𝑆

(𝑦 | 𝑥, 𝑠) 1
𝑥=𝑓(𝑢,𝑠)

𝑝
𝑆|𝐴

× (𝑠 | 𝑎) 1
𝑎=𝑔(𝑢)

𝑝
𝑈
(𝑢) .

(24)

Since 𝐴 is a function of 𝑈, we have

𝐻(𝐴 | 𝑍) = 𝐻 (𝑈 | 𝑍) . (25)

Then, it is easy to see that

max
𝑓,𝑔,𝑝𝑈(𝑢)

min {𝐼 (𝑈; 𝑌) ,𝐻 (𝐴 | 𝑍) ,𝐻 (𝑌 | 𝑍)}

= max
𝑓,𝑔,𝑝𝑈(𝑢)

max
𝑓,𝑔,𝑝𝑈(𝑢)

min {𝐼 (𝑈; 𝑌) ,𝐻 (𝑈 | 𝑍) ,𝐻 (𝑌 | 𝑍)} .

(26)

Now it remains to calculate the characters max
𝑓,𝑔,𝑝𝑈(𝑢)

𝐻(𝑌 | 𝑍), max
𝑓,𝑔,𝑝𝑈(𝑢)

𝐻(𝑈 | 𝑍), and max
𝑓,𝑔,𝑝𝑈(𝑢)

𝐼(𝑈; 𝑌); see
the remaining of this section.

Let𝑈 take values in {0, 1}. The probability of𝑈 is defined
as follows: 𝑝

𝑈
(0) = 𝛼 and 𝑝

𝑈
(1) = 1 − 𝛼.
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In addition, there are 16 kinds of 𝑓 and 4 kinds of 𝑔.
Define the following:

𝑓
(1)
(𝑢, 𝑠) : {

00 󳨀→ 0, 01 󳨀→ 0,

10 󳨀→ 0, 11 󳨀→ 0,

𝑓
(2)
(𝑢, 𝑠) : {

00 󳨀→ 0, 01 󳨀→ 0,

10 󳨀→ 0, 11 󳨀→ 1,

𝑓
(3)
(𝑢, 𝑠) : {

00 󳨀→ 0, 01 󳨀→ 0,

10 󳨀→ 1, 11 󳨀→ 0,

𝑓
(4)
(𝑢, 𝑠) : {

00 󳨀→ 0, 01 󳨀→ 0,

10 󳨀→ 1, 11 󳨀→ 1,

𝑓
(5)
(𝑢, 𝑠) : {

00 󳨀→ 0, 01 󳨀→ 1,

10 󳨀→ 0, 11 󳨀→ 0,

𝑓
(6)
(𝑢, 𝑠) : {

00 󳨀→ 0, 01 󳨀→ 1,

10 󳨀→ 0, 11 󳨀→ 1,

𝑓
(7)
(𝑢, 𝑠) : {

00 󳨀→ 0, 01 󳨀→ 1,

10 󳨀→ 1, 11 󳨀→ 0,

𝑓
(8)
(𝑢, 𝑠) : {

00 󳨀→ 0, 01 󳨀→ 1,

10 󳨀→ 1, 11 󳨀→ 1,

𝑓
(9)
(𝑢, 𝑠) : {

00 󳨀→ 1, 01 󳨀→ 0,

10 󳨀→ 0, 11 󳨀→ 0,

𝑓
(10)

(𝑢, 𝑠) : {
00 󳨀→ 1, 01 󳨀→ 0,

10 󳨀→ 0, 11 󳨀→ 1,

𝑓
(11)

(𝑢, 𝑠) : {
00 󳨀→ 1, 01 󳨀→ 0,

10 󳨀→ 1, 11 󳨀→ 0,

𝑓
(12)

(𝑢, 𝑠) : {
00 󳨀→ 1, 01 󳨀→ 0,

10 󳨀→ 1, 11 󳨀→ 1,

𝑓
(13)

(𝑢, 𝑠) : {
00 󳨀→ 1, 01 󳨀→ 1,

10 󳨀→ 0, 11 󳨀→ 0,

𝑓
(14)

(𝑢, 𝑠) : {
00 󳨀→ 1, 01 󳨀→ 1,

10 󳨀→ 0, 11 󳨀→ 1,

𝑓
(15)

(𝑢, 𝑠) : {
00 󳨀→ 1, 01 󳨀→ 1,

10 󳨀→ 1, 11 󳨀→ 0,

𝑓
(16)

(𝑢, 𝑠) : {
00 󳨀→ 1, 01 󳨀→ 1,

10 󳨀→ 1, 11 󳨀→ 1,

𝑔
(1)
(𝑢) : {

0 󳨀→ 0,

1 󳨀→ 0,
𝑔
(2)
(𝑢) : {

0 󳨀→ 0,

1 󳨀→ 1,

𝑔
(3)
(𝑢) : {

0 󳨀→ 1,

1 󳨀→ 0,
𝑔
(4)
(𝑢) : {

0 󳨀→ 1,

1 󳨀→ 1.

(27)

The character 𝐼(𝑈; 𝑌) depends on the joint probability mass
functions 𝑝

𝑈𝑌
(𝑢, 𝑦), and we have

𝑝
𝑈𝑌

(𝑢, 𝑦) = ∑

𝑥,𝑠,𝑎

𝑝
𝑈𝑌𝑋𝑆𝐴

(𝑢, 𝑦, 𝑥, 𝑠, 𝑎)

= ∑

𝑥,𝑠,𝑎

𝑝
𝑌|𝑋𝑆

(𝑦 | 𝑥, 𝑠) 𝑝
𝑋|𝑈,𝑆

(𝑥 | 𝑢, 𝑠) 𝑝
𝑈
(𝑢)

× 𝑝
𝐴|𝑈

(𝑎 | 𝑢) 𝑝
𝑆|𝐴

(𝑠 | 𝑎) .

(28)

The character𝐻(𝑈 | 𝑍)depends on the joint probabilitymass
functions 𝑝

𝑈𝑍
(𝑢, 𝑧), and we have

𝑝
𝑈𝑍

(𝑢, 𝑧) = ∑

𝑦

𝑝
𝑈𝑌𝑍

(𝑢, 𝑦, 𝑧)

= ∑

𝑦

𝑝
𝑍|𝑌

(𝑧 | 𝑦) 𝑝
𝑈,𝑌

(𝑢, 𝑦) .

(29)

The character𝐻(𝑌 | 𝑍) depends on the joint probability
mass functions 𝑝

𝑌𝑍
(𝑢, 𝑧), and we have

𝑝
𝑌𝑍
(𝑦, 𝑧) = ∑

𝑢

𝑝
𝑈𝑌𝑍

(𝑢, 𝑦, 𝑧)

=
(𝑎)
∑

𝑢

𝑝
𝑍|𝑌

(𝑧 | 𝑦) 𝑝
𝑈,𝑌

(𝑢, 𝑦) ,

(30)

where (𝑎) is from 𝑈 → 𝑌 → 𝑍.
By choosing the above 𝑓, 𝑔, and 𝛼, we find that

max
𝑓,𝑔,𝑝𝑈(𝑢)

𝐻(𝑈 | 𝑍) = ℎ (𝑝 + 𝑞 − 2𝑝𝑞) , (31)

where ℎ(𝑝+𝑞−2𝑝𝑞) = (𝑝+𝑞−2𝑝𝑞) log(1/(𝑝+𝑞−2𝑝𝑞))+(1−
𝑝−𝑞+2𝑝𝑞) log(1/(1−𝑝−𝑞+2𝑝𝑞)). Moreover, ℎ(𝑝+𝑞−2𝑝𝑞)
is achieved when 𝑓 = 𝑓

(7), 𝑔 = 𝑔(2) and 𝛼 = 1/2.
On the other hand,

max
𝑓,𝑔,𝑝𝑈(𝑢)

𝐼 (𝑈; 𝑌) = 1 − ℎ (𝑝) , (32)

and “=” is achieved if 𝑓 = 𝑓
(7), 𝑔 = 𝑔(2) and 𝛼 = 1/2.

Moreover,

max
𝑓,𝑔,𝑝𝑈(𝑢)

𝐻(𝑌 | 𝑍) = ℎ (𝑞) , (33)

and “=” is achieved if 𝑓 = 𝑓
(7), 𝑔 = 𝑔(2) and 𝛼 = 1/2.

Therefore, the secrecy capacity for the causal case is given
by

𝐶
𝑐

𝑠
= min {ℎ (𝑝 + 𝑞 − 2𝑝𝑞) , 1 − ℎ (𝑝) , ℎ (𝑞)} . (34)

Figures 7, 8, and 9 give the secrecy capacity of the model
of Figure 6 with causal channel state information for several
values of 𝑞. It is easy to see that the secrecy capacity 𝐶𝑐

𝑠
is

increasing while 𝑞 is getting larger.

