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We define a new modified basis ̂𝑖 which is an association of two bases, e
1
and 𝑒

2
. We give an expression of the form 𝑧 = 𝑥

0
+

̂

𝑖𝑧

0
,

where 𝑥
0
is a real number and 𝑧

0
is a complex number on three-dimensional real skew field. And we research the properties of

regular functions with values in ternary field and reduced quaternions by Clifford analysis.

1. Introduction

The noncommutative three-dimensional real field R3 of the
hypercomplex numbers is called a ternary number system T .
The quaternions are represented by the form 𝑧 = ∑

3

𝑗=0
𝑒

𝑗
𝑥

𝑗
,

where 𝑥
𝑗
(𝑗 = 0, . . . , 3) are real numbers on four dimensional

real field R4. Fueter [1] has given a definition of quater-
nionic functions in R4 and Deavours [2] and Sudbery [3]
have developed theories of quaternionic analysis. Naser [4]
investigated some properties of hyperholomorphic functions
and Koriyama et al. [5] researched properties of hyperhol-
omorphic functions and holomorphic functions in quater-
nionic analysis. Nôno [6] obtained several results for regular
functions which have a complex number form in quaternion
analysis. Cho [7] researched some properties of Euler’s for-
mula and De moivre’s formula for quaternions. Sangwine
and Bihan [8] obtained some results for the quaternionic
polar representation with a complex modulus and complex
argument inspired by the cayley-dickson form. Fueter [9]
obtained some properties of the three variables which are
called the Fueter variables and researched the fact that struc-
tures lead to the set of all Fueter-regular functions in the gen-
eral cases of Clifford analysis. By Brackx et al. [10], the theory
of Fueter-regularity has been developed and generalized as
quaternionic variables for theories of Clifford-valued regular
functions.

Lim and Shon [11–13] researched the existence of hyper-
conjugate harmonic functions of octonion variables, proper-
ties of dual quaternion functions, and regularity of functions

with values in a noncommutative subalgebra of complex
matrix algebras.

We consider that ternary numbers are generated by a new
basis ̂𝑖 and give some properties of regular functions with val-
ues inT . Also, we represent the correspondingEuler’s formula
for the form 𝑧 = 𝑥

0
+

̂

𝑖𝑧

0
and investigate calculating rules

for regular functions in Clifford analysis. We research new
representations of Fueter variables in reduced quaternions
with ̂𝑖 and some characteristics of regularity of functions on
the Fueter variable system.

2. Preliminaries

The ternary number system T is a three dimensional non-
commutative and associative real field by three bases 𝑒

0
, 𝑒
1
,

and 𝑒
2
with the following rules:

𝑒

2

1
= 𝑒

2

2
= −1, 𝑒

1
𝑒

2
= −𝑒

2
𝑒

1
,

𝑒

0
= 𝑒

0
, 𝑒

𝑗
= −𝑒

𝑗
(𝑗 = 1, 2) .

(1)

The element 𝑒
0
is the identity of T and 𝑒

1
identifies the

imaginary unit √−1 in the complex field. We consider an
association of two bases 𝑒

1
and 𝑒
2
as follows:

̂

𝑖 :=

𝑎𝑒

1
+ 𝑏𝑒

2

√

𝑎

2
+ 𝑏

2
= 𝛼𝑒

1
+ 𝛽𝑒

2
with ̂𝑖 2 = −1, (2)

where 𝛼 := 𝑎/√𝑎2 + 𝑏2, 𝛽 := 𝑏/√𝑎2 + 𝑏2, and 𝑎, 𝑏 are real
numbers except both zeros.
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The number of the skew field T is
𝑧 = 𝑥

0
+ 𝑒

1
𝑥

1
+ 𝑒

2
𝑥

2

= 𝑥

0
+

̂

𝑖𝑧

0
,

(3)

where 𝑥
𝑗
(𝑗 = 0, 1, 2) are real variables, 𝑧

0
= 𝛾(𝑥

1
− 𝑥

2
𝑒

1
𝑒

2
),

and 𝛾 := 𝛼 + 𝛽𝑒
1
𝑒

2
.

We define the ternary number system

T := {𝑧 | 𝑧 = 𝑥
0
+

̂

𝑖𝑧

0
} . (4)

The conjugate number 𝑧∗ of 𝑧 in T is given by the form:

𝑧

∗
= 𝑥

0
−

̂

𝑖𝑧

0
. (5)

And the norm |𝑧| of 𝑧 and the inverse 𝑧−1 of 𝑧 are given by
the following forms:

|𝑧| =
√
𝑧𝑧

∗
=
√
𝑥

2

0
+ 𝑧

0
𝑧

0
= √

2

∑

𝑗=0

𝑥

2

𝑗
,

𝑧

−1
=

𝑧

∗

|𝑧|

2
(𝑧 ̸= 0) ,

(6)

where 𝑧
0
= 𝛾(𝑥

1
+ 𝑥

2
𝑒

1
𝑒

2
) and 𝛾 = 𝛼 − 𝛽𝑒

1
𝑒

2
.

