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We study some algebraic properties of Toeplitz operator with quasihomogeneous or separately quasihomogeneous symbol on
the pluriharmonic Bergman space of the unit ball in C𝑛. We determine when the product of two Toeplitz operators with
certain separately quasi-homogeneous symbols is a Toeplitz operator. Next, we discuss the zero-product problem for several
Toeplitz operators, one of whose symbols is separately quasihomogeneous and the others are quasi-homogeneous functions, and
show that the zero-product problem for two Toeplitz operators has only a trivial solution if one of the symbols is separately
quasihomogeneous and the other is arbitrary. Finally, we also characterize the commutativity of certain quasihomogeneous or
separately quasihomogeneous Toeplitz operators.

1. Introduction

For 𝑛 ≥ 1, let C𝑛 be the cartesian product of 𝑛 copies of C.
For any points 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
) and 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)

in C𝑛, we use the notions ⟨𝑧, 𝑤⟩ = 𝑧
1
𝑤
1

+ 𝑧
2
𝑤
2

+ ⋅ ⋅ ⋅ + 𝑧
𝑛
𝑤
𝑛

and |𝑧| = √|𝑧
1
|
2

+ |𝑧
2
|
2

+ ⋅ ⋅ ⋅ + |𝑧
𝑛
|
2 for the inner product and

the associated Euclidean norm. Let B
𝑛
denote the open unit

ball which consists of points 𝑧 ∈ C𝑛 with |𝑧| < 1 and let S
𝑛

denote the unit sphere. Let 𝑑𝑉 be the normalized Lebesgue
volume measure on B

𝑛
and let 𝑑𝜎 be the normalized surface

areameasure onS
𝑛
.𝐿2(B

𝑛
, 𝑑𝑉) is theHilbert space consisting

of all Lebesgue square integrable functions on B
𝑛
with the

inner product

⟨𝑓, 𝑔⟩ = ∫

B
𝑛

𝑓 (𝑧) 𝑔(𝑧)𝑑𝑉 (𝑧) . (1)

The Bergman space 𝐿
2

𝑎
(B
𝑛
) is the closed subspace con-

sisting of the analytic functions in 𝐿
2

(B
𝑛
, 𝑑𝑉). Let 𝑃 be the

orthogonal projection from 𝐿
2

(B
𝑛
, 𝑑𝑉) onto 𝐿

2

𝑎
(B
𝑛
), then 𝑃

can be expressed by

(𝑃𝑓) (𝑧) = ⟨𝑓, 𝐾
𝑧
⟩ = ∫

B
𝑛

𝑓 (𝑤)

1

(1 − ⟨𝑧, 𝑤⟩)
𝑛+1

𝑑𝑉 (𝑤) , (2)

where 𝐾
𝑧

(𝑤) = 1/(1 − ⟨𝑤, 𝑧⟩)
𝑛+1 is the Bergman reproduc-

ing kernel.
A function 𝑓 is said to be pluriharmonic if and only if

𝑓 satisfies that 𝐷
𝑗
𝐷
𝑘
𝑓 = 0 (𝑗, 𝑘 = 1, 2, . . . , 𝑛), where 𝐷

𝑗
=

𝜕/𝜕𝑧
𝑗
and 𝐷

𝑗
= 𝜕/𝜕𝑧

𝑗
(see page 9 of [1]). The pluriharmonic

Bergman space, denoted by 𝐿
2

ℎ
(B
𝑛
), is the closed subspace of

𝐿
2

(B
𝑛
, 𝑑𝑉) consisting of all the pluriharmonic functions on

B
𝑛
. It is well known that 𝐿

2

ℎ
(B
𝑛
) is also a Hilbert space. We

will write 𝑄 for the orthogonal projection from 𝐿
2

(B
𝑛
, 𝑑𝑉)

onto 𝐿
2

ℎ
(B
𝑛
). It is easy to verify that each point evaluation is a
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bounded linear functional on 𝐿
2

ℎ
(B
𝑛
). It follows that 𝐿

2

ℎ
(B
𝑛
)

is also a reproducing function space with reproducing kernel:

𝑅
𝑧

(𝑤) = 𝐾
𝑧

(𝑤) + 𝐾
𝑧

(𝑤) − 1, 𝑧, 𝑤 ∈ B
𝑛
,

𝑄𝑓 (𝑧) = 𝑃𝑓 (𝑧) + 𝑃𝑓(𝑧) − 𝑃𝑓 (0) , 𝑓 ∈ 𝐿
2

(B
𝑛
, 𝑑𝑉) .

(3)

For a function 𝜙 ∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉), we define the Toeplitz

operator 𝑇
𝜙

: 𝐿
2

ℎ
(B
𝑛
) → 𝐿

2

ℎ
(B
𝑛
) with symbol 𝜙 by

𝑇
𝜙

(𝑓) = 𝑄 (𝜙𝑓) , 𝑓 ∈ 𝐿
2

ℎ
(B
𝑛
) . (4)

For product problem, on the Hardy space, Brown and
Halmos [2] showed that if 𝑓 and 𝑔 are bounded functions
on the unit circle, then 𝑇

𝑓
𝑇
𝑔
is another Toeplitz operator if

and only if either 𝑓 or 𝑔 is analytic. In the setting of the
Bergman space, the condition that either 𝑓 or 𝑔 is analytic
is still sufficient, but it is no longer necessary. Ahern and
Čučković [3] showed that a Brown-Halmos type result holds
for Toeplitz operators with harmonic symbols on 𝐿

2

𝑎
(B
𝑛
). In

[4], Ahern characterized when the product of two Toeplitz
operators with harmonic symbols is a Toeplitz operator. Later
in [5], Louhichi et al. gave the necessary and sufficient con-
ditions for the product of two quasihomogeneous Toeplitz
operators to be a Toeplitz operator. Recently, Dong and Zhou
[6] characterized when the product of quasihomogeneous
Toeplitz operators is a Toeplitz operator on the harmonic
Bergman space of the unit disk.

The situation is more complicated on the Hardy,
Bergman, and harmonic Bergman spaces of several complex
variables. In 2003, Ding [7] discussed the product problem
for two Toeplitz operators with bounded symbols on the
Hardy space 𝐻

2

(D𝑛). After that, Choe et al. [8] solved the
product problem for pluriharmonic Toeplitz operators on
the Bergman space of the polydisk. On the Bergman space
of the unit ball, Zhou and Dong [9] determined when
the product of two radial Toeplitz operators is a Toeplitz
operator. Later in [10], they discussed the product problem
for two separately quasihomogeneous Toeplitz operators. In
Zhang and Lu’s paper [11], they characterized the product
problem for two Toeplitz operators with quasihomogeneous
symbols. On the pluriharmonic Bergman space, Yang et
al. [12] gave the necessary and sufficient conditions for the
product of two radial Toeplitz operators to be a Toeplitz
operator.

For zero-product problem, on the Hardy space, Brown
and Halmos [2] proved that if 𝑓, 𝑔 ∈ 𝐿

∞

(T) such that
𝑇
𝑓
𝑇
𝑔

= 0, then one of the symbols must be the zero function.
Motivated by this result, Guo [13] showed that𝑇

𝜙
1

𝑇
𝜙
2

⋅ ⋅ ⋅ 𝑇
𝜙
𝑛

=

0 implies that 𝜙
𝑖

= 0 for some 𝑖, when 𝑛 = 5. After that,
Gu [14] proved that for 𝑛 = 6, the result in [13] is also
true. Recently, Aleman and Vukotić [15] completely solved
the zero-product problem for several Toeplitz operators on
the Hardy space. On the Bergman space of the unit disk,
Ahern and Čučković [3] obtained that the result is analogous
to that in [2] for the zero-product problem of two harmonic
Toeplitz operators. Furthermore,they got that 𝑇

𝑓
𝑇
𝑔

= 0

implies 𝑓 = 0 or 𝑔 = 0, where 𝑓 is arbitrary bounded
and 𝑔 is radial in [16]. In 2003, Čučković [17] proved that if
𝑓 ∈ 𝐿

∞

(D) such that𝑇
𝑓
𝑇
𝑧
𝑗
−𝑧
𝑙 = 0, where 𝑗, 𝑙 are both positive

integers, then 𝑓 = 0. Later in [18], Louhichi et al. considered
the zero-product problem for 𝑓, 𝑔 ∈ 𝐿

∞

(D, 𝑑𝐴) with 𝑔 =

∑
𝑁

𝑘=−∞
𝑒
𝑖𝑘𝜃

𝑔
𝑘
, where 𝑔

𝑘
is a bounded radial function and 𝑁

is a positive integer. On the Bergman space of the unit ball,
Dong and Zhou [10] investigated the zero-product problem
of two Toeplitz operators, one of whose symbols is separately
quasihomogeneous and the other is arbitrary bounded. Bauer
and Vasilevski [19] considered the zero-product problem and
a more general problem of zero finite sum of finite products
of Toeplitz operators. Recently, Yang et al. [12] discussed the
zero-product problem for several radial Toeplitz operators on
the pluriharmonic Bergman space of the unit ball.

For commuting problem, Brown and Halmos [2] firstly
considered the commutativity of two Toeplitz operators on
the Hardy space. They showed that two bounded Toeplitz
operators 𝑇

𝜙
and 𝑇

𝜓
commute if and only if (1) both 𝜙

and 𝜓 are analytic, (2) both 𝜙 and 𝜓 are coanalytic, or
(3) one is a linear function of the other. On the Bergman
space of the unit disk, Axler and Čučković [20] obtained
that the same result is also true for Toeplitz operators with
bounded harmonic symbols. In [21], Čučković and Rao used
the Mellin transform to study the commutativity of two
Toeplitz operators on 𝐿

2

𝑎
(D) and described those operators

which commute with 𝑇
𝑒
𝑖𝑝𝜃
𝑟
𝑚 for (𝑝, 𝑚) ∈ N × N. Later

in [22], Louhichi and Zakariasy characterized commuting
Toeplitz operators on 𝐿

2

𝑎
(D) with quasihomogeneous sym-

bols. On the Bergman space of the unit ball, Zheng [23]
studied commuting Toeplitz operators with pluriharmonic
symbols. Recently, extending Vasilevski’s results in [24, 25],
Quiroga-Barranco and Vasilevski gave the description of
many (geometrically defined) classes of commuting Toeplitz
operators of the unit ball in [26, 27]. Zhou and Dong
[9] studied the commuting problem for quasihomogeneous
Toeplitz operators. In 2012,Dong andZhou [28] andLouhichi
and Zakariasy [29] characterized the commuting Toeplitz
operators with radial or quasihomogeneous symbols on the
harmonic Bergman space of the unit disk. In papers [19,
30–33], the authors studied the wide classes of (nongeo-
metrically defined) commutative Banach algebras generated
by Toeplitz operators of the Bergman spaces on the unit
ball.