4. Conclusion

In this paper, we study the model of the wiretap channel with
action-dependent channel state information and noiseless
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Figure 7: When 𝑞 = 0.2, the secrecy capacity of the model of
Figure 6 is with causal channel state information.
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Figure 8: When 𝑞 = 0.1, the secrecy capacity of the model of
Figure 6 is with causal channel state information.

feedback. The capacity-equivocation regions are provided
both for the case where the channel inputs are allowed to
depend noncausally on the state sequence and the case where
they are restricted to causal dependence. Furthermore, the
secrecy capacities for both cases are formulated, which pro-
vide the best transmission rate with perfect secrecy.The result
is further explained via a binary example.

The contribution of this paper is as follows.

(i) Comparedwith the existingmodel of wiretap channel
with side information [18] (see Figure 5), the channel
state information in [18] is a special case of that in our
newmodel; that is, themodel of [18] is included in the
model of Figure 6. Therefore, our result generalizes
the result of [18].

(ii) Our new model also extends the model of Figure 4
by considering an additional secrecy constraint, and
therefore our result also generalizes the result of [16].

Appendices

A. Proof of the Direct Part of Theorem 6

In this section, we will show that any pair (𝑅, 𝑅
𝑒
) ∈ R𝑛

is achievable. Gel’efand-Pinsker’s binning, block Markov
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Figure 9: When 𝑞 = 0.02, the secrecy capacity of the model of
Figure 6 is with causal channel state information.

coding, andAhlswede-Cai’s secret key on the feedback system
are used in the construction of the code book.

Now the remainder of this section is organized as follows.
The code construction is in Appendix A.1. The proof of
achievability is given in Appendix A.2.

A.1. Code Construction. Since 𝑅
𝑒
≤ 𝐻(𝑌 | 𝑍), 𝑅

𝑒
≤ 𝐻(𝐴 | 𝑍)

and𝑅
𝑒
≤ 𝑅 ≤ 𝐼(𝑈; 𝑌)−𝐼(𝑈; 𝑆 | 𝐴), it is sufficient to show that

the pair (𝑅, 𝑅
𝑒
= min{𝐻(𝑌 | 𝑍),𝐻(𝐴 | 𝑍), 𝐼(𝑈; 𝑌) − 𝐼(𝑈; 𝑆 |

𝐴)} is achievable, and note that this implies that 𝑅 ≥ 𝑅
𝑒
=

min{𝐻(𝑌 | 𝑍),𝐻(𝐴 | 𝑍), 𝐼(𝑈; 𝑌) − 𝐼(𝑈; 𝑆 | 𝐴)}.
The construction of the code and the proof of achievabil-

ity are considered into two cases.

(i) Case 1: 𝐼(𝑈; 𝑌) − 𝐼(𝑈; 𝑆 | 𝐴) ≥ min{𝐻(𝑌 | 𝑍),𝐻(𝐴 |

𝑍)}.

(ii) Case 2: 𝐼(𝑈; 𝑌) − 𝐼(𝑈; 𝑆 | 𝐴) ≤ min{𝐻(𝑌 | 𝑍),𝐻(𝐴 |

𝑍)}.

We use the block Markov coding method. The random
vectors 𝑈𝑁, 𝐴𝑁, 𝑆𝑁, 𝑋𝑁, 𝑌𝑁, and 𝑍𝑁 consist of 𝑛 blocks of
length𝑁.Themessage for 𝑛 blocks is𝑊𝑛

≜ (𝑊
2
,𝑊

3
, . . . ,𝑊

𝑛
),

where 𝑊
𝑖
(2 ≤ 𝑖 ≤ 𝑛) are i.i.d. random variables uniformly

distributed over W. Note that in the first block, there is no
𝑊

1
.
Let 𝑍

𝑖
(1 ≤ 𝑖 ≤ 𝑛) be the output of the wiretap

channel for block 𝑖, 𝑍𝑛
= (𝑍

1
, . . . , 𝑍

𝑛
), 𝑍𝑗

= (𝑍
1
, . . . , 𝑍

𝑗−1
,

𝑍
𝑗+1
, . . . , 𝑍

𝑛
) (1 ≤ 𝑗 ≤ 𝑛). Similarly, 𝑌𝑛

= (𝑌̃
1
, . . . , 𝑌̃

𝑛
), and

𝑌̃
𝑖
(1 ≤ 𝑖 ≤ 𝑛) is the output of the main channel for block 𝑖.

The specific values of the above random vectors are denoted
by lowercase letters.

(i) Code Construction for Case 1. Given a pair (𝑅, 𝑅
𝑒
), choose

a joint probability mass function 𝑝
𝑈,𝐴,𝑆,𝑋,𝑌,𝑍

(𝑢, 𝑎, 𝑠, 𝑥, 𝑦, 𝑧)
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such that

0 ≤ 𝑅
𝑒
≤ 𝑅,

𝑅 ≤ 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) ,

𝑅
𝑒
= min {𝐻 (𝑌 | 𝑍) ,𝐻 (𝐴 | 𝑍)} .

(A.1)

The message setW satisfies the following condition:

lim
𝑁→∞

1

𝑁
log ‖W‖

= 𝑅 = 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) − 𝛾,

(A.2)

where 𝛾 is a fixed positive real numbers and

0 ≤ 𝛾 ≤
(𝑎)
𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴)

−min {𝐻 (𝑌 | 𝑍) ,𝐻 (𝐴 | 𝑍)} .

(A.3)

Note that (𝑎) is from 𝑅 ≥ 𝑅
𝑒
= min{𝐻(𝑌 | 𝑍),𝐻(𝐴 | 𝑍)} and

(A.2). LetW = {1, 2, . . . , 2
𝑁𝑅
}.

Code-book generation:

(a) Construction of 𝐴𝑁 and 𝑆𝑁. In the first block, generate a
i.i.d. sequence 𝑎𝑁 according to the probability mass function
𝑝
𝐴
(𝑎), and choose it as the output of the action encoder. Let

𝑠
𝑁 be the state sequence generated in response to the chosen
action sequence 𝑎𝑁.

For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), generate 2𝑁𝑅 i.i.d. sequences
𝑎
𝑁, according to the probability mass function 𝑝

𝐴
(𝑎). Index

each sequence by 𝑖 ∈ {1, 2, . . . , 2
𝑁𝑅
}. For a given message 𝑤

𝑖

(𝑤
𝑖
∈ W), choose a corresponding 𝑎𝑁(𝑤

𝑖
) as the output of

the action encoder. Let 𝑠𝑁 be the state sequence generated in
response to the action sequence 𝑎𝑁(𝑤

𝑖
).

(b) Construction of the Secret Key. For the 𝑖th block (2 ≤

𝑖 ≤ 𝑛), firstly we generate a mapping 𝑔
𝑓
: Y𝑁

→ W (note
that ‖Y‖

𝑁
≥ ‖W‖). Define a random variable 𝐾

𝑖
= 𝑔

𝑓
(𝑌̃

𝑖−1
)

(2 ≤ 𝑖 ≤ 𝑛), which is uniformly distributed overW, and𝐾
𝑖
is

independent of 𝑊
𝑖
. Reveal the mapping 𝑔

𝑓
to both receivers

and the transmitter.
Then, when the transmitter receives the output 𝑦

𝑖−1
of the

𝑖-1th block, he computes 𝑘
𝑖
= 𝑔

𝑓
(𝑦

𝑖−1
) ∈ W as the secret key

used in the 𝑖th block.

(c) Construction of 𝑈𝑁. In the first block, for the transmitted
action sequence 𝑎𝑁 and the corresponding state sequence
𝑠
𝑁, generate a i.i.d. sequence 𝑢𝑁 according to the probability
mass function 𝑝

𝑈|𝐴,𝑆
(𝑢

𝑖
| 𝑎

𝑖
, 𝑠

𝑖
). Choose 𝑢𝑁 as a realization of

𝑈
𝑁 for the first block.
For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), given the transmitted

action sequence 𝑎𝑁(𝑤
𝑖
) and the corresponding state sequence

𝑠
𝑁, generate 2𝑁(𝐼(𝑈;𝑌)−𝜖2,𝑁) (𝜖

2,𝑁
→ 0 as 𝑁 → ∞) i.i.d.

sequences 𝑢𝑁, according to the probability mass function
𝑝
𝑈|𝐴,𝑆

(𝑢
𝑖
| 𝑎

𝑖
(𝑤

𝑖
), 𝑠

𝑖
). Distribute these sequences at random

into 2
𝑁𝑅

= 2
𝑁(𝐼(𝑈;𝑌)−𝐼(𝑈;𝑆|𝐴)−𝛾) bins such that each bin

contains 2𝑁(𝐼(𝑈;𝑆|𝐴)+𝛾−𝜖2,𝑁) sequences. Index each bin by 𝑖 ∈
{1, 2, . . . , 2

𝑁𝑅
}.