We define the addition and multiplication of two ternary
numbers 𝑧 = 𝑥

0
+

̂

𝑖𝑧

0
and 𝑤 = 𝑦

0
+

̂

𝑖𝑤

0
as follows:

𝑧 + 𝑤 = (𝑥

0
+ 𝑦

0
) +

̂

𝑖 (𝑧

0
+ 𝑤

0
) ,

𝑧𝑤 = (𝑥

0
𝑦

0
− 𝑧

0
𝑤

0
) +

̂

𝑖 (𝑥

0
𝑤

0
+ 𝑧

0
𝑦

0
) .

(7)

Theorem 1. Let 𝑧 be an arbitrary number in T . Then the cor-
responding Euler formula for 𝑧 is

𝑒

𝑧
= 𝑒

𝑥0
(cos 󵄨󵄨󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

+

𝑧

0

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

̂

𝑖 sin 󵄨󵄨󵄨
󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

) . (8)

Moreover, taking logarithms of both sides, one obtains the equa-
tion as follows:

ln 𝑧 = ln |𝑧| +
𝑧

0

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

̂

𝑖cos−1 (
𝑥

0

|𝑧|

) . (9)

Proof. For the number 𝑧 = 𝑥
0
+

̂

𝑖𝑧

0
in T , we get |̂𝑖𝑧

0
| = |𝑧

0
| =

|𝑧

0
| and ((𝑧

0
/|𝑧

0
|)

̂

𝑖)

2
= −1. Then,

𝑒

𝑧
= 𝑒

𝑥0+𝑖̂𝑧0
= 𝑒

𝑥0
𝑒

(𝑖̂𝑧0/|̂𝑖𝑧0|)|̂𝑖𝑧0|

= 𝑒

𝑥0
(cos 󵄨󵄨󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

+

𝑧

0

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

̂

𝑖 sin 󵄨󵄨󵄨
󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

) .

(10)

From

𝑧 = |𝑧| (

𝑥

0

|𝑧|

+

𝑧

0

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

̂

𝑖

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

|𝑧|

)

= |𝑧| {cos(cos−1 (
𝑥

0

|𝑧|

))

+

𝑧

0

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

̂

𝑖 sin(cos−1 (
𝑥

0

|𝑧|

))} ,

(11)

we have

ln 𝑧 = ln |𝑧| +
𝑧

0

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

̂

𝑖cos−1 (
𝑥

0

|𝑧|

) . (12)

We consider the following differential operators:

𝐷 :=

1

2

2

∑

𝑗=0

𝑒

𝑗

𝜕

𝜕𝑥

𝑗

=

1

2

(

𝜕

𝜕𝑥

0

−

̂

𝑖

𝜕

𝜕𝑧

0

) ,

𝐷

∗
=

1

2

2

∑

𝑗=0

𝑒

𝑗

𝜕

𝜕𝑥

𝑗

=

1

2

(

𝜕

𝜕𝑥

0

+

̂

𝑖

𝜕

𝜕𝑧

0

) ,

(13)

where 𝜕/𝜕𝑧
0
= 𝛾(𝜕/𝜕𝑥

1
−𝑒

1
𝑒

2
(𝜕/𝜕𝑥

2
)) and 𝜕/𝜕𝑧

0
= 𝛾(𝜕/𝜕𝑥

1
+

𝑒

1
𝑒

2
(𝜕/𝜕𝑥

2
)). Then the Laplacian operator is

4Δ := 𝐷𝐷

∗
= 𝐷

∗
𝐷 =

𝜕

2

𝜕𝑥

2

0

+

𝜕

2

𝜕𝑧

0
𝜕𝑧

0

=

2

∑

𝑗=0

𝜕

2

𝜕𝑥

2

𝑗

. (14)

Let Ω be an open set in R3. The function 𝑓(𝑧) that is
defined by the following form in Ω with values in T :

𝑓 : Ω 󳨀→ T (15)

satisfies

𝑧 = (𝑥

0
, 𝑧

0
) ∈ Ω 󳨃󳨀→ 𝑓 (𝑧) = 𝑢

0
(𝑥

0
, 𝑧

0
) +

̂

𝑖𝑓

0
(𝑥

0
, 𝑧

0
) ∈ T ,

(16)

where 𝑢
𝑗
(𝑗 = 0, 1, 2) are real-valued functions and

𝑓

0
= 𝛾 (𝑢

1
+ 𝑢

2
𝑒

1
𝑒

2
) , 𝑓

0
= 𝛾 (𝑢

1
− 𝑢

2
𝑒

1
𝑒

2
) (17)

are complex-valued functions with values in T .

Remark 2. The operators𝐷 and𝐷∗ act for the function 𝑓(𝑧)
on T as follows:

𝐷𝑓 =

1

2

{(

𝜕𝑢

0

𝜕𝑥

0

+

𝜕𝑓

0

𝜕𝑧

0

) +

̂

𝑖 (

𝜕𝑓

0

𝜕𝑥

0

−

𝜕𝑢

0

𝜕𝑧

0

)} ,

𝐷

∗
𝑓 =

1

2

{(

𝜕𝑢

0

𝜕𝑥

0

−

𝜕𝑓

0

𝜕𝑧

0

) +

̂

𝑖 (

𝜕𝑓

0

𝜕𝑥

0

+

𝜕𝑢

0

𝜕𝑧

0

)} ,

𝑓𝐷 =

1

2

{(

𝜕𝑢

0

𝜕𝑥

0

+

𝜕𝑓

0

𝜕𝑧

0

) +

̂

𝑖 (

𝜕𝑓

0

𝜕𝑥

0

−

𝜕𝑢

0

𝜕𝑧

0

)} ,

𝑓𝐷

∗
=

1

2

{(

𝜕𝑢

0

𝜕𝑥

0

−

𝜕𝑓

0

𝜕𝑧

0

) +

̂

𝑖 (

𝜕𝑓

0

𝜕𝑥

0

+

𝜕𝑢

0

𝜕𝑧

0

)} .