Motivated by recent results of the unit ball in [9, 10,
12], in this paper, on the pluriharmonic space of the unit
ball, we first characterize the product of two Toeplitz oper-
ators with certain separately quasihomogeneous symbols to
be a Toeplitz operator. Next, we solve the zero-product
problem for several Toeplitz operators when one of the
symbols is separately quasihomogeneous and the others are
quasihomogeneous and show that zero-product problem
for two Toeplitz operators with certain symbols has only
a trivial solution. At last, the commutativity of certain
(separately) quasihomogeneous Toeplitz operators is also
discussed.
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2. Preliminaries
Let N denote the set of all nonnegative integers. For any 𝛼 =

(𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
) ∈ N𝑛, for any point 𝑧 = (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ B

𝑛
,

we write
|𝛼| = 𝛼

1
+ 𝛼

2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
,

𝛼! = 𝛼
1
!𝛼
2
!, . . . , 𝛼

𝑛
!,

𝑧
𝛼

= 𝑧
𝛼
1

1
𝑧
𝛼
2

2
, . . . , 𝑧

𝛼
𝑛

𝑛
.

(5)

For two multi-indexes 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
), 𝛽 = (𝛽

1
, 𝛽
2
,

. . . , 𝛽
𝑛
) ∈ N𝑛, the notations 𝛼 ⪰ 𝛽 and 𝛼 ⊥ 𝛽 mean that

𝛼
𝑖
≥ 𝛽

𝑖
for every 𝑖 and 𝛼

1
𝛽
1

+ 𝛼
2
𝛽
2

+ ⋅ ⋅ ⋅ + 𝛼
𝑛
𝛽
𝑛

= 0. Let 𝛼 − 𝛽

denote (𝛼
1

− 𝛽
1
, 𝛼
2

− 𝛽
2
, . . . , 𝛼

𝑛
− 𝛽

𝑛
). Moreover, if 𝛼 ⪰ 𝛽,

|𝛼 − 𝛽| = |𝛼| − |𝛽|.
For a function 𝜙 ∈ 𝐿

1

(B
𝑛
, 𝑑𝑉), 𝜙 is said to be radial if

and only if 𝜙(𝑈𝑧) = 𝜙(𝑧) for any unitary transformation 𝑈

of C𝑛; 𝜙 is said to be separately radial if and only if 𝜙(𝑈𝑧) =

𝜙(𝑧) for any unitary transformation 𝑈 of C𝑛 with a diagonal
matrix. This implies that a radial function has a form 𝜙(𝑧) =

𝜙(|𝑧|) and a separately radial function has a form 𝜙(𝑧) =

𝜙(|𝑧
1
|, . . . , |𝑧

𝑛
|).

Using radial function and separately radial function, we
give the following definition.

Definition 1. Let 𝑝, 𝑠 ∈ N𝑛 with 𝑝 ⊥ 𝑠 and 𝑓 ∈ 𝐿
1

(B
𝑛
, 𝑑𝑉).

(I) 𝑓 is called a quasihomogeneous function of degree
(𝑝, 𝑠) if 𝑓 has the following decomposition:

𝑓 (|𝑟| 𝜉) = 𝜉
𝑝

𝜉

𝑠

𝜙 (|𝑟|) (6)

for any 𝜉 ∈ S
𝑛
, 𝑟 = (𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
) and |𝑟| =

√|𝑟
1
|
2

+ |𝑟
2
|
2

+ ⋅ ⋅ ⋅ + |𝑟
𝑛
|
2, where 𝑟

𝑖
= |𝑧

𝑖
| for 1 ≤ 𝑖 ≤ 𝑛 and𝜙 is

a radial function. In this case, 𝑇
𝑓
is called quasihomogeneous

Toeplitz operator of degree (𝑝, 𝑠).
(II) 𝑓 is called a separately quasihomogeneous function

of degree (𝑝, 𝑠) if 𝑓 has the following decomposition:

𝑓 (|𝑟| 𝜉) = 𝜉
𝑝

𝜉

𝑠

𝜙 (𝑟) (7)

for any 𝜉 ∈ S
𝑛
, where 𝜙 is a separately radial function. In

this case, 𝑇
𝑓
is called separately quasihomogeneous Toeplitz

operator of degree (𝑝, 𝑠).
We now recall some useful results from [34]. Denote by

𝜏(B
𝑛
) the base of B

𝑛
, that is,

𝜏 (B
𝑛
) = {𝑟 = (𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
) = (

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
, . . . ,

󵄨
󵄨
󵄨
󵄨
𝑧
𝑛

󵄨
󵄨
󵄨
󵄨
) :

𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) ∈ B

𝑛
} .

(8)

If 𝜙 is a bounded separately radial function, we get that

∫

B
𝑛

𝜙 (𝑧) 𝑑𝑉 (𝑧) = 2
𝑛

𝑛! ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟𝑑𝑟, (9)

where 𝑟𝑑𝑟 = ∏
𝑛

𝑖=1
𝑟
𝑖
𝑑𝑟
𝑖
.

LetR = {𝜙 : B
𝑛

→ C is separately radial : ∫
𝜏(B
𝑛
)

|𝜙(𝑟)|
2

𝑟𝑑𝑟 < ∞}. Dong and Zhou [10] showed that for 𝑓 ∈

𝐿
2

(B
𝑛
, 𝑑𝑉), 𝑓 has the decomposition

𝑓 (|𝑟| 𝜉) = ∑

𝑝⊥𝑠,𝑝,𝑠∈N𝑛

𝜉
𝑝

𝜉

𝑠

𝑓
𝑝,𝑠

(𝑟) , 𝑓
𝑝,𝑠

∈ R. (10)

They also proved the following result.

Lemma 2. Let 𝑓(𝑧) = ∑
𝑝⊥𝑠,𝑝,𝑠∈N𝑛 𝜉

𝑝

𝜉

𝑠

𝑓
𝑝,𝑠

(𝑟) ∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉);

then 𝜉
𝑝

𝜉

𝑠

𝑓
𝑝,𝑠

(𝑟) is bounded on B
𝑛
for multi-indexes 𝑝, 𝑠 ∈ N𝑛

with 𝑝 ⊥ 𝑠.

In order to get our main results, we need to introduce
the Mellin transform, which is defined for any function 𝜙 ∈

𝐿
1

([0, 1], 𝑟𝑑𝑟) by the formula

̂
𝜙 (𝑧) = ∫

1

0

𝜙 (𝑟) 𝑟
𝑧−1

𝑑𝑟. (11)

It is well known that ̂
𝜙 is well defined on the right half-plane

{𝑧 : Re 𝑧 ≥ 2} and is analytic on {𝑧 : Re 𝑧 > 2}. It is helpful
that the Mellin transform is uniquely determined by its value
on an arithmetic sequence of integers. In fact, we have the
following result (see [35, page 102]).

Lemma 3. Suppose that 𝜙 is a bounded analytic function on
{𝑧 : Re 𝑧 > 0} which vanishes at the pairwise distinct points
𝑧
1
, 𝑧
2
, . . ., where

(I) inf{|𝑧
𝑛
|} > 0, and

(II) ∑
𝑛≥1

Re(1/𝑧
𝑛
) = ∞.

Then 𝜙 vanishes identically on {𝑧 : Re 𝑧 > 0}.

Remark 4. We will often use Lemma 3 to show that if 𝜙 ∈

𝐿
1

([0, 1], 𝑟𝑑𝑟) and if there exists a sequence {𝑛
𝑘
} ⊂ N such

that

̂
𝜙 (𝑛

𝑘
) = 0, ∑

𝑘≥0

1

𝑛
𝑘

= ∞, (12)

then ̂
𝜙(𝑧) = 0 for all 𝑧 ∈ {𝑧 : Re 𝑧 > 2} and so 𝜙 = 0.

In this paper, we will need a similar result in higher
dimensions. Now we give the following definition.

Definition 5. Let 𝐸 be a subset of Z2
+
; one says that 𝐸 satisfies

condition (I) if the following statement holds:
(I) there exists a sequence {𝛼

(1)

𝑖
}
∞

𝑖=1
such that∑

∞

𝑖=1
= 1/𝛼

(1)

𝑖

= ∞, and for every fixed 𝛼
(1)

𝑖
, there also exists a sequence

{𝛼
(2)

𝑗(𝑖)
}
∞

𝑗(𝑖)=1
such that ∑

∞

𝑗(𝑖)=1
1/𝛼

(2)

𝑗(𝑖)
= ∞ and {(𝛼

(1)

𝑖
, 𝛼
(2)

𝑗(𝑖)
) :

𝑗(𝑖) = 1, 2, . . .} ⊂ 𝐸.

Remark 6. It follows from Definition 5 that for a multi-index
𝛿 ∈ N2, if 𝐸 is a subset of {𝛼 ∈ Z2

+
: 𝛼 ⪰ 𝛿} and if 𝐸

𝑐 is the
complement of 𝐸 in {𝛼 ∈ Z2

+
: 𝛼 ⪰ 𝛿}, then either 𝐸 or 𝐸

𝑐

satisfies condition (I).

In this paper, we will often use Lemmas 4 and 12 in [12]
and Lemma 2.1 and Corollary 2.7 in [10] which can be stated
as follows.

Lemma 7. Let 𝜙 be an integrable radial function on B
𝑛
such

that 𝑇
𝜙
is a bounded operator then for any multi-index 𝛼,

𝑇
𝜙

(𝑧
𝛼

) = 2 (𝑛 + |𝛼|)!
̂
𝜙 (2𝑛 + 2 |𝛼|) 𝑧

𝛼

,

𝑇
𝜙

(𝑧
𝛼

) = 2 (𝑛 + |𝛼|)!
̂
𝜙 (2𝑛 + 2 |𝛼|) 𝑧

𝛼

.