For a given 𝑤
𝑖
, 𝑎𝑁(𝑤

𝑖
), 𝑠𝑁, and a secret key 𝑘

𝑖
, the trans-

mitter chooses a sequence 𝑢𝑁
(𝑤

𝑖
⊕𝑘

𝑖
, 𝑗

∗
) from the bin𝑤

𝑖
⊕𝑘

𝑖

(where ⊕ is the modulo addition overW) such that (𝑢𝑁
(𝑤

𝑖
⊕

𝑘
𝑖
, 𝑗

∗
), 𝑎

𝑁
(𝑤

𝑖
), 𝑠

𝑁
) ∈ 𝑇

𝑁

𝑈𝑆|𝐴
(𝜖). If such multiple sequences in

bin𝑤
𝑖
⊕𝑘

𝑖
exist, choose the one with the smallest index in the

bin. If no such sequence exists, declare an encoding error.

(d) Construction of 𝑋𝑁. For each block, the 𝑥𝑁 is generated
according to a new discretememoryless channel (DMC)with
inputs 𝑢𝑁, 𝑠𝑁, and output 𝑥𝑁. The transition probability of
this new DMC is 𝑝

𝑋|𝑈,𝑆
(𝑥 | 𝑢, 𝑠), which is obtained from the

joint probability mass function 𝑝
𝑈,𝐴,𝑆,𝑋,𝑌,𝑍

(𝑢, 𝑎, 𝑠, 𝑥, 𝑦, 𝑧).
The probability 𝑝

𝑋
𝑁
|𝑈
𝑁
,𝑆
𝑁(𝑥

𝑁
| 𝑢

𝑁
, 𝑠

𝑁
) is calculated as

follows:

&𝑝
𝑋
𝑁
|𝑈
𝑁
,𝑆
𝑁 (𝑥

𝑁
| 𝑢

𝑁
, 𝑠

𝑁
) =

𝑁

∏

𝑖=1

𝑝
𝑋|𝑈,𝑆

(𝑥
𝑖
| 𝑢

𝑖
, 𝑠

𝑖
) . (A.4)

Decoding. For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), given a vector 𝑦𝑁
∈

Y𝑁 and a secret key 𝑘
𝑖
(𝑘

𝑖
is known by the receiver), try to

find a sequence 𝑢𝑁
(𝑤

𝑖
⊕ 𝑘

𝑖
, 𝑗) such that (𝑢𝑁

(𝑤
𝑖
⊕ 𝑘

𝑖
, 𝑗), 𝑦

𝑁
) ∈

𝑇
𝑁

𝑈𝑌
(𝜖

3
). If there exist sequenceswith the same𝑤

𝑖
⊕𝑘

𝑖
, by using

the secret key 𝑘
𝑖
, put out the corresponding 𝑤

𝑖
. Otherwise,

that is, if no such sequence exists or multiple sequences have
different message indices, declare a decoding error.

(ii) Code Construction for Case 2. Given a pair (𝑅, 𝑅
𝑒
),

choose a joint probability mass function 𝑝
𝑈,𝐴,𝑆,𝑋,𝑌,𝑍

(𝑢, 𝑎, 𝑠, 𝑥,

𝑦, 𝑧) such that

0 ≤ 𝑅
𝑒
≤ 𝑅,

𝑅 = 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) ,

𝑅
𝑒
= 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) .

(A.5)

The message setW satisfies the following condition:

lim
𝑁→∞

1

𝑁
log ‖W‖ = 𝑅

= 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) .

(A.6)

LetW = {1, 2, . . . , 2
𝑁𝑅
}.

Code-book generation:

(a) Construction of 𝐴𝑁 and 𝑆𝑁. In the first block, generate a
i.i.d. sequence 𝑎𝑁 according to the probability mass function
𝑝
𝐴
(𝑎), and choose it as the output of the action encoder. Let

𝑠
𝑁 be the state sequence generated in response to the chosen
action sequence 𝑎𝑁.

For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), generate 2𝑁𝑅 i.i.d. sequences
𝑎
𝑁, according to the probability mass function 𝑝

𝐴
(𝑎). Index

each sequence by 𝑖 ∈ {1, 2, . . . , 2
𝑁𝑅
}. For a given message 𝑤

𝑖

(𝑤
𝑖
∈ W), choose a corresponding 𝑎𝑁(𝑤

𝑖
) as the output of



10 Journal of Applied Mathematics

the action encoder. Let 𝑠𝑁 be the state sequence generated in
response to the action sequence 𝑎𝑁(𝑤

𝑖
).

(b) Construction of the Secret Key. For the 𝑖th block (2 ≤

𝑖 ≤ 𝑛), firstly we generate a mapping 𝑔
𝑓
: Y𝑁

→ W (note
that ‖Y‖

𝑁
≥ ‖W‖). Define a random variable 𝐾

𝑖
= 𝑔

𝑓
(𝑌̃

𝑖−1
)

(2 ≤ 𝑖 ≤ 𝑛), which is uniformly distributed overW, and𝐾
𝑖
is

independent of 𝑊
𝑖
. Reveal the mapping 𝑔

𝑓
to both receivers

and the transmitter.
Then, when the transmitter receives the output 𝑦

𝑖−1
of the

𝑖-1th block, he computes 𝑘
𝑖
= 𝑔

𝑓
(𝑦

𝑖−1
) ∈ W as the secret key

used in the 𝑖th block.

(c) Construction of 𝑈𝑁. In the first block, for the transmitted
action sequence 𝑎𝑁 and the corresponding state sequence
𝑠
𝑁, generate a i.i.d. sequence 𝑢𝑁 according to the probability
mass function 𝑝

𝑈|𝐴,𝑆
(𝑢

𝑖
| 𝑎

𝑖
, 𝑠

𝑖
). Choose 𝑢𝑁 as a realization of

𝑈
𝑁 for the first block.
For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), given the transmitted

action sequence 𝑎𝑁(𝑤
𝑖
) and the corresponding state sequence

𝑠
𝑁, generate 2𝑁(𝐼(𝑈;𝑌)−𝜖2,𝑁) (𝜖

2,𝑁
→ 0 as 𝑁 → ∞) i.i.d.

sequences 𝑢𝑁, according to the probability mass function
𝑝
𝑈|𝐴,𝑆

(𝑢
𝑖
| 𝑎

𝑖
(𝑤

𝑖
), 𝑠

𝑖
). Distribute these sequences at random

into 2𝑁𝑅
= 2

𝑁(𝐼(𝑈;𝑌)−𝐼(𝑈;𝑆|𝐴)) bins such that each bin contains
2
𝑁(𝐼(𝑈;𝑆|𝐴)−𝜖2,𝑁) sequences. Index each bin by 𝑖 ∈ {1, 2, . . . ,

2
𝑁𝑅
}.
For a given 𝑤

𝑖
, 𝑎𝑁(𝑤

𝑖
), 𝑠𝑁, and a secret key 𝑘

𝑖
, the trans-

mitter chooses a sequence 𝑢𝑁
(𝑤

𝑖
⊕𝑘

𝑖
, 𝑗

∗
) from the bin𝑤

𝑖
⊕𝑘

𝑖

(where ⊕ is the modulo addition overW) such that (𝑢𝑁
(𝑤

𝑖
⊕

𝑘
𝑖
, 𝑗

∗
), 𝑎

𝑁
(𝑤

𝑖
), 𝑠

𝑁
) ∈ 𝑇

𝑁

𝑈𝑆|𝐴
(𝜖). If such multiple sequences in

bin𝑤
𝑖
⊕𝑘

𝑖
exist, choose the one with the smallest index in the

bin. If no such sequence exists, declare an encoding error.

(d) Construction of 𝑋𝑁. The 𝑥𝑁 is generated the same as that
for the case 1, and it is omitted here.

Decoding. For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), given a vector 𝑦𝑁
∈

Y𝑁 and a secret key 𝑘
𝑖
(𝑘

𝑖
is known by the receiver), try to

find a sequence 𝑢𝑁
(𝑤

𝑖
⊕ 𝑘

𝑖
, 𝑗) such that (𝑢𝑁

(𝑤
𝑖
⊕ 𝑘

𝑖
, 𝑗), 𝑦

𝑁
) ∈

𝑇
𝑁

𝑈𝑌
(𝜖

3
). If there exist sequenceswith the same𝑤

𝑖
⊕𝑘

𝑖
, by using

the secret key 𝑘
𝑖
, put out the corresponding 𝑤

𝑖
. Otherwise,

that is, if no such sequence exists or multiple sequences have
different message indices, declare a decoding error.