(18)

3. Properties of Regular Functions with
Values in T

Definition 3. Let Ω be an open set in R3. A function 𝑓(𝑧) =
𝑢

0
(𝑥

0
, 𝑧

0
) +

̂

𝑖𝑓

0
(𝑥

0
, 𝑧

0
) is said to be L(R)-regular in Ω, if the

following two conditions are satisfied:

(i) 𝑢
0
and 𝑓

0
are continuously differential functions on

Ω;
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(ii) 𝐷∗𝑓(𝑧) = 0 (𝑓(𝑧)𝐷∗ = 0) onΩ.

Remark 4. The left equation (ii) of Definition 3 is equivalent
to the following:

𝜕𝑢

0

𝜕𝑥

0

=

𝜕𝑓

0

𝜕𝑧

0

,

𝜕𝑓

0

𝜕𝑥

0

= −

𝜕𝑢

0

𝜕𝑧

0

.
(19)

The equations in (19) are called the corresponding Cauchy-
Riemann system for 𝑓(𝑧) in T . The right equation (ii) of
Definition 3 is equivalent to (19). When the function 𝑓(𝑧) =
𝑢

0
(𝑥

0
, 𝑧

0
) +

̂

𝑖𝑓

0
(𝑥

0
, 𝑧

0
) is a L-regular function on Ω ⊂ R3,

simply we say that 𝑓(𝑧) is a regular function on Ω ⊂ R3.
In this case, we often say that 𝑓(𝑧) is a biregular function on
Ω ⊂ R3.

Remark 5. LetΩ be an open set inR3 and let𝑓(𝑧) be a regular
function on Ω. Then we can replace the corresponding
Cauchy-Riemann system in R3 as follows:

𝜕𝑢

0

𝜕𝑥

0

=

𝜕𝑢

1

𝜕𝑥

1

+

𝜕𝑢

2

𝜕𝑥

2

,

𝜕𝑢

1

𝜕𝑥

2

=

𝜕𝑢

2

𝜕𝑥

1

,

𝜕𝑢

0

𝜕𝑥

1

= −

𝜕𝑢

1

𝜕𝑥

0

,

𝜕𝑢

0

𝜕𝑥

2

= −

𝜕𝑢

2

𝜕𝑥

0

,

(20)

where 𝑢
𝑗
(𝑗 = 0, 1, 2) are real-valued functions.

Theorem 6. LetΩ be an open set in R3 and let 𝑓 be a regular
function on Ω. Then the derivative 𝑓󸀠 of 𝑓 defined by 𝐷𝑓 is

𝑓

󸀠
=

𝜕𝑓

𝜕𝑥

0

= −

̂

𝑖

𝜕𝑓

𝜕𝑧

0

(21)

on Ω.

Proof. By the definition of regular function with values in T ,
we have

𝐷𝑓 =

1

2

{(

𝜕𝑢

0

𝜕𝑥

0

+

𝜕𝑓

0

𝜕𝑧

0

) +

̂

𝑖 (

𝜕𝑓

0

𝜕𝑥

0

−

𝜕𝑢

0

𝜕𝑧

0

)}

=

𝜕𝑢

0

𝜕𝑥

0

+

̂

𝑖

𝜕𝑓

0

𝜕𝑥

0

=

𝜕𝑓

𝜕𝑥

0

(22)

onΩ. And

𝐷𝑓 =

𝜕𝑓

0

𝜕𝑧

0

−

̂

𝑖

𝜕𝑢

0

𝜕𝑧

0

= −

̂

𝑖 (

𝜕

𝜕𝑧

0

̂

𝑖𝑓

0
+

𝜕𝑢

0

𝜕𝑧

0

) = −

̂

𝑖

𝜕𝑓

𝜕𝑧

0

(23)

onΩ.

Theorem 7. LetΩ be an open set inR3 and let 𝑓 = 𝑢
0
+

̂

𝑖𝑓

0
be

a function with values in T . Suppose that 𝜕𝑓/𝜕𝑥
0
and 𝜕𝑓/𝜕𝑧

0

exist and are continuous on Ω. If

𝜕𝑓

𝜕𝑥

0

= −

̂

𝑖

𝜕𝑓

𝜕𝑧

0

(24)

on Ω, then 𝑓 is regular on Ω.

Proof. Since 𝜕𝑓/𝜕𝑥
0
= −

̂

𝑖(𝜕𝑓/𝜕𝑧

0
), we have

𝜕𝑓

𝜕𝑥

0

=

𝜕𝑢

0

𝜕𝑥

0

+

̂

𝑖

𝜕𝑓

0

𝜕𝑥

0

.
(25)

Hence, we have𝐷∗𝑓 = 0 and then 𝑓 is regular on Ω.