(13)
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Lemma 8. Let 𝑝, 𝑠 be two multi-indexes and let 𝜙 be an
integrable radial function on B

𝑛
such that 𝑇

𝜉
𝑝
𝜙
, 𝑇
𝜉

𝑠

𝜙

and 𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

are bounded operators. Then for any multi-index 𝛼,
𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

2 (𝑝 + 𝛼)! (𝑛 +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
+ |𝛼| − |𝑠|)!

(𝑝 + 𝛼 − 𝑠)! (𝑛 − 1 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

̂
𝜙

× (2𝑛 + 2 |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|) 𝑧

𝑝+𝛼−𝑠

𝑝 + 𝛼 ⪰ 𝑠,

2𝑠! (𝑛 + |𝑠| − |𝛼| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

(𝑠 − 𝛼 − 𝑝)! (𝑛 − 1 + |𝑠|)!

̂
𝜙

× (2𝑛 + |𝑠| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
) 𝑧
𝑠−𝛼−𝑝

𝑠 ⪰ 𝑝 + 𝛼,

𝑠 ̸= 𝑝 + 𝛼,

0 𝑠 󳠣 𝑝 + 𝛼,

𝑝 + 𝛼 󳠣 𝑠;

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

2 (𝑠 + 𝛼)! (𝑛 + |𝑠| + |𝛼| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

(𝑠 + 𝛼 − 𝑝) ! (𝑛 − 1 + |𝛼| + |𝑠|)!

̂
𝜙

× (2𝑛 + 2 |𝛼| + |𝑠| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
) 𝑧
𝑠+𝛼−𝑝

𝑠 + 𝛼 ⪰ 𝑝,

2𝑝! (𝑛 +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝛼| − |𝑠|)!

(𝑝 − 𝛼 − 𝑠)! (𝑛 − 1 +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

̂
𝜙

× (2𝑛 +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|) 𝑧

𝑝−𝛼−𝑠

𝑝 ⪰ 𝑠 + 𝛼,

𝑝 ̸= 𝑠 + 𝛼,

0 𝑝 󳠣 𝑠 + 𝛼,

𝑠 + 𝛼 󳠣 𝑝.

(14)

In particular, if 𝑝, 𝑠 are two nonzero multi-indexes with 𝑝 ⊥ 𝑠,
one has

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

)

=

{
{
{
{

{
{
{
{

{

2 (𝑝 + 𝛼)! (𝑛 +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
+ |𝛼| − |𝑠|)!

(𝑝 + 𝛼 − 𝑠)! (𝑛 − 1 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

̂
𝜙

× (2𝑛 + 2 |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|) 𝑧

𝑝+𝛼−𝑠

𝛼 ⪰ 𝑠,

0 𝛼 󳠣 𝑠;

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

)

=

{
{
{
{

{
{
{
{

{

2 (𝑠 + 𝛼)! (𝑛 + |𝑠| + |𝛼| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

(𝑠 + 𝛼 − 𝑝)! (𝑛 − 1 + |𝛼| + |𝑠|)!

̂
𝜙

× (2𝑛 + 2 |𝛼| + |𝑠| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
) 𝑧
𝑠+𝛼−𝑝

𝛼 ⪰ 𝑝,

0 𝛼 󳠣 𝑝.

(15)

Lemma 9. Let 𝛼, 𝛽 ∈ N𝑛 with 𝛼 ̸= 𝛽 and let 𝑡 ∈ [0, 1). If 𝜙 is a
bounded separately radial function on B

𝑛
, then

∫

S
𝑛

𝜙 (𝑡𝜉) 𝜉
𝛼

𝜉

𝛽

𝑑𝜎 (𝜉) = 0. (16)

Lemma 10. Let 𝑝, 𝑠 ∈ N2 and let 𝑔(𝑟) be a bounded function
on 𝜏(B

2
). If the set

𝐸 = {𝛼 ∈ Z
2

+
: 𝛼 ⪰ 𝑠, ∫

𝜏(B
2
)

𝑔 (𝑟) 𝑟
2𝛼+𝑝−𝑠

𝑟𝑑𝑟 = 0} (17)

satisfies condition (I), then 𝑔 = 0.

3. The Product of Toeplitz Operators with
Separately Quasihomogeneous Symbols

We start this section with the following result.

Lemma 11. Let 𝜙 be a bounded separately radial function on
B
𝑛
; then for any multi-index 𝛼 ∈ N𝑛,

𝑇
𝜙

(𝑧
𝛼

) =

2
𝑛

(𝑛 + |𝛼|)! ∫
𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼

𝑟𝑑𝑟

𝛼!

𝑧
𝛼

,

𝑇
𝜙

(𝑧
𝛼

) =

2
𝑛

(𝑛 + |𝛼|)! ∫
𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼

𝑟𝑑𝑟

𝛼!

𝑧
𝛼

.

(18)

Proof. For multi-indexes 𝛼, 𝛽 ∈ N𝑛, it is well known that

⟨𝑧
𝛼

, 𝑧
𝛽

⟩ =

{

{

{

0 𝛼 ̸= 𝛽,

𝑛!𝛼!

(𝑛 + |𝛼|)!

𝛼 = 𝛽.
(19)

According to (9) and Lemma 9, we get that

⟨𝑇
𝜙
𝑧
𝛼

, 𝑧
𝛽

⟩ = ⟨𝜙𝑧
𝛼

, 𝑧
𝛽

⟩

= ∫

B
𝑛

𝜙 (𝑧) 𝑧
𝛼

𝑧
𝛽

𝑑𝑉 (𝑧)

=

{

{

{

0 𝛼 ̸= 𝛽,

2
𝑛

𝑛! ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼

𝑟𝑑𝑟 𝛼 = 𝛽.

(20)

Similarly, if 𝛽 ⪰ 0, 𝛽 ̸= 0, we obtain ⟨𝑇
𝜙
𝑧
𝛼

, 𝑧
𝛽

⟩ = 0 = ⟨𝑧
𝛼

, 𝑧
𝛽

⟩.
Since {𝑧

𝛽

}
𝛽⪰0

∪ {𝑧
𝛽

}
𝛽⪰0,𝛽 ̸= 0

is a basis of the pluriharmonic
Bergman space, we have

𝑇
𝜙

(𝑧
𝛼

) =

2
𝑛

(𝑛 + |𝛼|)! ∫
𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼

𝑟𝑑𝑟

𝛼!

𝑧
𝛼

.
(21)

By a similar argument, one can deduce that𝑇
𝜙
(𝑧
𝛼

) = ((2
𝑛

(𝑛+

|𝛼|)! ∫
𝜏(B
𝑛
)

𝜙(𝑟)𝑟
2𝛼

𝑟𝑑𝑟)/𝛼!)𝑧
𝛼. This completes the proof.

The following theorem is crucial for us to get our main
results.

Theorem 12. Let 𝑓 be a bounded function on D. Then the
following conditions are equivalent:

(a) for any 𝛼 ∈ N𝑛, there exists 𝜆
𝛼

∈ C such that 𝑇
𝑓
(𝑧
𝛼

) =

𝜆
𝛼
𝑧
𝛼;

(b) for any 𝛼 ∈ N𝑛, there exists 𝜆
𝛼

∈ C such that 𝑇
𝑓
(𝑧
𝛼

) =

𝜆
𝛼
𝑧
𝛼.

Proof. Assume (a) holds; that is, 𝑇
𝑓
(𝑧
𝛼

) = 𝜆
𝛼
𝑧
𝛼. For any

multi-index 𝛽 ∈ N𝑛, it follows from (19) that

⟨𝑇
𝑓
𝑧
𝛼

, 𝑧
𝛽

⟩ = ⟨𝑓𝑧
𝛼

, 𝑧
𝛽

⟩ = ⟨𝑓𝑧
𝛽

, 𝑧
𝛼

⟩

= ⟨𝑇
𝑓
𝑧
𝛽

, 𝑧
𝛼

⟩ = 𝜆
𝛽

⟨𝑧
𝛽

, 𝑧
𝛼

⟩

= {

0 𝛼 ̸= 𝛽,

𝜆
𝛼

⟨𝑧
𝛼

, 𝑧
𝛼

⟩ 𝛼 = 𝛽
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= 𝜆
𝛼

⟨𝑧
𝛼

, 𝑧
𝛽

⟩ ,

⟨𝑇
𝑓
𝑧
𝛼

, 𝑧
𝛽

⟩ = ⟨𝑓𝑧
𝛼

, 𝑧
𝛽

⟩ = ⟨𝑓𝑧
0

, 𝑧
𝛼+𝛽

⟩

= ⟨𝑇
𝑓
𝑧
0

, 𝑧
𝛼+𝛽

⟩ = 𝜆
0

⟨𝑧
0

, 𝑧
𝛼+𝛽

⟩

= {

0 𝛼 ̸= 0 or 𝛽 ̸= 0,

𝜆
0

𝛼 = 𝛽 = 0

= 𝜆
𝛼

⟨𝑧
𝛼

, 𝑧
𝛽

⟩ . (22)

{𝑧
𝛽

}
𝛽⪰0

∪ {𝑧
𝛽

}
𝛽⪰0

which is a basis of the pluriharmonic
Bergman space implies that 𝑇

𝑓
(𝑧
𝛼

) = 𝜆
𝛼
𝑧
𝛼.

By a similar argument, one can show that (b) implies (a),
which completes the proof.

Using Theorem 12, we give the necessary and sufficient
condition when a bounded function is a separately radial
function.

Theorem 13. Let 𝜙 ∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉). Then the following

statements are equivalent:

(a) for any 𝛼 ∈ N𝑛, there exists 𝜆
𝛼

∈ C such that 𝑇
𝜙
(𝑧
𝛼

) =

𝜆
𝛼
𝑧
𝛼;

(b) 𝜙 is a separately radial function.