A.2. Proof of Achievability. The rate of the message 𝑊𝑛 is
defined as

𝑅
∗
≜ lim

𝑁→∞

lim
𝑛→∞

𝐻(𝑊
𝑛
)

𝑛𝑁
, (A.7)

and it satisfies

𝑅
∗
= lim

𝑁→∞

lim
𝑛→∞

𝐻(𝑊
𝑛
)

𝑛𝑁

= lim
𝑁→∞

lim
𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑊

𝑖
)

𝑛𝑁

= lim
𝑁→∞

lim
𝑛→∞

(𝑛 − 1)𝐻 (𝑊)

𝑛𝑁

= 𝑅.

(A.8)

In addition, note that the encoding and decoding scheme
for Theorem 6 is exactly the same as that in [16], except that
the transmitted message for the legitimate receiver is 𝑤 ⊕ 𝑘.
Since the legitimate receiver knows 𝑘, the decoding scheme
for Theorem 6 is in fact the same as that in [16]. Hence, we
omit the proof of 𝑃

𝑒
≤ 𝜖 here.

It remains to show that lim
𝑁→∞

Δ ≥ 𝑅
𝑒
, see the following.

Since the message 𝑊 is encrypted by 𝑊 ⊕ 𝐾, the
equivocation about𝑊 is equivalent to the equivocation about
the secret key 𝐾. There are two ways for the wiretapper to
obtain the secret key 𝑘. One way is that he tries to guess the
𝑘 from its alphabetW. The other way is that he tries to guess
the feedback 𝑦𝑁 (𝑦𝑁 is the output of the main channel for
the previous block, and 𝑘 = 𝑔

𝑓
(𝑦

𝑁
)) from the conditional

typical set 𝑇𝑁

[𝑌|𝑍]
(𝛿), and this is because for a given 𝑧

𝑁 and
sufficiently large 𝑁, Pr{(𝑦𝑁

∉ 𝑇
𝑁

[𝑌|𝑍]
(𝛿)} → 0. Note that

there are 2𝑁𝐻(𝑌|𝑍) sequences 𝑦𝑁
∈ 𝑇

𝑁

[𝑌|𝑍]
(𝛿) when 𝑁 →

∞ and 𝛿 → 0. Therefore, the equivocation about 𝑊 is
min{(log ‖W‖)/𝑁 = 𝑅,𝐻(𝑌 | 𝑍)}, and note that 𝑅 ≥ 𝑅

𝑒

and𝐻(𝑌 | 𝑍) ≥ 𝑅
𝑒
, and then lim

𝑁→∞
Δ ≥ 𝑅

𝑒
is obtained.

The details about the proof are as follows.
First, we will show that𝐾

𝑖
⊕𝑊

𝑖
is independent of 𝐾

𝑖
and

𝑊
𝑖
, and this is used in the proof of lim

𝑁→∞
Δ ≥ 𝑅

𝑒
.

Since 𝐾
𝑖
is independent of 𝑊

𝑖
(2 ≤ 𝑖 ≤ 𝑛), and all of

them are uniformly distributed overW, the fact that𝐾
𝑖
⊕𝑊

𝑖

is independent of𝐾
𝑖
and𝑊

𝑖
is proved by the following (A.9):

Pr {𝐾
𝑖
⊕𝑊

𝑖
= 𝑎} = ∑

𝑘𝑖∈W

Pr {𝐾
𝑖
⊕𝑊

𝑖
= 𝑎,𝐾

𝑖
= 𝑘

𝑖
}

= ∑

𝑘𝑖∈W

Pr {𝑊
𝑖
= 𝑎 ⊖ 𝑘

𝑖
, 𝐾

𝑖
= 𝑘

𝑖
}

= ∑

𝑘𝑖∈W

Pr {𝑊
𝑖
= 𝑎 ⊖ 𝑘

𝑖
}Pr {𝐾

𝑖
= 𝑘

𝑖
}

=
1

‖W‖
,

Pr {𝐾
𝑖
⊕𝑊

𝑖
= 𝑎,𝐾

𝑖
= 𝑘

𝑖
} = Pr {𝑊

𝑖
= 𝑎 ⊖ 𝑘

𝑖
, 𝐾

𝑖
= 𝑘

𝑖
}

= Pr {𝑊
𝑖
= 𝑎 ⊖ 𝑘

𝑖
}Pr {𝐾

𝑖
= 𝑘

𝑖
}

=
1

‖W‖
2
.

(A.9)

Then, lim
𝑁→∞

Δ ≥ 𝑅
𝑒
for both cases is proved by the

following (A.10):

lim
𝑁→∞

Δ ≜ lim
𝑁→∞

lim
𝑛→∞

𝐻(𝑊
𝑛
| 𝑍

𝑛
)

𝑛𝑁

= lim
𝑁→∞

lim
𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑊

𝑖
| 𝑊

𝑖−1
, 𝑍

𝑛
)

𝑛𝑁
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=
(𝑎) lim

𝑁→∞

lim
𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑊

𝑖
| 𝑍

𝑖
, 𝑍

𝑖−1
)

𝑛𝑁

≥ lim
𝑁→∞

lim
𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑊

𝑖
| 𝑍

𝑖
, 𝑍

𝑖−1
,𝑊

𝑖
⊕ 𝐾

𝑖
)

𝑛𝑁

=
(𝑏) lim

𝑁→∞

lim
𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝑊

𝑖
| 𝑍

𝑖−1
,𝑊

𝑖
⊕ 𝐾

𝑖
)

𝑛𝑁

= lim
𝑁→∞

lim
𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝐾

𝑖
| 𝑍

𝑖−1
,𝑊

𝑖
⊕ 𝐾

𝑖
)

𝑛𝑁

=
(𝑐) lim

𝑁→∞

lim
𝑛→∞

∑
𝑛

𝑖=2
𝐻(𝐾

𝑖
| 𝑍

𝑖−1
)

𝑛𝑁

=
(𝑑) lim

𝑁→∞

lim
𝑛→∞

∑
𝑛

𝑖=2
min {𝑁𝐻 (𝑌 | 𝑍) ,𝑁𝑅}

𝑛𝑁

= lim
𝑁→∞

lim
𝑛→∞

(𝑛 − 1)min {𝑁𝑅,𝑁𝐻 (𝑌 | 𝑍)}

𝑛𝑁

= min {𝑅,𝐻 (𝑌 | 𝑍)}

≥ 𝑅
𝑒
,

(A.10)

where (𝑎) is from𝑊
𝑖
→ (𝑍

𝑖
, 𝑍

𝑖−1
) → (𝑊

𝑖−1
, 𝑍

𝑖−2
, 𝑍

𝑛

𝑖+1
) that

is a Markov chain, (𝑏) is from𝑊
𝑖
→ (𝑊

𝑖
⊕ 𝐾

𝑖
, 𝑍

𝑖−1
) → 𝑍

𝑖

that is aMarkov chain, (𝑐) follows from the fact that𝐾
𝑖
⊕𝑊

𝑖
is

independent of 𝐾
𝑖
and 𝑍

𝑖−1
, and (𝑑) is from the fact that the

wiretapper can guess the specific vector 𝑌̃
𝑖−1

(corresponding
to the key 𝐾

𝑖
) from the conditional typical set 𝑇𝑁

[𝑌|𝑍]
(𝛿), and

𝐾
𝑖
is uniformly distributed overW (𝐾

𝑖
is the key used in block

𝑖).
On the other hand,

lim
𝑁→∞

Δ ≜ lim
𝑁→∞

lim
𝑛→∞

𝐻(𝑊
𝑛
| 𝑍

𝑛
)

𝑛𝑁

=
(1) lim

𝑁→∞

lim
𝑛→∞

1

𝑛𝑁
𝐻(𝐴

𝑛

2
| 𝑍

𝑛

2
)

=
(2) lim

𝑁→∞

lim
𝑛→∞

1

𝑛𝑁
((𝑛 − 1)𝑁𝐻 (𝐴 | 𝑍))

= 𝐻 (𝐴 | 𝑍) ≥ 𝑅
𝑒
,

(A.11)

where (1) is from the fact that 𝑊𝑛
≜ (𝑊

2
,𝑊

3
, . . . ,𝑊

𝑛
), 𝐴

𝑖

(2 ≤ 𝑖 ≤ 𝑛) is the state sequence for block 𝑖,𝐴𝑛

2
= (𝐴

2
, . . . , 𝐴

𝑛
)

and 𝐴
𝑖
is a function of 𝑊

𝑖
, (2) is from 𝐴

𝑛 and 𝑋𝑛 that are
i.i.d. generated random vectors, and the channels are discrete
memoryless.

Therefore, it is easy to see that, for the case 1, lim
𝑁→∞

Δ ≥

𝑅
𝑒
is proved by (A.10) and (A.11). For the case 2, lim

𝑁→∞
Δ ≥

𝑅
𝑒
is proved by the formula (A.10).
Thus, lim

𝑁→∞
Δ ≥ 𝑅

𝑒
for both cases is proved.The proof

of Theorem 6 is completed.