Definition 8. LetΩ be an open set inR3. A function 𝑓 = 𝑢
0
+

̂

𝑖𝑓

0
is said to be harmonic on Ω if all its components 𝑢

0
and

𝑓

0
of 𝑓 are harmonic onΩ.

Proposition 9. LetΩ be an open set inR3. If the function 𝑓 is
regular on Ω, then 𝑓 is harmonic on Ω.

Proof. Since 𝑓 is regular function onΩ, we have

𝐷𝐷

∗
𝑓

0
=

1

4

{(

𝜕

𝜕𝑥

0

𝜕𝑓

0

𝜕𝑥

0

+

𝜕

𝜕𝑧

0

𝜕𝑓

0

𝜕𝑧

0

)

+

̂

𝑖 (

𝜕

𝜕𝑥

0

𝜕𝑓

0

𝜕𝑧

0

−

𝜕

𝜕𝑧

0

𝜕𝑓

0

𝜕𝑥

0

)} = 0.

(26)

Similarly, we can prove that 𝐷𝐷∗𝑢
0
= 0. So, we obtain the

result.

Proposition 10. LetΩ be an open set inR3 and let𝑓 = 𝑢
0
+

̂

𝑖𝑓

0

and 𝑔 = V
0
+

̂

𝑖𝑔

0
be regular functions onΩ. Then the following

properties hold:
(i) 𝑓𝛼 is regular on Ω, if 𝛼 is any ternary constant;
(ii) 𝛼𝑓 is not regular on Ω, if 𝛼 is any ternary constant;
(iii) 𝑓 ± 𝑔 is regular on Ω;
(iv) 𝑓𝑔 is not regular on Ω. Moreover, if 𝑔 is a real-valued

function, then 𝑓𝑔 is regular on Ω.

Proof. It is sufficient to show the second condition of
Definition 3.

(i) Let 𝛼 be a ternary constant with 𝛼 = 𝑎
0
+

̂

𝑖𝛼

0
, where

𝛼

0
=

𝑐

1
𝑎

1
+ 𝑐

2
𝑎

2

√𝑐

2

1
+ 𝑐

2

2

+

𝑐

2
𝑎

1
− 𝑐

1
𝑎

2

√𝑐

2

1
+ 𝑐

2

2

𝑒

1
𝑒

2 (27)

and 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑐
1
, and 𝑐

2
are real numbers. Then the

equation

𝐷

∗
(𝑓𝛼) =

1

2

(

𝜕

𝜕𝑥

0

+

̂

𝑖

𝜕

𝜕𝑧

0

)

× {(𝑢

0
𝑎

0
− 𝑓

0
𝛼

0
) +

̂

𝑖 (𝑢

0
𝛼

0
+ 𝑓

0
𝑎

0
)}

=

1

2

((

𝜕𝑢

0

𝜕𝑥

0

𝑎

0
−

𝜕𝑓

0

𝜕𝑥

0

𝛼

0
−

𝜕𝑢

0

𝜕𝑧

0

𝛼

0
−

𝜕𝑓

0

𝜕𝑧

0

𝑎

0
)

+

̂

𝑖 (

𝜕𝑢

0

𝜕𝑥

0

𝛼

0
+

𝜕𝑓

0

𝜕𝑥

0

𝑎

0
+

𝜕𝑢

0

𝜕𝑧

0

𝑎

0
−

𝜕𝑓

0

𝜕𝑧

0

𝛼

0
))

= 0.

(28)

Hence, 𝑓𝛼 is regular onΩ.
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(ii) Since

𝐷

∗
(𝛼𝑓) =

1

2

(

𝜕

𝜕𝑥

0

+

̂

𝑖

𝜕

𝜕𝑧

0

)

× {(𝑎

0
𝑢

0
− 𝛼

0
𝑓

0
) +

̂

𝑖 (𝑎

0
𝑓

0
+ 𝛼

0
𝑢

0
)}

=

1

2

((𝑎

0

𝜕𝑢

0

𝜕𝑥

0

− 𝛼

0

𝜕𝑓

0

𝜕𝑥

0

− 𝛼

0

𝜕𝑓

0

𝜕𝑥

0

−

𝜕𝑢

0

𝜕𝑧

0

𝛼

0
)

+

̂

𝑖 (𝑎

0

𝜕𝑓

0

𝜕𝑥

0

+ 𝛼

0

𝜕𝑢

0

𝜕𝑥

0

+ 𝑎

0

𝜕𝑢

0

𝜕𝑧

0

− 𝛼

0

𝜕𝑓

0

𝜕𝑧

0

))

(29)

is not zero, 𝛼𝑓 is not always regular on Ω.

(iii) Since

𝐷

∗
(𝑓 ± 𝑔) =

1

2

(

𝜕

𝜕𝑥

0

+

̂

𝑖

𝜕

𝜕𝑧

0

) {(𝑢

0
± V
0
) +

̂

𝑖 (𝑓

0
± 𝑔

0
)}

=

1

2

((

𝜕𝑢

0

𝜕𝑥

0

±

𝜕V
0

𝜕𝑥

0

−

𝜕𝑓

0

𝜕𝑧

0

∓

𝜕𝑔

0

𝜕𝑧

0

)

+

̂

𝑖 (

𝜕𝑢

0

𝜕𝑧

0

±

𝜕V
0

𝜕𝑧

0

+

𝜕𝑓

0

𝜕𝑥

0

𝑎

0
±

𝜕𝑔

0

𝜕𝑥

0

)) = 0,

(30)

𝑓 ± 𝑔 is regular onΩ.