Proof. It is easy to show that (b) implies (a) by Lemma 11.
Now suppose (a) holds. That is, 𝑇

𝜙
(𝑧
𝛼

) = 𝜆
𝛼
𝑧
𝛼. Then

for any unitary transformation 𝑈 of C𝑛 with diagonal matrix
and 𝑧 ∈ B

𝑛
, we get 𝑈

−1

𝑧 ∈ B
𝑛
. Hence, one can obtain

𝑇
𝜙
(𝑈
−1

𝑧)
𝛼

= 𝜆
𝛼
(𝑈
−1

𝑧)
𝛼. A direct calculation shows that

𝑃 [𝜙 (𝑈𝑧) 𝑧
𝛼

] (𝑤) = ∫

B
𝑛

𝜙 (𝑈𝑧) 𝑧
𝛼

(1 − ⟨𝑤, 𝑧⟩)
𝑛+1

𝑑𝑉 (𝑧)

= ∫

B
𝑛

𝜙 (𝑧) (𝑈
−1

𝑧)

𝛼

(1 − ⟨𝑤, 𝑈
−1

𝑧⟩)
𝑛+1

𝑑𝑉 (𝑧)

= ∫

B
𝑛

𝜙 (𝑧) (𝑈
−1

𝑧)

𝛼

(1 − ⟨𝑈𝑤, 𝑧⟩)
𝑛+1

𝑑𝑉 (𝑧)

= 𝑃 [𝜙 (𝑧) (𝑈
−1

𝑧)

𝛼

] (𝑈𝑤) .

(23)

Similarly, we get that

𝑃 [𝜙 (𝑈𝑧) 𝑧
𝛼
] (𝑤) = 𝑃 [𝜙 (𝑧) (𝑈

−1
𝑧)
𝛼

] (𝑈𝑤) ,

𝑃 [𝜙 (𝑈𝑧) 𝑧
𝛼

] (0) = 𝑃 [𝜙 (𝑧) (𝑈
−1

𝑧)

𝛼

] (0) .

(24)

It follows that

𝑇
𝜙∘𝑈

(𝑧
𝛼

) (𝑤) = 𝑃 [𝜙 (𝑈𝑧) 𝑧
𝛼

] (𝑤)

+ 𝑃 [𝜙 (𝑈𝑧) 𝑧
𝛼
] (𝑤) − 𝑃 [𝜙 (𝑈𝑧) 𝑧

𝛼

] (0)

= 𝑃 [𝜙 (𝑧) (𝑈
−1

𝑧)

𝛼

] (𝑈𝑤) + 𝑃 [𝜙 (𝑧) (𝑈
−1

𝑧)
𝛼

]

× (𝑈𝑤) − 𝑃 [𝜙 (𝑧) (𝑈
−1

𝑧)

𝛼

] (0)

= 𝑇
𝜙

((𝑈
−1

𝑧)

𝛼

) (𝑈𝑤) = 𝜆
𝛼
(𝑈

−1

𝑧)

𝛼

(𝑈𝑤)

= 𝜆
𝛼
𝑤
𝛼

= 𝑇
𝜙

(𝑧
𝛼

) (𝑤) . (25)

By Theorem 12, we have 𝑇
𝜙∘𝑈

(𝑧
𝛼

) = 𝜆
𝛼
𝑧
𝛼

= 𝑇
𝜙
(𝑧
𝛼

).
Consequently, one can get that 𝑇

𝜙∘𝑈
= 𝑇

𝜙
and so 𝜙 ∘ 𝑈 = 𝜙.

Then 𝜙 is a separately radial function. This completes the
proof.

A direct calculation gives the following lemma, which we
will use often.

Lemma 14. Let 𝑝, 𝑠 be two multi-indexes and let 𝜙 ∈ R and
𝜉
𝑝

𝜉

𝑠

𝜙 ∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉). Then for any multi-index 𝛼 ∈ N𝑛,

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

( (2
𝑛

(𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)!

× ∫
𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑝

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑝 + 𝛼 − 𝑠)!)

−1

) 𝑧
𝑝+𝛼−𝑠

𝑝 + 𝛼 ⪰ 𝑠,

( (2
𝑛

(𝑛 + |𝑠| − |𝛼| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

× ∫
𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝑠

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑠 − 𝛼 − 𝑝)!)

−1

) 𝑧
𝑠−𝛼−𝑝

𝑠 ⪰ 𝑝 + 𝛼,

𝑠 ̸= 𝑝 + 𝛼,

0 𝑠 󳠣 𝑝 + 𝛼,

𝑝 + 𝛼 󳠣 𝑠;

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

( (2
𝑛

(𝑛 + |𝛼| + |𝑠| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

× ∫
𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑠

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑠 + 𝛼 − 𝑝)!)

−1

) 𝑧
𝑠+𝛼−𝑝

𝑠 + 𝛼 ⪰ 𝑝,

( (2
𝑛

(𝑛 − |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)!

× ∫
𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝑝

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑝 − 𝛼 − 𝑠)!)

−1

) 𝑧
𝑝−𝛼−𝑠

𝑝 ⪰ 𝑠 + 𝛼,

𝑝 ̸= 𝑠 + 𝛼,

0 𝑝 󳠣 𝑠 + 𝛼,

𝑠 + 𝛼 󳠣 𝑝.

(26)
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Furthermore, if 𝑝, 𝑠 are two nonzero multi-indexes with 𝑝 ⊥ 𝑠,
one has

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

( (2
𝑛

(𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)!

× ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑝

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑝 + 𝛼 − 𝑠)!)

−1

) 𝑧
𝑝+𝛼−𝑠

𝑝 + 𝛼 ⪰ 𝑠,

0 𝑝 + 𝛼 󳠣 𝑠;

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

) =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

( (2
𝑛

(𝑛 + |𝛼| + |𝑠| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

× ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑠

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑠 + 𝛼 − 𝑝)!)

−1

) 𝑧
𝑠+𝛼−𝑝

𝑠 + 𝛼 ⪰ 𝑝,

0 𝑠 + 𝛼 󳠣 𝑝.

(27)

Proof. Here, we only prove that (26) and (27) hold. For any
multi-index 𝛽 ∈ N𝑛, if 𝑝 + 𝛼 󳠣 𝑠, then there exists 𝑖 such that
𝛼
𝑖
+ 𝑝

𝑖
< 𝑠

𝑖
. Hence, 𝑝 + 𝛼 ̸= 𝛽 + 𝑠. It follows from Lemma 9

that

⟨𝑃 [𝜉
𝑝

𝜉

𝑠

𝜙𝑧
𝛼

] , 𝑧
𝛽

⟩ = ∫

B
𝑛

𝜉
𝑝

𝜉

𝑠

𝜙 (𝑧) 𝑧
𝛼

𝑧
𝛽

𝑑𝑉 (𝑧)

= ∫

1

0

2𝑛|𝑟|
2𝑛−1

|𝑟|
|𝛼|+|𝛽|

𝑑 |𝑟|

× ∫

S
𝑛

𝜙 (|𝑟| 𝜉) 𝜉
𝑝+𝛼

𝜉

𝑠+𝛽

𝑑𝜎 (𝜉) = 0.

(28)

For 𝛼 + 𝑝 ⪰ 𝑠, using Lemma 9, (9), and (19), we get

⟨𝑃 [𝜉
𝑝

𝜉

𝑠

𝜙𝑧
𝛼

] , 𝑧
𝛽

⟩

= ∫

B
𝑛

𝜉
𝑝

𝜉

𝑠

𝜙 (𝑧) 𝑧
𝛼

𝑧
𝛽

𝑑𝑉 (𝑧)

=

{
{

{
{

{

0 𝛽 ̸= 𝑝 + 𝛼 − 𝑠,

2
𝑛

𝑛! ∫
𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑝

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟 𝛽 = 𝑝 + 𝛼 − 𝑠,

⟨𝑧
𝑝+𝛼−𝑠

, 𝑧
𝛽

⟩ =

{
{

{
{

{

0 𝛽 ̸= 𝑝 + 𝛼 − 𝑠,

𝑛! (𝑝 + 𝛼 − 𝑠)!

(𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)!

𝛽 = 𝑝 + 𝛼 − 𝑠.

(29)

Moreover, for 𝛽 ⪰ 0, 𝛽 ̸= 0, we have ⟨𝑃[𝜉
𝑝

𝜉

𝑠

𝜙𝑧
𝛼

], 𝑧
𝛽

⟩ = 0. It
follows that for𝑝+𝛼 ⪰ 𝑠, ⟨𝑃[𝜉

𝑝

𝜉

𝑠

𝜙𝑧
𝛼

], 𝑧
𝛽

⟩ = ⟨𝑧
𝑝+𝛼−𝑠

, 𝑧
𝛽

⟩ = 0.
Thus, one can obtain that

𝑃 [𝜉
𝑝

𝜉

𝑠

𝜙𝑧
𝛼

] =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

( (2
𝑛

(𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)!

× ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑝

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

× ((𝑝 + 𝛼 − 𝑠)!)

−1

) 𝑧
𝑝+𝛼−𝑠

𝑝 + 𝛼 ⪰ 𝑠,

0 𝑝 + 𝛼 󳠣 𝑠.

(30)

Note that 𝜙 is still a separately radial function; by a similar
argument, we get that

𝑃 [𝜉

𝑝

𝜉
𝑠

𝜙𝑧
𝛼

] =

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

( (2
𝑛

(𝑛 + |𝑠| − |𝛼| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

× ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝑠

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑠 − 𝛼 − 𝑝)!)

−1

) 𝑧
𝑠−𝛼−𝑝

𝑠 ⪰ 𝑝 + 𝛼,

0 𝑠 󳠣 𝑝 + 𝛼.

(31)

It follows from above two equations that

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

(𝑧
𝛼

) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

( (2
𝑛

(𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)!

× ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑝

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑝 + 𝛼 − 𝑠)!)

−1

) 𝑧
𝑝+𝛼−𝑠

𝑝 + 𝛼 ⪰ 𝑠,

( (2
𝑛

(𝑛 + |𝑠| − |𝛼| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

× ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝑠

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟)

×((𝑠 − 𝛼 − 𝑝)!)

−1

) 𝑧
𝑠−𝛼−𝑝

𝑠 ⪰ 𝑝 + 𝛼,

𝑠 ̸= 𝑝 + 𝛼,

0 𝑠 󳠣 𝑝 + 𝛼,

𝑝 + 𝛼 󳠣 𝑠.

(32)

Furthermore, if 𝑝 ⊥ 𝑠 and 𝑝, 𝑠 are nonzero multi-indexes,
there exists 𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝑝

𝑖
> 0 and 𝑠

𝑖
= 0. This

implies that there does not exist 𝛼 ∈ N𝑛 such that 𝑠 ⪰ 𝑝 + 𝛼.
It follows that (27) holds. This completes the proof.