B. Proof of the Converse Part of Theorem 6

In this section, we prove the converse part of Theorem 6:
all the achievable (𝑅, 𝑅

𝑒
) pairs are contained in the set R(𝑛).

Suppose that (𝑅, 𝑅
𝑒
) is achievable; that is, for any given 𝜖 > 0,

there exists a channel encoder-decoder (𝑁, Δ, 𝑃
𝑒
) such that

lim
𝑁→∞

log ‖W‖

𝑁
= 𝑅, lim

𝑁→∞

Δ ≥ 𝑅
𝑒
, 𝑃

𝑒
≤ 𝜖. (B.1)

Then we will show the existence of random variables
(𝐴, 𝑈) → (𝑋, 𝑆) → 𝑌 → 𝑍 such that

0 ≤ 𝑅
𝑒
≤ 𝑅, (B.2)

𝑅 ≤ 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) , (B.3)

𝑅
𝑒
≤ 𝐻 (𝑌 | 𝑍) , (B.4)

𝑅
𝑒
≤ 𝐻 (𝐴 | 𝑍) . (B.5)

Since 𝑊 is uniformly distributed over W, we have 𝐻(𝑊) =

log ‖W‖. The formulas (B.3), (B.4), and (B.5) are proved by
Lemma B.1; see the following.

Lemma B.1.Therandomvectors𝑌𝑁 and𝑍𝑁 and the random
variables𝑊, 𝑈, 𝐴, 𝑆,𝑋, 𝑌, and 𝑍 of Theorem 6 satisfy

1

𝑁
𝐻 (𝑊) ≤ 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) +

1

𝑁
𝛿 (𝑃

𝑒
) , (B.6)

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) ≤ 𝐻 (𝑌 | 𝑍) +

1

𝑁
𝛿 (𝑃

𝑒
) , (B.7)

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) ≤ 𝐻 (𝐴 | 𝑍) , (B.8)

where 𝛿(𝑃
𝑒
) = ℎ(𝑃

𝑒
) + 𝑃

𝑒
log(|W| − 1). Note that ℎ(𝑃

𝑒
) =

−𝑃
𝑒
log𝑃

𝑒
− (1 − 𝑃

𝑒
) log(1 − 𝑃

𝑒
).

Substituting 𝐻(𝑊) = log ‖W‖ and (5) into (B.6), (B.7),
and (B.8) and using the fact that 𝜖 → 0, the formulas (B.3),
(B.4), and (B.5) are obtained. The formula (B.2) is from

𝑅
𝑒
≤ lim

𝑁→∞

Δ = lim
𝑁→∞

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) ≤ lim

𝑁→∞

1

𝑁
𝐻 (𝑊) = 𝑅.

(B.9)

It remains to prove Lemma B.1; see the following.

Proof of Lemma B.1. The formula (B.6) follows from (B.10),
(B.13), and (B.21). The formula (B.7) is from (B.11), (B.17)
and (B.22). The formula (B.8) is proved by (B.12), (B.18), and
(B.23).

Part (i). We begin with the left parts of the inequalities (B.6),
(B.7), and (B.8); see the following.

Since𝑊 → 𝑌
𝑁
→ 𝑍

𝑁 is a Markov chain, for the mes-
sage𝑊, we have

1

𝑁
𝐻 (𝑊) =

1

𝑁
𝐻(𝑊 | 𝑌

𝑁
) +

1

𝑁
𝐼 (𝑌

𝑁
;𝑊)

≤
(𝑎) 1

𝑁
𝛿 (𝑃

𝑒
) +

1

𝑁
𝐼 (𝑌

𝑁
;𝑊) .

(B.10)
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For the equivocation to the wiretapper, we have

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) =

(𝑏) 1

𝑁
(𝐻(𝑊 | 𝑍

𝑁
) + 𝛿 (𝑃

𝑒
)

−𝐻 (𝑊 | 𝑍
𝑁
, 𝑌

𝑁
))

=
1

𝑁
(𝐼 (𝑊;𝑌

𝑁
| 𝑍

𝑁
) + 𝛿 (𝑃

𝑒
))

≤
1

𝑁
(𝐻(𝑌

𝑁
| 𝑍

𝑁
) + 𝛿 (𝑃

𝑒
)) .

(B.11)

Moreover,

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) =

1

𝑁
𝐻(𝐴

𝑁
| 𝑍

𝑁
) . (B.12)

Note that (𝑎) and (𝑏) follow from Fano’s inequality, and
(B.12) is from the fact that 𝐴𝑁 is a deterministic function of
𝑊.

Part (ii). By using chain rule, the character 𝐼(𝑌𝑁
;𝑊) in

formulas (B.10) and (B.11) can be bounded as follows:

1

𝑁
𝐼 (𝑌

𝑁
;𝑊)

=
1

𝑁

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
;𝑊 | 𝑌

𝑖−1
)

=
(1) 1

𝑁

𝑁

∑

𝑖=1

(𝐼 (𝑌
𝑖
;𝑊 | 𝑌

𝑖−1
) − 𝐼 (𝑆

𝑖
;𝑊 | 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
))

=
1

𝑁

𝑁

∑

𝑖=1

(𝐼 (𝑌
𝑖
;𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
| 𝑌

𝑖−1
)

− 𝐼 (𝑌
𝑖
; 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
| 𝑊, 𝑌

𝑖−1
)

− 𝐼 (𝑆
𝑖
;𝑊, 𝑌

𝑖−1
| 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
)

+𝐼 (𝑆
𝑖
; 𝑌

𝑖−1
| 𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
) )

=
(2) 1

𝑁

𝑁

∑

𝑖=1

(𝐼 (𝑌
𝑖
;𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
| 𝑌

𝑖−1
)

−𝐼 (𝑆
𝑖
;𝑊, 𝑌

𝑖−1
| 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
))

=
1

𝑁

𝑁

∑

𝑖=1

(𝐻 (𝑌
𝑖
| 𝑌

𝑖−1
) − 𝐻(𝑌

𝑖
| 𝑌

𝑖−1
,𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
)

−𝐻(𝑆
𝑖
| 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
)+𝐻(𝑆

𝑖
| 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
,𝑊, 𝑌

𝑖−1
))

≤
(3) 1

𝑁

𝑁

∑

𝑖=1

(𝐻 (𝑌
𝑖
) − 𝐻 (𝑌

𝑖
| 𝑌

𝑖−1
,𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
)

−𝐻 (𝑆
𝑖
| 𝐴

𝑖
) + 𝐻 (𝑆

𝑖
| 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
,𝑊, 𝑌

𝑖−1
)) ,

(B.13)

where formula (1) follows from that𝑊 → 𝐴
𝑁

→ 𝑆
𝑁, and

formula (2) follows from that

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
; 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
| 𝑊, 𝑌

𝑖−1
) =

𝑁

∑

𝑖=1

𝐼 (𝑆
𝑖
; 𝑌

𝑖−1
| 𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
) ,

(B.14)

and formula (3) follows from that 𝑆
𝑖
→ 𝐴

𝑖
→ (𝑆

𝑁

𝑖+1
, 𝐴

𝑖−1
,

𝐴
𝑁

𝑖+1
).

Proof of (B.14). The left part of (B.14) can be rewritten as

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
; 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
| 𝑊, 𝑌

𝑖−1
)

=

𝑁

∑

𝑖=1

(𝐻 (𝑌
𝑖
| 𝑊, 𝑌

𝑖−1
) − 𝐻(𝑌

𝑖
| 𝑊, 𝑌

𝑖−1
, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
))

=
(1)

𝑁

∑

𝑖=1

(𝐻 (𝑌
𝑖
| 𝐴

𝑁
, 𝑌

𝑖−1
) − 𝐻(𝑌

𝑖
| 𝑌

𝑖−1
, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
))

=

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
; 𝑆

𝑁

𝑖+1
| 𝐴

𝑁
, 𝑌

𝑖−1
)

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝐼 (𝑌
𝑖
; 𝑆

𝑗
| 𝐴

𝑁
, 𝑌

𝑖−1
, 𝑆

𝑁

𝑗+1
)

=

𝑁

∑

𝑗=1

𝑁

∑

𝑖=𝑗+1

𝐼 (𝑌
𝑗
; 𝑆

𝑖
| 𝐴

𝑁
, 𝑌

𝑗−1
, 𝑆

𝑁

𝑖+1
)

=

𝑁

∑

𝑖=1

𝑖+1

∑

𝑗=1

𝐼 (𝑌
𝑗
; 𝑆

𝑖
| 𝐴

𝑁
, 𝑌

𝑗−1
, 𝑆

𝑁

𝑖+1
) ,

(B.15)

where (1) is from the fact that 𝐴𝑁 is a deterministic function
of𝑊.