(iv) Since

𝐷

∗
(𝑓𝑔) =

1

2

(

𝜕

𝜕𝑥

0

+

̂

𝑖

𝜕

𝜕𝑧

0

)

× {(𝑢

0
V
0
− 𝑓

0
𝑔

0
) +

̂

𝑖 (𝑢

0
𝑔

0
+ 𝑓

0
V
0
)}

=

1

2

((

𝜕𝑢

0

𝜕𝑥

0

−

𝜕𝑓

0

𝜕𝑧

0

) V
0
+ 𝑢

0
(

𝜕V
0

𝜕𝑥

0

−

𝜕𝑔

0

𝜕𝑧

0

)

− (

𝜕𝑓

0

𝜕𝑥

0

+

𝜕𝑢

0

𝜕𝑧

0

)𝑔

0
− (𝑓

0

𝜕𝑔

0

𝜕𝑥

0

+ 𝑓

0

𝜕V
0

𝜕𝑧

0

)

+

̂

𝑖 {(

𝜕𝑢

0

𝜕𝑥

0

−

𝜕𝑓

0

𝜕𝑧

0

)𝑔

0
+ 𝑢

0
(

𝜕𝑔

0

𝜕𝑥

0

+

𝜕V
0

𝜕𝑧

0

)

+ (

𝜕𝑓

0

𝜕𝑥

0

+

𝜕𝑢

0

𝜕𝑧

0

) V
0

+(𝑓

0

𝜕V
0

𝜕𝑥

0

− 𝑓

0

𝜕𝑔

0

𝜕𝑧

0

)})

=

1

2

(−(𝑓

0

𝜕𝑔

0

𝜕𝑥

0

+ 𝑓

0

𝜕V
0

𝜕𝑧

0

) +

̂

𝑖 (𝑓

0

𝜕V
0

𝜕𝑥

0

− 𝑓

0

𝜕𝑔

0

𝜕𝑧

0

))

(31)

is not zero, 𝑓𝑔 is not always regular on Ω.

Theorem 11. Let Ω be an open set in R3 and let 𝑓 and 𝑔 be
regular functions on Ω. Then we have the following equations:

2𝐷

∗
(𝑓𝑔) = (𝐷

∗
𝑓) 𝑔 + 𝑓

𝜕𝑔

𝜕𝑥

0

+

̂

𝑖 (𝑢

0

𝜕𝑔

𝜕𝑧

0

+

̂

𝑖𝑓

0

𝜕𝑔

𝜕𝑧

0

) . (32)

2𝐷 (𝑓𝑔) = (𝐷𝑓) 𝑔 + 𝑓

𝜕𝑔

𝜕𝑥

0

−

̂

𝑖 (𝑢

0

𝜕𝑔

𝜕𝑧

0

+

̂

𝑖𝑓

0

𝜕𝑔

𝜕𝑧

0

) . (33)

Proof. From the proof of Proposition 10, we have the follow-
ing equations:

2𝐷

∗
(𝑓𝑔) = {(

𝜕𝑢

0

𝜕𝑥

0

−

𝜕𝑓

0

𝜕𝑧

0

) +

̂

𝑖 (

𝜕𝑓

0

𝜕𝑥

0

+

𝜕𝑢

0

𝜕𝑧

0

)} (V
0
+

̂

𝑖𝑔

0
)

− (𝑓

0

𝜕𝑔

0

𝜕𝑥

0

+ 𝑓

0

𝜕V
0

𝜕𝑧

0

) +

̂

𝑖 (𝑓

0

𝜕V
0

𝜕𝑥

0

− 𝑓

0

𝜕𝑔

0

𝜕𝑧

0

)

= {(

𝜕𝑢

0

𝜕𝑥

0

−

𝜕𝑓

0

𝜕𝑧

0

) +

̂

𝑖 (

𝜕𝑓

0

𝜕𝑥

0

+

𝜕𝑢

0

𝜕𝑧

0

)} (V
0
+

̂

𝑖𝑔

0
)

+ 𝑢

0
(

𝜕V
0

𝜕𝑥

0

−

𝜕𝑔

0

𝜕𝑧

0

) − (𝑓

0

𝜕𝑔

0

𝜕𝑥

0

+ 𝑓

0

𝜕V
0

𝜕𝑧

0

)

+

̂

𝑖𝑢

0
(

𝜕𝑔

0

𝜕𝑥

0

+

𝜕V
0

𝜕𝑧

0

) +

̂

𝑖 (𝑓

0

𝜕V
0

𝜕𝑥

0

− 𝑓

0

𝜕𝑔

0

𝜕𝑧

0

)

= (𝐷

∗
𝑓) 𝑔 + 𝑓

𝜕𝑔

𝜕𝑥

0

+

̂

𝑖 (𝑢

0

𝜕𝑔

𝜕𝑧

0

+

̂

𝑖𝑓

0

𝜕𝑔

𝜕𝑧

0

) .