Theorem 15. Let 𝑝, 𝑠 ∈ N𝑛 be two nonzero multi-indexes with
𝑝 ⊥ 𝑠 and let𝜙 be a bounded function onB

𝑛
.Then the following

conditions are equivalent:

(a) for any 𝛼 ∈ N𝑛, there exists 𝜆
𝛼

∈ C such that

𝑇
𝜙

(𝑧
𝛼

) = {

0 𝑝 + 𝛼 󳠣 𝑠,

𝜆
𝛼
𝑧
𝑝+𝛼−𝑠

𝑝 + 𝛼 ⪰ 𝑠;

(33)
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(b) 𝜙 is a separately quasihomogeneous function of degree
(𝑝, 𝑠).

Proof. It is obvious that (b) implies (a). Now assume (a) holds.
For any multi-index 𝛽 ∈ N𝑛, we have

⟨𝑇
𝑧
𝑝

𝑧
𝑠
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩ = ⟨𝜙𝑧
𝛼+𝑠

, 𝑧
𝑝+𝛽

⟩ = ⟨𝑇
𝜙
𝑧
𝛼+𝑠

, 𝑧
𝑝+𝛽

⟩

= ⟨𝜆
𝛼+𝑠

𝑧
𝛼+𝑝

, 𝑧
𝑝+𝛽

⟩

=

{
{

{
{

{

0 𝛼 ̸= 𝛽,

𝜆
𝛼+𝑠

𝑛! (𝛼 + 𝑝)!

(𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

𝛼 = 𝛽.

(34)

Similarly, for 𝛽 ⪰ 0 and 𝛽 ̸= 0, we get that ⟨𝑇
𝑧
𝑝

𝑧
𝑠
𝜙
(𝑧
𝛼

), 𝑧
𝛽

⟩ =

0 = ⟨𝑧
𝛼

, 𝑧
𝛽

⟩. In light of (19), one can deduce that

𝑇
𝑧
𝑝

𝑧
𝑠
𝜙

(𝑧
𝛼

) =

𝜆
𝛼+𝑠

(𝛼 + 𝑝)! (𝑛 + |𝛼|)!

𝛼! (𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)!

𝑧
𝛼

. (35)

It follows from Theorem 13 that 𝑧
𝑝

𝑧
𝑠

𝜙 is a separately radial
function. Let 𝑧

𝑝

𝑧
𝑠

𝜙(𝑧) = 𝜓(𝑧), where 𝜓 is a separately radial
function on B

𝑛
. It follows that

𝜙 (𝑧) = 𝜓 (𝑟) 𝑟
−(2𝑝+2𝑠)

|𝑟|
(|𝑝|+|𝑠|)

𝜉
𝑝

𝜉

𝑠

, (36)

which implies that 𝜙 is a separately quasihomogeneous
function of degree (𝑝, 𝑠).

Now we discuss when the product of two Toeplitz
operators with certain symbols is a Toeplitz operator.

Theorem 16. Let 𝜙
1
, 𝜙
2
be two bounded separately radial

functions on B
𝑛
. If there exists a bounded function ℎ such that

𝑇
𝜙
1

𝑇
𝜙
2

= 𝑇
ℎ
, then ℎ is also a separately radial function on B

𝑛
.

Proof. It follows from Lemma 11 that for 𝛼 ∈ N𝑛

𝑇
ℎ

(𝑧
𝛼

) = 𝑇
𝜙
1

𝑇
𝜙
2

(𝑧
𝛼

)

=

2
𝑛

(𝑛 + |𝛼|)! ∫
𝜏(B
𝑛
)

𝜙
2

(𝑟) 𝑟
2𝛼

𝑟𝑑𝑟

𝛼!

⋅

2
𝑛

(𝑛 + |𝛼|)! ∫
𝜏(B
𝑛
)

𝜙
1

(𝑟) 𝑟
2𝛼

𝑟𝑑𝑟

𝛼!

𝑧
𝛼

.

(37)

In virtue of Theorem 13, we get that ℎ is a separately radial
function. This completes the proof.

Theorem 17. Let 𝑝, 𝑠 ∈ N𝑛 be two nonzero multi-indexes with
𝑝 ⊥ 𝑠 and let 𝜙

1
, 𝜙
2

∈ R such that 𝜉

𝑠

𝜙
1
, 𝜉
𝑝

𝜙
2

∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉).

If there exists a bounded function ℎ such that 𝑇
𝜉

𝑠

𝜙
1

𝑇
𝜉
𝑝
𝜙
2

= 𝑇
ℎ
,

then ℎ is a separately quasihomogeneous function of degree
(𝑝, 𝑠).

Proof. For any multi-index 𝛼 ∈ N𝑛, using Lemma 14, one can
obtain that

𝑇
ℎ

(𝑧
𝛼

) = 𝑇
𝜉

𝑠

𝜙
1

𝑇
𝜉
𝑝
𝜙
2

(𝑧
𝛼

) = {

𝜆
𝛼
𝑧
𝛼+𝑝−𝑠

𝛼 + 𝑝 ⪰ 𝑠,

0 𝛼 + 𝑝 󳠣 𝑠,

(38)

where 𝜆
𝛼

= (2
𝑛

(𝑛 + |𝛼| + |𝑝| − |𝑠|)! ∫
𝜏(B
𝑛
)

𝜙
1
(𝑟)𝑟

2𝛼+2𝑝

|𝑟|
−|𝑠|

𝑟𝑑𝑟/(𝑝 + 𝛼 − 𝑠)!) ⋅ (2
𝑛

(𝑛 + |𝛼| +

|𝑝|)! ∫
𝜏(B
𝑛
)

𝜙
2
(𝑟)𝑟

2𝛼+2𝑝

|𝑟|
−|𝑝|

𝑟𝑑𝑟/(𝑝 + 𝛼)!). It follows from
Theorem 15 that ℎ is a separately quasihomogeneous function
of degree (𝑝, 𝑠).

Using the same technique, we give the following result
and omit the proof.

Theorem 18. Let 𝑝, 𝑠 ∈ N𝑛 be two nonzero multi-indexes with
𝑝 ⊥ 𝑠 and let 𝜙

1
, 𝜙
2

∈ R such that 𝜙
1
, 𝜉
𝑝

𝜉

𝑠

𝜙
2

∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉).

If there exists a bounded function ℎ such that 𝑇
𝜙
1

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙
2

= 𝑇
ℎ
,

then ℎ is a separately quasihomogeneous function of degree
(𝑝, 𝑠).

4. The Zero-Product Problem of Toeplitz
Operators with Quasihomogeneous and
Separately Quasihomogeneous Symbols

In this section, we will study the zero-product problem for
several Toeplitz operators when one of the symbols is sepa-
rately quasihomogeneous and the others are homogeneous,
and show that the zero-product problem for two Toeplitz
operators with certain symbols has only a trivial solution on
the pluriharmonic Bergman space of the unit ball.

Theorem 19. Let 𝑝
𝑖
, 𝑠
𝑖

(1 ≤ 𝑖 ≤ 𝑚) ∈ N𝑛 be nonzero
multi-indexes with 𝑝

𝑖
⊥ 𝑠

𝑖
and let 𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑚−1
be square

integrable radial functions and 𝜙
𝑚

∈ R such that 𝜉
𝑝
𝑖
𝜉

𝑠
𝑖

𝜙
𝑖

∈

𝐿
∞

(B
𝑛
, 𝑑𝑉). Then

𝑇
𝜉
𝑝
1 𝜉

𝑠
1

𝜙
1

𝑇
𝜉
𝑝
2 𝜉

𝑠
2

𝜙
2

. . . 𝑇
𝜉
𝑝𝑚 𝜉

𝑠𝑚

𝜙
𝑚

= 0 (39)

if and only if 𝜙
𝑖
= 0 for some 𝑖.

Proof. Suppose 𝑇
𝜉
𝑝
1 𝜉

𝑠
1

𝜙
1

𝑇
𝜉
𝑝
2 𝜉

𝑠
2

𝜙
2

. . . 𝑇
𝜉
𝑝𝑚 𝜉

𝑠𝑚

𝜙
𝑚

= 0. Then for
multi-index 𝛼 ∈ N𝑛,

𝑇
𝜉
𝑝
1 𝜉

𝑠
1

𝜙
1

𝑇
𝜉
𝑝
2 𝜉

𝑠
2

𝜙
2

. . . 𝑇
𝜉
𝑝𝑚 𝜉

𝑠𝑚

𝜙
𝑚

(𝑧
𝛼

) = 0,

𝑇
𝜉
𝑝
1 𝜉

𝑠
1

𝜙
1

𝑇
𝜉
𝑝
2 𝜉

𝑠
2

𝜙
2

. . . 𝑇
𝜉
𝑝𝑚 𝜉

𝑠𝑚

𝜙
𝑚

(𝑧
𝛼

) = 0.

(40)

It follows from Lemmas 8 and 14 that

𝑇
𝜉
𝑝
1 𝜉

𝑠
1

𝜙
1

𝑇
𝜉
𝑝
2 𝜉

𝑠
2

𝜙
2

. . . 𝑇
𝜉
𝑝𝑚 𝜉

𝑠𝑚

𝜙
𝑚

(𝑧
𝛼

)

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝐶
𝛼
𝑧
𝛼+∑
𝑚−1

𝑗=0
𝑝
𝑚−𝑗
−∑
𝑚−1

𝑗=0
𝑠
𝑚−𝑗

𝛼 + 𝑝
𝑚

⪰ 𝑠
𝑚

, . . . , 𝛼 +

𝑚−1

∑

𝑗=0

𝑝
𝑚−𝑗

⪰

𝑚−1

∑

𝑗=0

𝑠
𝑚−𝑗

,

0 others,

(41)
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where

𝐶
𝛼

= (2
𝑛

(𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝
𝑚

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
𝑠
𝑚

󵄨
󵄨
󵄨
󵄨
)!

