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This paper presents two-level iteration penalty finite element methods to approximate the solution of the Navier-Stokes equations
with friction boundary conditions. The basic idea is to solve the Navier-Stokes type variational inequality problem on a coarse mesh
with mesh size H in combining with solving a Stokes, Oseen, or linearized Navier-Stokes type variational inequality problem for
Stokes, Oseen, or Newton iteration on a fine mesh with mesh size h. The error estimate obtained in this paper shows that if H, h,
and ¢ can be chosen appropriately, then these two-level iteration penalty methods are of the same convergence orders as the usual

one-level iteration penalty method.

1. Introduction

In this paper, we consider a two-level iteration penalty
method for the incompressible flows which are governed by
the incompressible Navier-Stokes equations:
—pAu+ (u-V)u-Vp=£f, inQ,
1

divu=0, in Q, 2
where Q) is a bounded domain in R? assumed to have a
Lipschitz continuous boundary 0Q, y > 0 represents the
viscous coefficient, u = (u;(x),u,(x)) denotes the velocity
vector, p = p(x) the pressure and f = (f,(x), f,(x)) the
prescribed body force vector. The solenoidal condition
divu = 0 means that the flows are incompressible.

Instead of the classical whole homogeneous boundary
conditions, here we consider the following slip boundary
conditions with friction type:

u=0, on I,
(2)
on S,

u, =0,

-0, (u) € go |ur|

whereI' NS = 0, TUS = 0Q, and g is a scalar function;
u, = u-nand u; = u — u,n are the normal and tangential
components of the velocity, where n stands for the unit vector

of the external normal to S; 0,(u) = ¢ — o,n, independent
of p, is the tangential components of the stress vector ¢
which is defined by 0; = 0;(u, p) = (ue;;(w) — pd;j)n; with
e;(u) = (0u;/0x’) + (Ou;/0x'), i,j = 1,2. The set oy(a)
denotes a subdifferential of the function y ata ¢ LX(S)%,
whose definition will be given in the next section.

This type of boundary condition is firstly introduced
by Fujita [1] where some problems in hydrodynamics are
studied. Some theoretical problems are also studied by many
scholars, such as Fujita in [2-4], Y. Li and K. Li [5, 6], and
Saito and Fujita [7, 8] and references cited in their work.

The development of appropriate mixed finite element
approximations is a key component in the search for efficient
techniques for solving the problem (1) quickly and efficiently.
Roughly speaking, there exist two main difficulties. One is
the nonlinear term (u - V)u, which can be processed by the
linearization method such as the Newton iteration method,
Stokes iteration method, Oseen iteration method [9], or the
two-level methods [10-17]. The other is that the velocity and
the pressure are coupled by the solenoidal condition. The
popular technique to overcome the second difficulty is to
relax the solenoidal condition in an appropriate method and
to result in a pseudocompressible system, such as the penalty
method and the artificial compressible method [18]. Recently,
using the Taylor-Hood element, the authors [19] study the



penalty finite element method for the problem (1)-(2). Denote
(ui’, p? ) as the penalty finite element approximation solution
to (u, p) € (H*(Q)*, H*(Q)). The error estimate derived in
[19] is

_ .k
u-—-u,

o=l s e (e ), 3

where ¢ > 0 is the penalty parameter. However, the
condition number of the numerical discretization for the
penalty methods is O(e"'h™?), which will result in an ill-
conditioned problem when mesh size & — 0. In order to
avoid the choice of the small parameter ¢, Dai et al. [20]
have studied the iteration penalty finite element method and
derive

<c (sk“ + h5/4) , (4)

1+“p—pgk

L hk
u-—-u,

where k € N* is the iteration step number.