(34)

Similarly, we can prove (33).
We let

𝑘 = 𝑒

1
𝑒

2

1

2

𝑑𝑧

0
∧ 𝑑𝑧

0
+ 𝑒

2
𝛼𝑑𝑥

0
∧ 𝑑𝑧

0
− 𝑒

1
𝛽𝑑𝑥

0
∧ 𝑑𝑧

0
.

(35)

Theorem 12. LetΩ be an open set inR3 and𝑈 be any domain
inΩwith smooth boundary 𝑏𝑈 such that𝑈 ⊂ Ω. If𝑓 = 𝑢

0
+

̂

𝑖𝑓

0

is a regular function on Ω, then

∫

𝑏𝑈

𝑘𝑓 = 0, (36)

where 𝑘𝑓 is the ternary product of the form 𝑘 on the function
𝑓(𝑧).

Proof. Since the function 𝑓 = 𝑢
0
+ 𝑒

1
𝛼𝑓

0
+ 𝑒

2
𝛽𝑓

0
exists, we

have

𝑘𝑓 = (𝑒

1
𝑒

2

1

2

𝑢

0
− 𝑒

2

1

2

𝛼𝑓

0
+ 𝑒

1

1

2

𝛽𝑓

0
)𝑑𝑧

0
∧ 𝑑𝑧

0

+ (𝑒

2
𝛼𝑢

0
− 𝑒

1
𝛽𝑢

0
) 𝑑𝑥

0
∧ 𝑑𝑧

0

+ (−𝑒

1
𝑒

2
𝛼

2
𝑓

0
− 𝑒

1
𝑒

2
𝛽

2
𝑓

0
) 𝑑𝑥

0
∧ 𝑑𝑧

0
.

(37)
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Then

𝑑 (𝑘𝑓) = 𝑒

1
𝑒

2
(

𝜕𝑢

0

𝜕𝑥

0

− 𝛼

2 𝜕𝑓0

𝜕𝑧

0

− 𝛽

2 𝜕𝑓0

𝜕𝑧

0

)𝑑𝑉

+ 𝑒

2
(−𝛼

𝜕𝑓

0

𝜕𝑥

0

− 𝛼

𝜕𝑢

0

𝜕𝑧

0

)𝑑𝑉

+ 𝑒

1
(𝛽

𝜕𝑓

0

𝜕𝑥

0

+ 𝛽

𝜕𝑢

0

𝜕𝑧

0

)𝑑𝑉

+ (−𝛼𝛽

𝜕𝑓

0

𝜕𝑧

0

+ 𝛼𝛽

𝜕𝑓

0

𝜕𝑧

0

)𝑑𝑉

= {𝑒

1
𝑒

2
(

𝜕𝑢

0

𝜕𝑥

0

−

𝜕𝑓

0

𝜕𝑧

0

) − 𝑒

2
𝛼(

𝜕𝑓

0

𝜕𝑥

0

+

𝜕𝑢

0

𝜕𝑧

0

)

+ 𝑒

1
𝛽(

𝜕𝑓

0

𝜕𝑥

0

+

𝜕𝑢

0

𝜕𝑧

0

)}𝑑𝑉,

(38)

where 𝑑𝑉 = 𝑑𝑥
0
∧ 𝑑𝑧

0
∧ 𝑑𝑧

0
in 𝑈, and by the corresponding

Cauchy-Riemann system for 𝑓(𝑧) in T , 𝑑(𝑘𝑓) = 0. By Stokes
theorem, we obtain the result.

Remark 13. Since

(

̂

𝑖𝑧

0
)

𝑘

= {

(−1)

𝑘/2
(

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

)

𝑘

, 𝑘 : even
(−1)

[𝑘/2]
̂

𝑖(

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

)

𝑘−1

𝑧

0
, 𝑘 : odd,

(39)

we have

𝑧

𝑛
=

𝑛

∑

𝑘=0

𝛼 (𝑘) 𝑥

𝑛−𝑘

0

󵄨

󵄨

󵄨

󵄨

𝑧

0

󵄨

󵄨

󵄨

󵄨

[𝑘/2]

𝑧

0

𝛿𝑘
, (40)

where

𝛼 (𝑘) =

{

{

{

{

{

{

{

{

{

{

{

(

𝑛

𝑘

) (−1)

𝑘/2
, 𝑘 : even

(

𝑛

𝑘

) (−1)

[𝑘/2]
̂

𝑖, 𝑘 : odd,

𝛿

𝑘
= {

0, 𝑘 : even
1, 𝑘 : odd.

(41)

And [𝑘/2] is the greatest integer that is less than or equal to
𝑘/2.

Theorem 14. Let 𝑓 be a homogeneous polynomial of degree 𝑛
with respect to the variables 𝑥

0
and 𝑧

0
. If 𝑓 is regular on Ω,

then

𝑓 (𝑧) =

1

𝑛!

𝜕

𝑛
𝑓 (𝑧)

𝜕𝑥

𝑛

0

𝑧

𝑛
, (42)

𝑓 (𝑧) = (−

̂

𝑖)

𝑛 1

𝑛!

𝜕

𝑛
𝑓 (𝑧)

𝜕𝑧

𝑛−𝑟

0
𝜕𝑧

0

𝑟
𝑧

𝑛
, (43)

where 𝑟 is a nonnegative integer.