× ∫

𝜏(B
𝑛
)

𝜙
𝑚

(𝑟) 𝑟
2𝛼+2𝑝

𝑚

|𝑟|
−(|𝑝
𝑚
|+|𝑠
𝑚
|)

𝑟𝑑𝑟)

× ((𝑝
𝑚

+ 𝛼 − 𝑠
𝑚

)!)
−1

⋅

⋅

𝑚−1

∏

𝑖=1

{

{

{

(2 (𝛼 +

𝑖

∑

𝑗=0

𝑝
𝑚−𝑗

−

𝑖−1

∑

𝑗=0

𝑠
𝑚−𝑗

)!

× (𝑛 + |𝛼| +

𝑖

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
−

𝑖

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)!)

× ((𝛼 +

𝑖

∑

𝑗=0

𝑝
𝑚−𝑗

−

𝑖

∑

𝑗=0

𝑠
𝑚−𝑗

)!

× (𝑛 − 1 + |𝛼| +

𝑖

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
−

𝑖−1

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)!)

−1

×
̂
𝜙
𝑚−𝑖

(2𝑛 + 2 |𝛼| + 2

𝑖−1

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

−2

𝑖−1

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
𝑝
𝑚−𝑖

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
𝑠
𝑚−𝑖

󵄨
󵄨
󵄨
󵄨
)

}

}

}

.

(42)

If 𝑇
𝜉
𝑝
1 𝜉

𝑠
1

𝜙
1

𝑇
𝜉
𝑝
2 𝜉

𝑠
2

𝜙
2

. . . 𝑇
𝜉
𝑝𝑚 𝜉

𝑠𝑚

𝜙
𝑚

(𝑧
𝛼

) = 0, then, for any multi-
index 𝛼 ∈ N𝑛 such that 𝛼 + 𝑝

𝑚
⪰ 𝑠

𝑚
, . . . , 𝛼 + ∑

𝑚−1

𝑗=0
𝑝
𝑚−𝑗

⪰

∑
𝑚−1

𝑗=0
𝑠
𝑚−𝑗

, we have

∫

𝜏(B
𝑛
)

𝜙
𝑚

(𝑟) 𝑟
2𝛼+2𝑝

𝑚

|𝑟|
−(|𝑝
𝑚
|+|𝑠
𝑚
|)

𝑟𝑑𝑟

⋅

𝑚−1

∏

𝑖=1

̂
𝜙
𝑚−𝑖

(2𝑛 + 2 |𝛼| + 2

𝑖−1

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
− 2

𝑖−1

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑝
𝑚−𝑖

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
𝑠
𝑚−𝑖

󵄨
󵄨
󵄨
󵄨
) = 0.

(43)

Now we are ready to show that 𝜙
𝑖

= 0 for some 𝑖. For the
sake of simplicity, we will consider the case of 𝑛 = 2. Let
𝐸 = {𝛼 ⪰ ∑

𝑚−1

𝑗=0
𝑠
𝑚−𝑗

: ∫
𝜏(B
𝑛
)

𝜙
𝑚

(𝑟)𝑟
2𝛼+2𝑝

𝑚
|𝑟|
−(|𝑝
𝑚
|+|𝑠
𝑚
|)

𝑟𝑑𝑟 =

0}. If 𝐸 satisfies condition (I), then 𝜙
𝑚

= 0 by Lemma 10.
Otherwise, let 𝐸

𝑐 denote the complement of 𝐸 in {𝛼 ∈ Z2
+

:

𝛼 ⪰ ∑
𝑚−1

𝑗=0
𝑠
𝑚−𝑗

}, and it follows fromRemark 6 that𝐸
𝑐 satisfies

condition (I). Now let

𝑀 =

{

{

{

𝛼 + 𝑝
𝑚

⪰ 𝑠
𝑚

, . . . , 𝛼 +

𝑚−1

∑

𝑗=0

𝑝
𝑚−𝑗

⪰

𝑚−1

∑

𝑗=0

𝑠
𝑚−𝑗

: ∫

𝜏(B
𝑛
)

𝜙
𝑚

(𝑟) 𝑟
2𝛼+2𝑝

𝑚

× |𝑟|
−(|𝑝
𝑚
|+|𝑠
𝑚
|)

𝑟𝑑𝑟 ̸= 0

}

}

}

.

(44)

It is obvious that 𝑀 ⊃ 𝐸
𝑐, which implies that 𝑀 satisfies

condition (I). Furthermore, we get that

∑

𝛼∈𝑀

1

|𝛼|

= ∞. (45)

Set

𝑀
𝑖
=

{

{

{

𝛼 + 𝑝
𝑚

⪰ 𝑠
𝑚

, . . . , 𝛼 +

𝑚−1

∑

𝑗=0

𝑝
𝑚−𝑗

⪰

𝑚−1

∑

𝑗=0

𝑠
𝑚−𝑗

:

̂
𝜙
𝑖
(2𝑛 + 2 |𝛼| + 2

𝑚−𝑖−1

∑

𝑗=0

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝑝
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
− 2

𝑚−𝑖−1

∑

𝑗=0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠
𝑚−𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑝
𝑖

󵄨
󵄨
󵄨
󵄨
−

󵄨
󵄨
󵄨
󵄨
𝑠
𝑖

󵄨
󵄨
󵄨
󵄨
) = 0

}

}

}

(46)

for 1 ≤ 𝑖 ≤ 𝑚 − 1. According to (43), we obtain that 𝑀 ⊂

∪
𝑚−1

𝑖=1
𝑀
𝑖
. Hence there exists some 𝑖 such that

∑

𝛼∈𝑀
𝑖

1

|𝛼|

= ∞. (47)

By Remark 4, one can deduce that 𝜙
𝑖
= 0 for some 𝑖 (1 ≤ 𝑖 ≤

𝑚 − 1). Moreover, if 𝜙
𝑖

= 0 for some 𝑖 (1 ≤ 𝑖 ≤ 𝑚), then
𝑇
𝜉
𝑝
1 𝜉

𝑠
1

𝜙
1

𝑇
𝜉
𝑝
2 𝜉

𝑠
2

𝜙
2

. . . 𝑇
𝜉
𝑝𝑚 𝜉

𝑠𝑚

𝜙
𝑚

(𝑧
𝛼

) = 0.
Conversely, it is obvious that if 𝜙

𝑖
= 0 for some 𝑖, then

𝑇
𝜉
𝑝
1 𝜉

𝑠
1

𝜙
1

𝑇
𝜉
𝑝
2 𝜉

𝑠
2

𝜙
2

. . . 𝑇
𝜉
𝑝𝑚 𝜉

𝑠𝑚

𝜙
𝑚

= 0. (48)

This completes the proof.

The following result is a partial answer to the zero-
product problem for two Toeplitz operators on 𝐿

2

ℎ
(B
𝑛
).

Theorem 20. Let 𝑓(𝑧) = ∑
𝑝,𝑠∈N𝑛,𝑝 ̸= 0,𝑠 ̸= 0,𝑝⊥𝑠

𝜉
𝑝

𝜉

𝑠

𝑓
𝑝,𝑠

(𝑟) ∈

𝐿
∞

(B
𝑛
, 𝑑𝑉), where 𝑓

𝑝,𝑠
(𝑟) ∈ R. Let 𝑔 = 𝜉

𝑝
∗

𝜉

𝑠
∗

𝜙(𝑟) ∈

𝐿
∞

(B
𝑛
, 𝑑𝑉), where 𝑝

∗

, 𝑠
∗ are two nonzero indexes with 𝑝

∗

⊥

𝑠
∗ and 𝜙 ∈ R. Then 𝑇

𝑓
𝑇
𝑔

= 0 if and only if either 𝑓 = 0 or
𝑔 = 0.
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Proof. By Lemma 2, we get that 𝜉
𝑝

𝜉

𝑠

𝑓
𝑝,𝑠

(𝑟) is bounded for any
multi-indexes 𝑝, 𝑠 ∈ N𝑛, 𝑝 ̸= 0, 𝑠 ̸= 0, 𝑝 ⊥ 𝑠.

If𝑇
𝑓
𝑇
𝑔

= 0, then for anymulti-index 𝛼 ∈ N𝑛, 𝑇
𝑓
𝑇
𝑔
(𝑧
𝛼

) =

0 and 𝑇
𝑓
𝑇
𝑔
(𝑧
𝛼

) = 0. It follows from (27) that

𝑇
𝜉
𝑝
𝜉

𝑠

𝑓
𝑝,𝑠
(𝑟)

(𝑧
𝛼

)

= 𝑐 (𝑝, 𝑠, 𝛼) ∫

𝜏(B
𝑛
)

𝑓
𝑝,𝑠

(𝑟) 𝑟
2𝛼+2𝑝

× |𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟𝑧
𝛼+𝑝−𝑠

,

(49)

where

𝑐 (𝑝, 𝑠, 𝛼) =

{
{

{
{

{

0 𝑝 + 𝛼 󳠣 𝑠,

2
𝑛

(𝑛 + |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)!

(𝑝 + 𝛼 − 𝑠)!

𝑝 + 𝛼 ⪰ 𝑠

(50)

and consequently,

𝑇
𝑓

(𝑧
𝛼

) = ∑

𝑝,𝑠∈N𝑛,𝑝 ̸= 0,𝑠 ̸= 0,𝑝⊥𝑠

𝑐 (𝑝, 𝑠, 𝛼)

× ∫

𝜏(B
𝑛
)

𝑓
𝑝,𝑠

(𝑟) 𝑟
2𝛼+2𝑝

|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟𝑧
𝛼+𝑝−𝑠

.

(51)

𝑇
𝑓
𝑇
𝑔
(𝑧
𝛼

) = 0 together with (27) implies that for any multi-
indexes 𝑝, 𝑠 ∈ N𝑛, 𝑝 ̸= 0, 𝑠 ̸= 0, and 𝑝 ⊥ 𝑠,

∫

𝜏(B
𝑛
)

𝑓
𝑝,𝑠

(𝑟) 𝑟
2𝛼+2𝑝

∗

−2𝑠
∗

+2𝑝

|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟

⋅ ∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑝

∗

|𝑟|
−(|𝑝
∗

|+|𝑠
∗

|)

𝑟𝑑𝑟 = 0

(52)

for all 𝛼 ⪰ 2𝑠
∗

+ 𝑠. Next we will prove that either 𝜙 = 0 or
𝑓
𝑝,𝑠

= 0 for 𝑝, 𝑠 ∈ N𝑛, 𝑝 ̸= 0, 𝑠 ̸= 0, and 𝑝 ⊥ 𝑠. Similarly as the
proof of Theorem 19, we will prove it in the case of 𝑛 = 2. Let

𝐸
𝑝,𝑠

= {𝛼 ∈ Z
2

+
: 𝛼 ⪰ 2𝑠

∗

+ 𝑠, ∫

𝜏(B
𝑛
)

𝑓
𝑝,𝑠

(𝑟) 𝑟
2𝛼+2𝑝

∗

−2𝑠
∗

+2𝑝

×|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟 = 0} .

(53)

If 𝐸
𝑝,𝑠

satisfies condition (I), noting that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑝,𝑠

(𝑟) 𝑟
𝑝+𝑠

|𝑟|
−(|𝑝|+|𝑠|)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜉
𝑝

𝜉

𝑠

𝑓
𝑝,𝑠

(𝑟)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< ∞, (54)

then 𝑓
𝑝,𝑠

= 0 by Lemma 10. Otherwise, let 𝐸
𝑐

𝑝,𝑠
denote the

complement of 𝐸
𝑝,𝑠

in {𝛼 ∈ Z2
+

: 𝛼 ⪰ 2𝑠
∗

+ 𝑠}; then 𝐸
𝑐

𝑝,𝑠

satisfies condition (I) by Remark 6. It follows from (52) that

∫

𝜏(B
𝑛
)

𝜙 (𝑟) 𝑟
2𝛼+2𝑝

∗

|𝑟|
−(|𝑝
∗

|+|𝑠
∗

|)

𝑟𝑑𝑟 = 0, ∀𝛼 ∈ 𝐸
𝑐

𝑝,𝑠
. (55)

Using Lemma 10 again, we obtain that 𝜙 = 0. Moreover, if
either 𝑓 = 0 or 𝜙 = 0, then 𝑇

𝑓
𝑇
𝑔
(𝑧
𝛼

) = 0. Hence, 𝑇
𝑓
𝑇
𝑔

= 0

implies that either 𝑓 = 0 or 𝜙 = 0.
The converse implication is obvious. This completes the

proof.

Corollary 21. Let 𝑓(𝑧) = 𝜉
𝑝

𝜉

𝑠

𝑓
𝑝,𝑠

(𝑟) ∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉), where

𝑝, 𝑠 ∈ N𝑛, 𝑝 ̸= 0, 𝑠 ̸= 0, 𝑝 ⊥ 𝑠, and 𝑓
𝑝,𝑠

(𝑟) ∈ R. Then 𝑇
2

𝑓
= 𝑇

𝑓

implies that either 𝑓 = 0 or 𝑓 = 1.

5. The Commutativity of Toeplitz Operators
with Quasihomogeneous and Separately
Quasihomogeneous Symbols

In this section, we will consider the commuting problem for
two Toeplitz operators with certain symbols.

Theorem 22. Let 𝑝, 𝑠 ∈ N𝑛 be two nonzero multi-indexes with
𝑝 ⊥ 𝑠 let 𝜓 ∈ R such that 𝜉

𝑝

𝜉

𝑠

𝜓 ∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉), and let 𝜙

be a bounded radial function on B
𝑛
. If 𝜙 is nonconstant, then

𝑇
𝜙
𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

= 𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

𝑇
𝜙
if and only if either |𝑝| = |𝑠| or 𝜓 = 0.

Proof. It follows from Lemmas 7 and 14 that 𝑇
𝜙
𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

=

𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

𝑇
𝜙
if and only if

∫

𝜏(B
𝑛
)

𝜓 (𝑟) 𝑟
2𝛼+2𝑝

|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟

× (2𝑛 + 2 |𝛼| + 2
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− 2 |𝑠|)

̂
𝜙

× (2𝑛 + 2 |𝛼| + 2
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− 2 |𝑠|)

= ∫

𝜏(B
𝑛
)

𝜓 (𝑟) 𝑟
2𝛼+2𝑝

|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟

× (2𝑛 + 2 |𝛼|)
̂
𝜙 (2𝑛 + |𝛼|)

(56)

for 𝑝 + 𝛼 ⪰ 𝑠 and

∫

𝜏(B
𝑛
)

𝜓 (𝑟) 𝑟
2𝛼+2𝑠

|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟

× (2𝑛 + 2 |𝛼| + 2 |𝑠| − 2
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)

̂
𝜙

× (2𝑛 + 2 |𝛼| + 2 |𝑠| − 2
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)

= ∫

𝜏(B
𝑛
)

𝜓 (𝑟) 𝑟
2𝛼+2𝑠

|𝑟|
−(|𝑝|+|𝑠|)

𝑟𝑑𝑟

× (2𝑛 + 2 |𝛼|)
̂
𝜙 (2𝑛 + |𝛼|)

(57)

for 𝑠+𝛼 ⪰ 𝑝. As in the proof ofTheorem 5.1 in [10], for𝑝+𝛼 ⪰

𝑠, (56) and the property that𝜙 is nonconstant imply that either
|𝑝| = |𝑠| or 𝜓 = 0. Furthermore, if either |𝑝| = |𝑠| or 𝜓 = 0,
it is easy to show that (57) holds for 𝑠 + 𝛼 ⪰ 𝑝. Hence, 𝑇

𝜙

commutes with 𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

implies either |𝑝| = |𝑠| or 𝜓 = 0.
Conversely, if either |𝑝| = |𝑠| or 𝜓 = 0, one can get

that (56) and (57) hold. That is, 𝑇
𝜙
𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

= 𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

𝑇
𝜙
. This

completes the proof.

As for 𝑛 = 1, a separately radial function is a radial and it
follows that Toeplitz operators with separately radial symbols
commute, there is no contradiction with an extension of a
result in [29] to the case of 𝑛 ≥ 2. It is given in [29] that
a Toeplitz operator on 𝐿

2

ℎ
(D) with radial symbol commutes
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with another Toeplitz operator if that operator also has a
radial symbol. The following theorem will show that this
result is not true on 𝐿

2

ℎ
(B
𝑛
) (𝑛 ≥ 2).

Theorem 23. For 𝑛 ≥ 2, let 𝜓(𝑧) be a bounded separately
radial function and let 𝜙(𝑧) be a bounded radial function on
B
𝑛
. Then 𝑇

𝜓
and 𝑇

𝜙
commute.

Proof. The proof is similar to that of Theorem 22, so we omit
it.

Next, we will give a description of commuting quasiho-
mogeneous Toeplitz operators the with same degree.

Theorem 24. Let 𝑝, 𝑠 ∈ N𝑛 be two nonzero multi-indexes with
𝑝 ⊥ 𝑠, |𝑝| ̸= |𝑠| and let 𝜙, 𝜓 be two square integrable radial
function on B

𝑛
such that 𝜉

𝑝

𝜉

𝑠

𝜙, 𝜉
𝑝

𝜉

𝑠

𝜓 ∈ 𝐿
∞

(B
𝑛
, 𝑑𝑉). Then

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

= 𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

if and only if 𝜙 = 𝐶𝜓 for some
constant 𝐶.

Proof. It follows from Lemma 8 that

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙

𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

= 𝑇
𝜉
𝑝
𝜉

𝑠

𝜓

𝑇
𝜉
𝑝
𝜉

𝑠

𝜙
(58)

if and only if

̂
𝜙 (2𝑛 + 2 |𝛼| + 3

󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− 3 |𝑠|) 𝜓̂ (2𝑛 + 2 |𝛼| +

󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)

= 𝜓̂ (2𝑛 + 2 |𝛼| + 3
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− 3 |𝑠|)

̂
𝜙

× (2𝑛 + 2 |𝛼| +
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− |𝑠|)

(59)

for all 𝛼 + 2𝑝 ⪰ 2𝑠 and

̂
𝜙 (2𝑛 + 2 |𝛼| + 3 |𝑠| − 3

󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
) 𝜓̂ (2𝑛 + 2 |𝛼| + |𝑠| −

󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)

= 𝜓̂ (2𝑛 + 2 |𝛼| + 3 |𝑠| − 3
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)

̂
𝜙

× (2𝑛 + 2 |𝛼| + |𝑠| −
󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
)

(60)

for all 𝛼 + 2𝑠 ⪰ 2𝑝. If |𝑝| > |𝑠|, according to Lemma 3, then
(59) holds which implies that

̂
𝜙 (𝑧 + 2

󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− 2 |𝑠|) 𝜓̂ (𝑧) = 𝜓̂ (𝑧 + 2

󵄨
󵄨
󵄨
󵄨
𝑝

󵄨
󵄨
󵄨
󵄨
− 2 |𝑠|)

̂
𝜙 (𝑧) ,

𝑧 ∈ {𝑧 : Re 𝑧 > 0} .

(61)

It follows from Lemma 6 in [36] that 𝜙 = 𝐶𝜓. Furthermore, if
𝜙 = 𝐶𝜓, then (60) holds. Otherwise, if |𝑝| < |𝑠|, by a similar
argument, (60) implies that 𝜙 = 𝐶𝜓 and so (59) holds.

The converse implication is obvious. This completes the
proof.

Theorem 25. Let 𝑓(𝑧) = ∑
𝑠∈N𝑛 𝜉

𝑠

𝑓
𝑠
(𝑟) ∈ 𝐿

∞

(B
𝑛
, 𝑑𝑉), where

𝑓
𝑠
(𝑟) ∈ R. Let 𝜙 be a bounded separately radial function on

B
𝑛
. Then 𝑇

𝑓
𝑇
𝜙

= 𝑇
𝜙
𝑇
𝑓
if and only if 𝑇

𝜉

𝑠

𝑓
𝑠
(𝑟)

𝑇
𝜙

= 𝑇
𝜙
𝑇
𝜉

𝑠

𝑓
𝑠
(𝑟)

for
every multi-index 𝑠 ∈ N𝑛.