The right part of (B.14) can be rewritten as

𝑁

∑

𝑖=1

𝐼 (𝑆
𝑖
; 𝑌

𝑖−1
| 𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
)

=
(2)

𝑁

∑

𝑖=1

𝐼 (𝑆
𝑖
; 𝑌

𝑖−1
| 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
)

=

𝑁

∑

𝑖=1

𝑖−1

∑

𝑗=1

𝐼 (𝑌
𝑗
; 𝑆

𝑖
| 𝐴

𝑁
, 𝑌

𝑗−1
, 𝑆

𝑁

𝑖+1
) ,

(B.16)

where (2) is from the fact that 𝐴𝑁 is a deterministic function
of𝑊.
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The formula (B.14) is proved by (B.15) and (B.16). The
proof is completed.

Part (iii). The character𝐻(𝑌𝑁
| 𝑍

𝑁
) in formula (B.11) can be

rewritten as follows:

1

𝑁
𝐻(𝑌

𝑁
| 𝑍

𝑁
) =

1

𝑁

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑌

𝑖−1
, 𝑍

𝑁
)

≤
1

𝑁

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑍

𝑖
) .

(B.17)

Part (iv). The character𝐻(𝐴𝑁
| 𝑍

𝑁
) in formula (B.12) can be

rewritten as follows:

1

𝑁
𝐻(𝐴

𝑁
| 𝑍

𝑁
) ≤

1

𝑁

𝑁

∑

𝑖=1

𝐻(𝐴
𝑖
| 𝑍

𝑖
) . (B.18)

Part (v) (single letter). To complete the proof, we introduce
a random variable 𝐽, which is independent of 𝑊, 𝐴𝑁, 𝑋𝑁,
𝑆
𝑁, 𝑌𝑁 and𝑍𝑁. Furthermore, 𝐽 is uniformly distributed over
{1, 2, . . . , 𝑁}. Define

𝑈 = (𝑊,𝑌
𝐽−1
, 𝑆

𝑁

𝐽+1
, 𝐴

𝑁
, 𝐽) , (B.19)

𝑋 = 𝑋
𝐽
, 𝑌 = 𝑌

𝐽
, 𝑍 = 𝑍

𝐽
, 𝑆 = 𝑆

𝐽
, 𝐴 = 𝐴

𝐽
.

(B.20)

Part (vi). Then (B.13) can be rewritten as

1

𝑁
𝐼 (𝑊;𝑌

𝑁
)

≤
1

𝑁

𝑁

∑

𝑖=1

(𝐻 (𝑌
𝑖
) − 𝐻 (𝑌

𝑖
| 𝑌

𝑖−1
,𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
)

− 𝐻 (𝑆
𝑖
| 𝐴

𝑖
)

+𝐻 (𝑆
𝑖
| 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
,𝑊, 𝑌

𝑖−1
))

=
1

𝑁

𝑁

∑

𝑖=1

(𝐻 (𝑌
𝑖
| 𝐽 = 𝑖) − 𝐻 (𝑌

𝑖
| 𝑌

𝑖−1
,𝑊, 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
, 𝐽 = 𝑖)

− 𝐻 (𝑆
𝑖
| 𝐴

𝑖
, 𝐽 = 𝑖)

+𝐻 (𝑆
𝑖
| 𝑆

𝑁

𝑖+1
, 𝐴

𝑁
,𝑊, 𝑌

𝑖−1
, 𝐴

𝑖
, 𝐽 = 𝑖))

= 𝐻 (𝑌
𝐽
| 𝐽) − 𝐻 (𝑌

𝐽
| 𝑌

𝐽−1
,𝑊, 𝑆

𝑁

𝐽+1
, 𝐴

𝑁
, 𝐽)

− 𝐻 (𝑆
𝐽
| 𝐴

𝐽
, 𝐽) + 𝐻 (𝑆

𝐽
| 𝑆

𝑁

𝐽+1
, 𝐴

𝑁
,𝑊, 𝑌

𝐽−1
, 𝐴

𝐽
, 𝐽)

≤ 𝐻 (𝑌
𝐽
) − 𝐻 (𝑌

𝐽
| 𝑌

𝐽−1
,𝑊, 𝑆

𝑁

𝐽+1
, 𝐴

𝑁
, 𝐽) − 𝐻 (𝑆

𝐽
| 𝐴

𝐽
, 𝐽)

+ 𝐻 (𝑆
𝐽
| 𝑆

𝑁

𝐽+1
, 𝐴

𝑁
,𝑊, 𝑌

𝐽−1
, 𝐴

𝐽
, 𝐽)

= 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑈) − 𝐻 (𝑆 | 𝐴) + 𝐻 (𝑆 | 𝑈, 𝐴)

= 𝐼 (𝑈; 𝑌) − 𝐼 (𝑈; 𝑆 | 𝐴) .

(B.21)

Analogously, (B.17) is rewritten as follows:

1

𝑁
𝐻(𝑌

𝑁
| 𝑍

𝑁
) ≤

1

𝑁

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑍

𝑖
)

=
1

𝑁

𝑁

∑

𝑖=1

(𝐻 (𝑌
𝑖
| 𝑍

𝑖
, 𝐽 = 𝑖))

= 𝐻 (𝑌
𝐽
| 𝑍

𝐽
, 𝐽)

≤ 𝐻 (𝑌 | 𝑍) .

(B.22)

Similarly, (B.18) can be rewritten as follows:

1

𝑁
𝐻(𝐴

𝑁
| 𝑍

𝑁
) ≤

1

𝑁

𝑁

∑

𝑖=1

𝐻(𝐴
𝑖
| 𝑍

𝑖
)

=
1

𝑁

𝑁

∑

𝑖=1

𝐻(𝐴
𝑖
| 𝑍

𝑖
, 𝐽 = 𝑖)

= 𝐻 (𝐴
𝐽
| 𝑍

𝐽
, 𝐽)

≤ 𝐻 (𝐴
𝐽
, 𝐽 | 𝑍

𝐽
)

= 𝐻 (𝐴 | 𝑍) .

(B.23)

Substituting (B.21), (B.22), (B.23) into (B.10), (B.11), and
(B.12), Lemma B.1 is proved.

The proof of Theorem 6 is completed.

C. Size Constraint of the Auxiliary Random
Variable in Theorem 6

By using the support lemma (see [20, page 310]), it suffices
to show that the random variable 𝑈 can be replaced by
new one, preserving the Markovity (𝑈, 𝐴) → (𝑋, 𝑆) →

𝑌 → 𝑍 and the mutual information 𝐼(𝑈; 𝑍), 𝐼(𝑈; 𝑌),
𝐼(𝑈; 𝑆 | 𝐴), and furthermore, the range of the new𝑈 satisfies,
‖U‖ ≤ ‖X‖‖S‖‖A‖ + 1. The proof is in the reminder of this
section.

Let

𝑝 = 𝑝
𝑋𝑆𝐴

(𝑥, 𝑠, 𝑎) . (C.1)

Define the following continuous scalar functions of 𝑝:

𝑓
𝑋𝑆𝐴

(𝑝) = 𝑝
𝑋𝑆𝐴

(𝑥, 𝑠, 𝑎) , 𝑓
𝑌
(𝑝)

= 𝐻 (𝑌) , 𝑓
𝑆|𝐴

(𝑝) = 𝐻 (𝑆 | 𝐴) .

(C.2)

Since there are ‖X‖‖S‖‖A‖ − 1 functions of 𝑓
𝑋𝑆𝐴

(𝑝),
the total number of the continuous scalar functions of 𝑝 is
‖X‖‖S‖‖A‖ + 1.
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Let 𝑝
𝑋𝑆𝐴|𝑈

= Pr{𝑋 = 𝑥, 𝑆 = 𝑠, 𝐴 = 𝑎 | 𝑈 = 𝑢}. With these
distributions 𝑝

𝑋𝑆𝐴|𝑈
= Pr{𝑋 = 𝑥, 𝑆 = 𝑠, 𝐴 = 𝑎 | 𝑈 = 𝑢}, we

have

𝑝
𝑋𝑆𝐴

(𝑥, 𝑠, 𝑎) = ∑

𝑢∈U

𝑝 (𝑈 = 𝑢) 𝑓
𝑋𝑆𝐴

(𝑝
𝑋𝑆𝐴|𝑈

) , (C.3)

𝐼 (𝑈; 𝑆 | 𝐴) = 𝑓
𝑆|𝐴

(𝑝) − ∑

𝑢∈U

𝑝 (𝑈 = 𝑢) 𝑓
𝑆|𝐴

(𝑝
𝑋𝑆𝐴|𝑈

) ,

(C.4)

𝐻(𝑌 | 𝑈) = ∑

𝑢∈U

𝑝 (𝑈 = 𝑢) 𝑓
𝑌
(𝑝

𝑋𝑆𝐴|𝑈
) . (C.5)

According to the support lemma ([20, page 310]), the
random variable𝑈 can be replaced by new ones such that the
new𝑈 takes at most ‖X‖‖S‖‖A‖ + 1 different values and the
expressions (C.3), (C.4), and (C.5) are preserved.