Proof. Since 𝑓(𝑧) is a homogeneous polynomial, then

𝑓 (𝑧) =

1

𝑛

𝜕𝑓 (𝑧)

𝜕𝑥

0

𝑧. (44)

Also, since 𝜕𝑓(𝑧)/𝜕𝑥
0
is a homogeneous polynomial of degree

𝑛 − 1, we have

𝜕𝑓 (𝑧)

𝜕𝑥

0

=

1

𝑛 − 1

𝜕

2
𝑓 (𝑧)

𝜕𝑥

2

0

𝑧. (45)

Then we have

𝑓 (𝑧) =

1

𝑛 (𝑛 − 1)

𝜕

2
𝑓 (𝑧)

𝜕𝑥

2

0

𝑧

2
. (46)

Continuing this process, we can get the result (42). Similarly,
we obtain the result (43).

4. Properties of Regular Functions with
Values in T(C)

We define the number system

T (C) = {𝑧 | 𝑧 = ̂𝑖𝛾 (𝑧
1
− 𝑒

1
𝑒

2
𝑧

2
)} , (47)

where 𝑧
1
= 𝑥

1
− (1/2)𝑒

1
𝑥

0
and 𝑧
2
= 𝑥

2
− (1/2)𝑒

2
𝑥

0
.

The non-commutativemultiplication of two numbers 𝑧 =
̂

𝑖𝛾(𝑧

1
− 𝑒

1
𝑒

2
𝑧

2
) and 𝑤 = ̂𝑖𝛾(𝑤

1
− 𝑒

1
𝑒

2
𝑤

2
) is defined by

𝑧𝑤 = − {(𝑧

1
𝑤

1
+ 𝑧

2
𝑤

2
) + 𝑒

1
𝑒

2
(𝑧

2
𝑤

1
− 𝑧

1
𝑤

2
)} ,

𝑤𝑧 = − {(𝑤

1
𝑧

1
+ 𝑤

2
𝑧

2
) + 𝑒

1
𝑒

2
(𝑤

2
𝑧

1
− 𝑤

1
𝑧

2
)} .

(48)

The conjugate number 𝑧∗ of 𝑧 in T(C) is given by the
following:

𝑧

∗
= −

̂

𝑖𝛾 (𝑧

1
− 𝑒

1
𝑒

2
𝑧

2
) . (49)

And the norm |𝑧| of 𝑧 and the inverse 𝑧−1 of 𝑧 are given by
the following forms:

|𝑧| =
√
𝑧𝑧

∗
=
√
𝑧

∗
𝑧

=
√
(𝑧

1
𝑧

1
+ 𝑧

2
𝑧

2
) + 𝑒

1
𝑒

2
(𝑧

2
𝑧

1
− 𝑧

1
𝑧

2
)

= √

2

∑

𝑗=0

𝑥

2

𝑗
,

𝑧

−1
=

𝑧

∗

|𝑧|

2
(𝑧 ̸= 0) .

(50)

We consider the following differential operators:

𝐷 = −

1

2

̂

𝑖𝛾 (𝐷

𝑧1
− 𝑒

1
𝑒

2
𝐷

𝑧2
) , 𝐷

∗
=

1

2

̂

𝑖𝛾 (𝐷

𝑧1
− 𝑒

1
𝑒

2
𝐷

𝑧2
) ,

(51)

where

𝐷

𝑧1
=

1

2

𝑒

1

𝜕

𝜕𝑥

0

+

𝜕

𝜕𝑥

1

, 𝐷

𝑧2
=

1

2

𝑒

2

𝜕

𝜕𝑥

0

+

𝜕

𝜕𝑥

2

. (52)
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Then the Laplacian operator is

4Δ := 𝐷𝐷

∗
= 𝐷

∗
𝐷 =

2

∑

𝑗=0

𝜕

2

𝜕𝑥

2

𝑗

. (53)

Let 𝐺 be an open set in C2. The function 𝑓(𝑧) that is
defined by the following form in 𝐺 with values in T(C):

𝑓 : 𝐺 → T (C) (54)

satisfies

𝑧 = (𝑧

1
, 𝑧

2
) ∈ 𝐺 󳨃󳨀→ 𝑓 (𝑧) = 𝑓 (𝑧

1
, 𝑧

2
)

=

̂

𝑖𝛾 (𝑓

1
(𝑧

1
, 𝑧

2
) − 𝑒

1
𝑒

2
𝑓

2
(𝑧

1
, 𝑧

2
)) ,

(55)

where 𝑓
1
= 𝑢

1
− (1/2)𝑒

1
𝑢

0
and 𝑓

2
= 𝑢

2
− (1/2)𝑒

2
𝑢

0
are

complex-valued functions with values in T(C) and 𝑢
𝑗
(𝑗 =

0, 1, 2) are real-valued functions.

Remark 15. The operators 𝐷 and 𝐷∗ act for a function 𝑓(𝑧)
on T(C) as follows:

𝐷𝑓 = −

̂

𝑖

2
{(𝐷

𝑧1
𝑓

1
+ 𝐷

𝑧2
𝑓

2
) + 𝑒

1
𝑒

2
(𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2
)} ,

𝐷

∗
𝑓 =

̂

𝑖

2
{(𝐷

𝑧1
𝑓

1
+ 𝐷

𝑧2
𝑓

2
) + 𝑒

1
𝑒

2
(𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2
)} .