Proof. Using Lemmas 11 and 14, one can get that for anymulti-
index 𝛼 ∈ N𝑛

𝑇
𝑓
𝑇
𝜙

(𝑧
𝛼

) = 𝜇
𝛼

∑

𝑠∈N𝑛

𝑇
𝜉

𝑠

𝑓
𝑠
(𝑟)

(𝑧
𝛼

)

= 𝜇
𝛼

[ ∑

𝑠∈N𝑛,𝛼⪰𝑠

𝑇
𝜉

𝑠

𝑓
𝑠
(𝑟)

(𝑧
𝛼

)

+ ∑

𝑠∈N𝑛,𝑠⪰𝛼,𝑠 ̸= 𝛼

𝑇
𝜉

𝑠

𝑓
𝑠
(𝑟)

(𝑧
𝛼

)

+ ∑

𝑠∈N𝑛,𝛼󳠣𝑠,𝑠󳠣𝛼

𝑇
𝜉

𝑠

𝑓
𝑠
(𝑟)

(𝑧
𝛼

)]

= 𝜇
𝛼

[ ∑

𝑠∈N𝑛,𝛼⪰𝑠

((2
𝑛

(𝑛 + |𝛼| − |𝑠|)!

× ∫

𝜏(B
𝑛
)

𝑓
𝑠
(𝑟) 𝑟

2𝛼

|𝑟|
−|𝑠|

𝑟𝑑𝑟)

×((𝛼 − 𝑠)!)
−1

) 𝑧
𝛼−𝑠

+ ∑

𝑠∈N𝑛,𝑠⪰𝛼,𝑠 ̸= 𝛼

((2
𝑛

(𝑛 + |𝑠| − |𝛼|)!

× ∫

𝜏(B
𝑛
)

𝑓
𝑠
(𝑟) 𝑟

2𝑠

×|𝑟|
−|𝑠|

𝑟𝑑𝑟)

×((𝑠 − 𝛼)!)
−1

) 𝑧
𝑠−𝛼

] ,

(62)

where 𝜇
𝛼

= 2
𝑛

(𝑛 + |𝛼|)! ∫
𝜏(B
𝑛
)

𝜙(𝑟)𝑟
2𝛼

𝑟𝑑𝑟/𝛼!. It follows that

⟨𝑇
𝑓
𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩

=

{
{
{
{
{

{
{
{
{
{

{

0 𝛼 󳠣 𝛽,

2
𝑛

𝜇
𝛼

(𝑛 +
󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨
)! ∫

𝜏(B
𝑛
)

𝑓
𝛼−𝛽

(𝑟) 𝑟
2𝛼

|𝑟|
|𝛽|−|𝛼|

𝑟𝑑𝑟

𝛽!

× ⟨𝑧
𝛽

, 𝑧
𝛽

⟩ 𝛼 ⪰ 𝛽

(63)

for 𝛽 ⪰ 0 and

⟨𝑇
𝑓
𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩

=

2
𝑛

𝜇
𝛼

(𝑛 +
󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨
)! ∫

𝜏(B
𝑛
)

𝑓
𝛼+𝛽

(𝑟) 𝑟
2𝛼+2𝛽

|𝑟|
−(|𝛽|+|𝛼|)

𝑟𝑑𝑟

𝛽!

× ⟨𝑧
𝛽

, 𝑧
𝛽

⟩

(64)

for 𝛽 ⪰ 0 and 𝛽 ̸= 0.
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By a similar argument, one can deduce that

⟨𝑇
𝜙
𝑇
𝑓

(𝑧
𝛼

) , 𝑧
𝛽

⟩

=

{
{
{
{

{
{
{
{

{

0 𝛼 󳠣 𝛽,

2
𝑛]
𝛽

(𝑛 +
󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨
)! ∫

𝜏(B
𝑛
)

𝑓
𝛼−𝛽

(𝑟) 𝑟
2𝛼

|𝑟|
|𝛽|−|𝛼|

𝑟𝑑𝑟

𝛽!

×⟨𝑧
𝛽

, 𝑧
𝛽

⟩ 𝛼 ⪰ 𝛽

(65)

for 𝛽 ⪰ 0 and

⟨𝑇
𝜙
𝑇
𝑓

(𝑧
𝛼

) , 𝑧
𝛽

⟩

=

2
𝑛]
𝛽

(𝑛 +
󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨
)! ∫

𝜏(B
𝑛
)

𝑓
𝛼+𝛽

(𝑟) 𝑟
2𝛼+2𝛽

|𝑟|
−(|𝛽|+|𝛼|)

𝑟𝑑𝑟

𝛽!

× ⟨𝑧
𝛽

, 𝑧
𝛽

⟩

(66)

for 𝛽 ⪰ 0 and 𝛽 ̸= 0, where ]
𝛽

= 2
𝑛

(𝑛 + |𝛽|)! ∫
𝜏(B
𝑛
)

𝜙(𝑟)𝑟
2𝛽

𝑟𝑑𝑟/𝛽!.
Now suppose that 𝑇

𝑓
𝑇
𝜙

= 𝑇
𝜙
𝑇
𝑓
. It follows that

𝑇
𝑓
𝑇
𝜙
(𝑧
𝛼

) = 𝑇
𝜙
𝑇
𝑓
(𝑧
𝛼

) and 𝑇
𝑓
𝑇
𝜙
(𝑧
𝛼

) = 𝑇
𝜙
𝑇
𝑓
(𝑧
𝛼

) for any
multi-index 𝛼 ∈ N𝑛. Using Lemmas 11 and 14 again, we have

⟨𝑇
𝜉

𝑠

𝑓
𝑠

𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

((2
𝑛

𝜇
𝛼

(𝑛 +
󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨
)!

× ∫
𝜏(B
𝑛
)

𝑓
𝛼−𝛽

(𝑟) 𝑟
2𝛼

×|𝑟|
|𝛽|−|𝛼|

𝑟𝑑𝑟)

×(𝛽!)
−1

) ⟨𝑧
𝛽

, 𝑧
𝛽

⟩ 𝛽 = 𝛼 − 𝑠,

0 others

= {

⟨𝑇
𝑓
𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩ 𝛽 = 𝛼 − 𝑠,

0 others

= {

⟨𝑇
𝜙
𝑇
𝑓

(𝑧
𝛼

) , 𝑧
𝛽

⟩ 𝛽 = 𝛼 − 𝑠,

0 others

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

((2
𝑛]
𝛽

(𝑛 +
󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨
)!

× ∫
𝜏(B
𝑛
)

𝑓
𝛼−𝛽

(𝑟) 𝑟
2𝛼

×|𝑟|
|𝛽|−|𝛼|

𝑟𝑑𝑟)

×(𝛽!)
−1

) ⟨𝑧
𝛽

, 𝑧
𝛽

⟩ 𝛽 = 𝛼 − 𝑠,

0 others

= ⟨𝑇
𝜙
𝑇
𝜉

𝑠

𝑓
𝑠

(𝑧
𝛼

) , 𝑧
𝛽

⟩

(67)

for any multi-indexes 𝛽 ∈ N𝑛 and 𝑠 ∈ N𝑛 and

⟨𝑇
𝜉

𝑠

𝑓
𝑠

𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

((2
𝑛

𝜇
𝛼

(𝑛 +
󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨
)!

× ∫
𝜏(B
𝑛
)

𝑓
𝛼+𝛽

(𝑟) 𝑟
2𝛼+2𝛽

×|𝑟|
−(|𝛽|+|𝛼|)

𝑟𝑑𝑟)

×(𝛽!)
−1

) ⟨𝑧
𝛽

, 𝑧
𝛽

⟩ 𝛽 = 𝑠 − 𝛼,

0 others

= {

⟨𝑇
𝑓
𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩ 𝛽 = 𝑠 − 𝛼,

0 others

= {

⟨𝑇
𝜙
𝑇
𝑓

(𝑧
𝛼

) , 𝑧
𝛽

⟩ 𝛽 = 𝑠 − 𝛼,

0 others

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

((2
𝑛]
𝛽

(𝑛 +
󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨
)!

× ∫
𝜏(B
𝑛
)

𝑓
𝛼+𝛽

(𝑟) 𝑟
2𝛼+2𝛽

×|𝑟|
−(|𝛽|+|𝛼|)

𝑟𝑑𝑟)

×(𝛽!)
−1

) ⟨𝑧
𝛽

, 𝑧
𝛽

⟩ 𝛽 = 𝑠 − 𝛼,

0 others

= ⟨𝑇
𝜙
𝑇
𝜉

𝑠

𝑓
𝑠

(𝑧
𝛼

) , 𝑧
𝛽

⟩

(68)

for any multi-indexes 𝛽 ∈ N𝑛, 𝛽 ̸= 0, and 𝑠 ∈ N𝑛. By the same
technique, we get that

⟨𝑇
𝜉

𝑠

𝑓
𝑠

𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩ = ⟨𝑇
𝜉

𝑠

𝑓
𝑠

𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩ (69)

for any multi-indexes 𝛽 ∈ N𝑛 and 𝑠 ∈ N𝑛, and

⟨𝑇
𝜉

𝑠

𝑓
𝑠

𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩ = ⟨𝑇
𝜉

𝑠

𝑓
𝑠

𝑇
𝜙

(𝑧
𝛼

) , 𝑧
𝛽

⟩ (70)

for any multi-indexes 𝛽 ∈ N𝑛, 𝛽 ̸= 0, and 𝑠 ∈ N𝑛. Hence
𝑇
𝜉

𝑠

𝑓
𝑠

𝑇
𝜙

= 𝑇
𝜙
𝑇
𝜉

𝑠

𝑓
𝑠

.
Conversely, if 𝑇

𝜉

𝑠

𝑓
𝑠

𝑇
𝜙

= 𝑇
𝜙
𝑇
𝜉

𝑠

𝑓
𝑠

, it is easy to show that
𝑇
𝑓
𝑇
𝜙

= 𝑇
𝜙
𝑇
𝑓
. This completes the proof.

It is well known that 𝑇
∗

𝜙
= 𝑇

𝜙
, so one can easily get the

following result.

Theorem 26. Let 𝑓(𝑧) = ∑
𝑝∈N𝑛 𝜉

𝑝

𝑓
𝑝
(𝑟) ∈ 𝐿

∞

(B
𝑛
, 𝑑𝑉),

where𝑓
𝑝
(𝑟) ∈ R. Let𝜙 be a bounded separately radial function

onB
𝑛
.Then𝑇

𝑓
𝑇
𝜙

= 𝑇
𝜙
𝑇
𝑓
if and only if𝑇

𝜉
𝑝
𝑓
𝑝
(𝑟)

𝑇
𝜙

= 𝑇
𝜙
𝑇
𝜉
𝑝
𝑓
𝑝
(𝑟)

for every multi-index 𝑝 ∈ N𝑛.
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