D. Proof of the Direct Part of Theorem 9

In this section, we will show that any pair (𝑅, 𝑅
𝑒
) ∈ R𝑐 is

achievable. Block Markov coding and Ahlswede-Cai’s secret
key on the feedback system are used in the construction of
the code-book.

Now the remainder of this section is organized as follows.
The code construction is in Appendix D.1. The proof of
achievability is given in Appendix D.2.

D.1. Code Construction. Since 𝑅
𝑒
≤ 𝐻(𝑌 | 𝑍), 𝑅

𝑒
≤ 𝐻(𝐴 |

𝑍), and 𝑅
𝑒
≤ 𝑅 ≤ 𝐼(𝑈; 𝑌), it is sufficient to show that the pair

(𝑅, 𝑅
𝑒
= min{𝐻(𝑌 | 𝑍),𝐻(𝐴 | 𝑍), 𝐼(𝑈; 𝑌)} is achievable, and

note that this implies that 𝑅 ≥ 𝑅
𝑒
= min{𝐻(𝑌 | 𝑍),𝐻(𝐴 |

𝑍), 𝐼(𝑈; 𝑌)}.
We use the block Markov coding method. The random

vectors 𝑈𝑁, 𝐴𝑁, 𝑆𝑁, 𝑋𝑁, 𝑌𝑁, and 𝑍𝑁 consist of 𝑛 blocks of
length𝑁.Themessage for 𝑛 blocks is𝑊𝑛

≜ (𝑊
2
,𝑊

3
, . . . ,𝑊

𝑛
),

where 𝑊
𝑖
(2 ≤ 𝑖 ≤ 𝑛) are i.i.d. random variables uniformly

distributed over W. Note that, in the first block, there is no
𝑊

1
.
Let 𝑍

𝑖
(1 ≤ 𝑖 ≤ 𝑛) be the output of the wiretap channel

for block 𝑖, 𝑍𝑛
= (𝑍

1
, . . . , 𝑍

𝑛
), 𝑍𝑗

= (𝑍
1
, . . . , 𝑍

𝑗−1
, 𝑍

𝑗+1
, . . . ,

𝑍
𝑛
) (1 ≤ 𝑗 ≤ 𝑛). Similarly, 𝑌𝑛

= (𝑌̃
1
, . . . , 𝑌̃

𝑛
) and 𝑌̃

𝑖
(1 ≤ 𝑖 ≤

𝑛) are the output of the main channel for block 𝑖. The specific
values of the above random vectors are denoted by lowercase
letters.

Given a pair (𝑅, 𝑅
𝑒
), choose a joint probability mass func-

tion 𝑝
𝑈,𝐴,𝑆,𝑋,𝑌,𝑍

(𝑢, 𝑎, 𝑠, 𝑥, 𝑦, 𝑧) such that

0 ≤ 𝑅
𝑒
≤ 𝑅,

𝑅 ≤ 𝐼 (𝑈; 𝑌) ,

𝑅
𝑒
= min {𝐻 (𝑌 | 𝑍) ,𝐻 (𝐴 | 𝑍)} .

(D.1)

The message setW satisfies the following condition:

lim
𝑁→∞

1

𝑁
log ‖W‖ = 𝑅 = 𝐼 (𝑈; 𝑌) − 𝛾, (D.2)

where 𝛾 is a fixed positive real numbers.

Code-book generation:

(i) Construction of 𝐴𝑁 and 𝑆𝑁. In the first block, generate a
i.i.d. sequence 𝑎𝑁 according to the probability mass function
𝑝
𝐴
(𝑎), and choose it as the output of the action encoder. Let

𝑠
𝑁 be the state sequence generated in response to the chosen
action sequence 𝑎𝑁.

For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), generate 2𝑁𝑅 i.i.d. sequences
𝑎
𝑁, according to the probability mass function 𝑝

𝐴
(𝑎). Index

each sequence by 𝑖 ∈ {1, 2, . . . , 2
𝑁𝑅
}. For a given message 𝑤

𝑖

(𝑤
𝑖
∈ W), choose a corresponding 𝑎𝑁(𝑤

𝑖
) as the output of

the action encoder. Let 𝑠𝑁 be the state sequence generated in
response to the action sequence 𝑎𝑁(𝑤

𝑖
).

(ii) Construction of the Secret Key. For the 𝑖th block (2 ≤

𝑖 ≤ 𝑛), firstly we generate a mapping 𝑔
𝑓
: Y𝑁

→ W (note
that ‖Y‖

𝑁
≥ ‖W‖). Define a random variable 𝐾

𝑖
= 𝑔

𝑓
(𝑌̃

𝑖−1
)

(2 ≤ 𝑖 ≤ 𝑛), which is uniformly distributed overW, and𝐾
𝑖
is

independent of𝑊
𝑖
. Reveal the mapping 𝑔

𝑓
to both receivers

and the transmitter.

Then, when the transmitter receives the output 𝑦
𝑖−1

of the
𝑖-1th block, he computes 𝑘

𝑖
= 𝑔

𝑓
(𝑦

𝑖−1
) ∈ W as the secret key

used in the 𝑖th block.

(iii) Construction of 𝑈𝑁. In the first block, for the transmit-
ted action sequence 𝑎𝑁 and the corresponding state sequence
𝑠
𝑁, generate a i.i.d. sequence 𝑢𝑁 according to the probability
mass function 𝑝

𝑈|𝐴,𝑆
(𝑢

𝑖
| 𝑎

𝑖
, 𝑠

𝑖
). Choose 𝑢𝑁 as a realization of

𝑈
𝑁 for the first block.
For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), given the transmitted action

sequence 𝑎𝑁(𝑤
𝑖
) and the corresponding state sequence 𝑠𝑁,

generate 2𝑁𝑅 i.i.d. sequences 𝑢𝑁, according to the probability
mass function 𝑝

𝑈|𝐴,𝑆
(𝑢

𝑖
| 𝑎

𝑖
(𝑤

𝑖
), 𝑠

𝑖
). Index each sequence by

𝑖 ∈ {1, 2, . . . , 2
𝑁𝑅
}.

For a given𝑤
𝑖
and a secret key 𝑘

𝑖
, the transmitter chooses

a sequence 𝑢𝑁
(𝑤

𝑖
⊕ 𝑘

𝑖
) (where ⊕ is the modulo addition over

W) to transmit.

(iv) Construction of 𝑋𝑁. For each block, the 𝑥𝑁 is generated
according to a new discretememoryless channel (DMC)with
inputs 𝑢𝑁, 𝑠𝑁, and output 𝑥𝑁. The transition probability of
this new DMC is 𝑝

𝑋|𝑈,𝑆
(𝑥 | 𝑢, 𝑠), which is obtained from the

joint probability mass function 𝑝
𝑈,𝐴,𝑆,𝑋,𝑌,𝑍

(𝑢, 𝑎, 𝑠, 𝑥, 𝑦, 𝑧).
The probability 𝑝

𝑋
𝑁
|𝑈
𝑁
,𝑆
𝑁(𝑥

𝑁
| 𝑢

𝑁
, 𝑠

𝑁
) is calculated as

follows:

𝑝
𝑋
𝑁
|𝑈
𝑁
,𝑆
𝑁 (𝑥

𝑁
| 𝑢

𝑁
, 𝑠

𝑁
) =

𝑁

∏

𝑖=1

𝑝
𝑋|𝑈,𝑆

(𝑥
𝑖
| 𝑢

𝑖
, 𝑠

𝑖
) . (D.3)

Decoding. For the 𝑖th block (2 ≤ 𝑖 ≤ 𝑛), given a vector 𝑦𝑁
∈

Y𝑁 and a secret key 𝑘
𝑖
(𝑘

𝑖
is knownby the receiver), try to find

a sequence𝑢𝑁
(𝑤

𝑖
⊕𝑘

𝑖
) such that (𝑢𝑁

(𝑤
𝑖
⊕𝑘

𝑖
), 𝑦

𝑁
) ∈ 𝑇

𝑁

𝑈𝑌
(𝜖

3
). If

there exist sequenceswith the same𝑤
𝑖
⊕ 𝑘

𝑖
, by using the secret

key 𝑘
𝑖
, put out the corresponding 𝑤

𝑖
. Otherwise, that is, if

no such sequence exists or multiple sequences have different
message indices, declare a decoding error.
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D.2. Proof of Achievability. The proof of achievability for
Theorem 9 is along the lines of that forTheorem 6, and, there-
fore, we omit the proof here.

The proof of Theorem 9 is completed.