(56)

We define a commutative multiplication of two numbers
𝑧 =

̂

𝑖𝛾(𝑧

1
− 𝑒

1
𝑒

2
𝑧

2
) and 𝑤 = ̂𝑖𝛾(𝑤

1
− 𝑒

1
𝑒

2
𝑤

2
) by

𝑧 ⊙ 𝑤 = 𝑤 ⊙ 𝑧 =

1

2

(𝑧𝑤 + 𝑤𝑧)

=

1

2

̂

𝑖

2
{(𝑧

1
𝑤

1
+ 𝑧

2
𝑤

2
+ 𝑤

1
𝑧

1
+ 𝑤

2
𝑧

2
)

+ 𝑒

1
𝑒

2
(𝑧

2
𝑤

1
− 𝑧

1
𝑤

2

+𝑤

2
𝑧

1
− 𝑤

1
𝑧

2
)} .

(57)

Remark 16. The operators 𝐷 and 𝐷∗ act for a function 𝑓(𝑧)
on T(C) as follows:

𝐷 ⊙ 𝑓 =

1

2

(𝐷𝑓 + 𝑓𝐷)

= { (𝐷

𝑧1
𝑓

1
+ 𝐷

𝑧2
𝑓

2
)

+

1

2

𝑒

1
𝑒

2
(𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2

+𝑓

2
𝐷

𝑧1
− 𝑓

1
𝐷

𝑧2
) }

= {(𝐷

𝑧1
𝑓

1
+ 𝐷

𝑧2
𝑓

2
+

1

2

𝜕𝑢

0

𝜕𝑥

0

)

+

1

2

𝑒

1
𝑒

2
(𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2

+𝐷

𝑧1
𝑓

2
− 𝐷

𝑧2
𝑓

1
) } ,

𝐷

∗
⊙ 𝑓 =

1

2

(𝐷

∗
𝑓 + 𝑓𝐷

∗
)

= − {(𝐷

𝑧1
𝑓

1
+ 𝐷

𝑧2
𝑓

2
)

+

1

2

𝑒

1
𝑒

2
(𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2

+𝑓

2
𝐷

𝑧1
− 𝑓

1
𝐷

𝑧2
)}

= −{(𝐷

𝑧1
𝑓

1
+ 𝐷

𝑧2
𝑓

2
−

1

2

𝜕𝑢

0

𝜕𝑥

0

)

+

1

2

𝑒

1
𝑒

2
(𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2

+𝐷

𝑧1
𝑓

2
− 𝐷

𝑧2
𝑓

1
) } .

(58)

Definition 17. Let 𝐺 be a domain in C2. A function 𝑓 =

̂

𝑖𝛾(𝑓

1
− 𝑒

1
𝑒

2
𝑓

2
) is said to be dot-regular in 𝐺 if the following

two conditions are satisfied:

(i) 𝑓
1
and 𝑓

2
are differential functions in 𝐺,

(ii) 𝐷∗ ⊙ 𝑓 = 0 in 𝐺.

Remark 18. The above equation (ii) of Definition 17 is equiv-
alent as follows:

𝐷

𝑧1
𝑓

1
+ 𝐷

𝑧2
𝑓

2
=

1

2

𝜕𝑢

0

𝜕𝑥

0

,

𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2
= 𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2
.

(59)

Theorem 19. Let 𝐺 be an open set in C2 and let 𝑓 be a dot-
regular function on 𝐺. Then the derivative 𝑓󸀠 of 𝑓 defined by
𝐷 ⊙ 𝑓 is

𝑓

󸀠
= 2

̂

𝑖𝛾 (𝐷

𝑧1
− 𝐷

𝑧1
) 𝑓 = 2𝑒

1
(𝐷

𝑧1
− 𝐷

𝑧1
) 𝑓,

𝑓

󸀠
= −2

̂

𝑖𝛾 (𝐷

𝑧2
− 𝐷

𝑧2
) 𝑓 = 2𝑒

2
(𝐷

𝑧2
− 𝐷

𝑧2
) 𝑓.

(60)

Proof. By the definition of a dot-regular function with values
in T(C), we have

𝐷 ⊙ 𝑓 = (𝐷

𝑧1
𝑓

1
+ 𝐷

𝑧2
𝑓

2
+ 𝑒

1

𝜕𝑢

1

𝜕𝑥

0

+ 𝑒

2

𝜕𝑢

2

𝜕𝑥

0

+

3

2

𝜕𝑢

0

𝜕𝑥

0

)

+

1

2

𝑒

1
𝑒

2
(𝐷

𝑧2
𝑓

1
− 𝐷

𝑧1
𝑓

2
+ 𝐷

𝑧1
𝑓

2

−𝐷

𝑧2
𝑓

1
− 2𝑒

2

𝜕𝑢

1

𝜕𝑥

0

+ 2𝑒

1

𝜕𝑢

2

𝜕𝑥

0

)

= 2

̂

𝑖𝛾 (𝐷

𝑧1
− 𝐷

𝑧1
) 𝑓

(61)

on 𝐺. And, similarly, we have

𝐷 ⊙ 𝑓 = −2

̂

𝑖𝛾 (𝐷

𝑧2
− 𝐷

𝑧2
) 𝑓 (62)

on 𝐺.
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