E. Proof of the Converse Part of Theorem 9

In this section, we proveTheorem 9: all the achievable (𝑅, 𝑅
𝑒
)

pairs are contained in the set R(𝑐). Suppose that (𝑅, 𝑅
𝑒
) is

achievable; that is, for any given 𝜖 > 0, there exists a channel
encoder-decoder (𝑁, Δ, 𝑃

𝑒
) such that

lim
𝑁→∞

log ‖W‖

𝑁
= 𝑅, lim

𝑁→∞

Δ ≥ 𝑅
𝑒
, 𝑃

𝑒
≤ 𝜖. (E.1)

Then we will show the existence of random variables
(𝐴, 𝑈) → (𝑋, 𝑆) → 𝑌 → 𝑍 such that

0 ≤ 𝑅
𝑒
≤ 𝑅, (E.2)

𝑅 ≤ 𝐼 (𝑈; 𝑌) , (E.3)

𝑅
𝑒
≤ 𝐻 (𝑌 | 𝑍) , (E.4)

𝑅
𝑒
≤ 𝐻 (𝐴 | 𝑍) . (E.5)

Since 𝑊 is uniformly distributed over W, we have
𝐻(𝑊) = log ‖W‖. The formulas (E.3), (E.4), and (E.5) are
proved by Lemma E.1; see the following.

Lemma E.1. The random vectors 𝑌𝑁 and 𝑍
𝑁 and the ran-

dom variables𝑊,𝑋, 𝑈, 𝑆, 𝐴, 𝑌, and 𝑍 of Theorem 9 satisfy

1

𝑁
𝐻 (𝑊) ≤ 𝐼 (𝑈; 𝑌) +

1

𝑁
𝛿 (𝑃

𝑒
) , (E.6)

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) ≤ 𝐻 (𝑌 | 𝑍) +

1

𝑁
𝛿 (𝑃

𝑒
) , (E.7)

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) ≤ 𝐻 (𝐴 | 𝑍) , (E.8)

where 𝛿(𝑃
𝑒
) = ℎ(𝑃

𝑒
) + 𝑃

𝑒
log(| W | −1). Note that ℎ(𝑃

𝑒
) =

−𝑃
𝑒
log𝑃

𝑒
− (1 − 𝑃

𝑒
) log(1 − 𝑃

𝑒
).

Substituting 𝐻(𝑊) = log ‖W‖ and (5) into (E.6), (E.7),
and (E.8) and using the fact that 𝜖 → 0, the formulas (E.3),
(E.4), and (E.5) are obtained. The formula (E.2) is from

𝑅
𝑒
≤ lim

𝑁→∞

Δ = lim
𝑁→∞

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) ≤ lim

𝑁→∞

1

𝑁
𝐻 (𝑊) = 𝑅.

(E.9)

It remains to prove Lemma E.1; see the following.

Proof of Lemma E.1. The formula (E.6) follows from (E.10),
(E.13), and (E.17). The formula (E.7) is from (E.11), (E.14),
and (E.18). The formula (E.8) is proved by (E.12), (E.15), and
(E.19).

Part (i). We begin with the left parts of the inequalities (E.6),
(E.7), and (E.8); see the following.

Since𝑊 → 𝑌
𝑁
→ 𝑍

𝑁 is a Markov chain, for the mes-
sage𝑊, we have

1

𝑁
𝐻 (𝑊) =

1

𝑁
𝐻(𝑊 | 𝑌

𝑁
) +

1

𝑁
𝐼 (𝑌

𝑁
;𝑊)

≤
(𝑎) 1

𝑁
𝛿 (𝑃

𝑒
) +

1

𝑁
𝐼 (𝑌

𝑁
;𝑊) .

(E.10)

For the equivocation to the wiretapper, we have

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) =

(𝑏) 1

𝑁
(𝐻(𝑊 | 𝑍

𝑁
) + 𝛿 (𝑃

𝑒
)

−𝐻 (𝑊 | 𝑍
𝑁
, 𝑌

𝑁
))

=
1

𝑁
(𝐼 (𝑊;𝑌

𝑁
| 𝑍

𝑁
) + 𝛿 (𝑃

𝑒
))

≤
1

𝑁
(𝐻(𝑌

𝑁
| 𝑍

𝑁
) + 𝛿 (𝑃

𝑒
)) ,

(E.11)

1

𝑁
𝐻(𝑊 | 𝑍

𝑁
) =

1

𝑁
𝐻(𝐴

𝑁
| 𝑍

𝑁
) . (E.12)

Note that (𝑎) and (𝑏) follow from Fano’s inequality, and
(E.12) is from the fact that 𝐴𝑁 is a deterministic function of
𝑊.

Part (ii). By using chain rule, the character 𝐼(𝑌𝑁
;𝑊) in

formulas (E.10) and (E.11) can be bounded as follows:

1

𝑁
𝐼 (𝑌

𝑁
;𝑊) =

1

𝑁

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
;𝑊 | 𝑌

𝑖−1
)

≤
1

𝑁

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
;𝑊, 𝑌

𝑖−1
)

≤
1

𝑁

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
;𝑊, 𝑌

𝑖−1
, 𝑆

𝑖−1
) .

(E.13)

Part (iii). Similar to (E.13), the character 𝐼(𝑊;𝑍𝑁
) in formula

(E.11) can be rewritten as follows:

1

𝑁
𝐻(𝑌

𝑁
| 𝑍

𝑁
) =

1

𝑁

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑌

𝑖−1
, 𝑍

𝑁
)

≤
1

𝑁

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑍

𝑖
) .

(E.14)

Part (iv). The character𝐻(𝐴𝑁
| 𝑍

𝑁
) in formula (E.12) can be

rewritten as follows:

1

𝑁
𝐻(𝐴

𝑁
| 𝑍

𝑁
) ≤

1

𝑁

𝑁

∑

𝑖=1

𝐻(𝐴
𝑖
| 𝑍

𝑖
) . (E.15)

Part (v) (single letter). To complete the proof, we introduce
a random variable 𝐽, which is independent of 𝑊, 𝐴𝑁, 𝑋𝑁,
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𝑆
𝑁,𝑌𝑁, and𝑍𝑁. Furthermore, 𝐽 is uniformly distributed over
{1, 2, . . . , 𝑁}. Define

𝑈 = (𝑊,𝑌
𝐽−1
, 𝑆

𝐽−1
, 𝐽) ,

𝑋 = 𝑋
𝐽
, 𝑌 = 𝑌

𝐽
, 𝑍 = 𝑍

𝐽
, 𝑆 = 𝑆

𝐽
, 𝐴 = 𝐴

𝐽
.

(E.16)

Part (vi). Then (E.13) can be rewritten as

1

𝑁
𝐼 (𝑊;𝑌

𝑁
) ≤

1

𝑁

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
;𝑊, 𝑌

𝑖−1
, 𝑆

𝑖−1
)

=
1

𝑁

𝑁

∑

𝑖=1

𝐼 (𝑌
𝑖
;𝑊, 𝑌

𝑖−1
, 𝑆

𝑖−1
| 𝐽 = 𝑖)

= 𝐼 (𝑌
𝐽
;𝑊, 𝑌

𝐽−1
, 𝑆

𝐽−1
| 𝐽)

≤ 𝐼 (𝑌
𝐽
;𝑊, 𝑌

𝐽−1
, 𝑆

𝐽−1
, 𝐽)

= 𝐼 (𝑈; 𝑌) .

(E.17)

Analogously, (E.14) is rewritten as follows:

1

𝑁
𝐻(𝑌

𝑁
| 𝑍

𝑁
) ≤

1

𝑁

𝑁

∑

𝑖=1

𝐻(𝑌
𝑖
| 𝑍

𝑖
)

=
1

𝑁

𝑁

∑

𝑖=1

(𝐻 (𝑌
𝑖
| 𝑍

𝑖
, 𝐽 = 𝑖))

= 𝐻 (𝑌
𝐽
| 𝑍

𝐽
, 𝐽)

≤ 𝐻 (𝑌 | 𝑍) .

(E.18)

Similarly, (E.15) can be rewritten as follows,

1

𝑁
𝐻(𝐴

𝑁
| 𝑍

𝑁
) ≤

1

𝑁

𝑁

∑

𝑖=1

𝐻(𝐴
𝑖
| 𝑍

𝑖
)

=
1

𝑁

𝑁

∑

𝑖=1

𝐻(𝐴
𝑖
| 𝑍

𝑖
, 𝐽 = 𝑖)

= 𝐻 (𝐴
𝐽
| 𝑍

𝐽
, 𝐽)

≤ 𝐻 (𝐴
𝐽
| 𝑍

𝐽
)

= 𝐻 (𝐴 | 𝑍) .

(E.19)

Substituting (E.17), (E.18), and (E.19) into (E.10), (E.11), and
(E.12), Lemma E.1 is proved.

The proof of Theorem 9 is completed.
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