In this paper, we combine the iteration penalty method
with the two-level method to approximate the solution of
the problem (1)-(2). The iterative penalty method was first
introduced by Cheng and Shaikh [21] for the Stokes equations
and further used to solve the pure Neumann problem [22].
This iteration penalty method can be considered as the time
discretization of the artificial compressible method [23]. The
two-level iteration penalty methods studied in this paper
can be described as follows. The first step and the second
step are required to solve a small Navier-Stokes equations
on the coarse mesh in terms of the iteration penalty method
[20, 21]. The third step is required to solve a large linearization
problem on the fine mesh in terms of the Stokes iteration,
Oseen iteration, or Newtonian iteration, respectively. We
prove that these two-level iteration penalty finite element
solutions (u,,, p,;,) are of the following error estimate:

Ju=wal, +1p = pul

(h5/4 L HY4 4 el +sk+1)’
(Stokes and Oseen iteration), ®)

c (h5/4 + H? + el + sk+2),

(Newtonian iteration),

Finally, we propose an improved correction iteration scheme
for (ug,, pe,) in terms of the Newton iteration method. We
prove that the correction finite element solutions (1, py;,)
are of the following error estimates:

Ju=ugl, + e - pal

c(h5/4 + HO? 4 SN 4 2 8k+1/2)’

- (Stokes and Oseen iteration),
s c(h5/4 + H 4 PH5 4 (252 +8k+1/2),
(Newtonian iteration).

(6)

Throughout this paper, we will use ¢ to denote a positive
constant whose value may change from place to place but that
remains independent of h, H, and ¢ and that may depend on
¢, Q and the norms of u, p, f, and g.
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2. Preliminary

First, we give the definition of the subdifferential property. Let
Y be a given function possessing the properties of convexity
and weak semicontinuity from below. We say that the set
oy(a) is a subdifferential of the function y ata € LX(8)* if
and only if

dy @)= {bel’S)’:y(h)-y@)

>b-(h-a), Vhe L*S)*}.

7)

In what follows, we employ the standard notation H Q)

(or H'(Q)?) and || - [l I = 0, for the Sobolev spaces of all
functions having square integrable derivatives up to order [
in Q and the standard Sobolev norm. When [ = 0, we write
L*(Q) (or L*(Q)*) and || -|| instead of H*(Q) (or H°(Q)?) and
[l - 11y, respectively.

For the mathematical setting, we introduce the following
spaces:

V ={ueH(Q)? ul; =0,u-nls=0},

Vy = Hy(Q)?,
V, ={ueV,divau =0}, ®)

M:L@(Q):{qeﬁ(Q),qux:o}.

The space V is equipped with the norm

Ivlly = <L2 IVvlzdx)l/z. 9)

It is well known that ||v]|,, is equivalent to [|v||; due to
Poincare’s inequality. Introduce two bilinear forms

a(u,v) :yJ Vu-Vvdx, Yu, vevy,
Q

(10)
d(v,q) = ngdivvdx, VeV, qgeM,

and a trilinear form

b(u,v,w) =J (u-V)V-wdx—lJ' divuv - wdx
Q 2 Ja

:1Jﬂ(u-V)v-wdx—%JQ(u-V)w-vdx.

2
1

It is easy to verify that this trilinear form satisfies the following
important properties [12, 23]:

b(w,v,w) = -b(u,w,v), (12)

b (w, v, w) < Nlully Ivlly [wlly, (13)
N
bmmwsymmww

1/2 1/2 1/2 1/2
X (Ivlly w2 wii? + wly vl 2 v )
(14)
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forallu,v,w € V, and

16 (a0, v, W)| + [b (v, w, w)| + [b (W, w, V)| < Nlully [Ivll, wl,
(15)

forallu € V, v € H*(Q)?* and w € L*(Q)% where N > 0
depends only on Q.

Given f € L*(Q)* and g € L*(S) with g > O on S,
under the above notation, the variational formulation of the
problem (1)-(2) reads as follows: find (u, p) € (V, M) such
that for all (v, q) € (V, M)

a(wv-uw)+bmuv-u)+j(v,)—j(u,)
—d(v-up)=(fv-u), (16)
d(u,q) =0,

where j(n) = Js glylds for all 7 € L*(S)%. Saito in [8] showed
that there exists some positive 3 > 0 such that

d (v,
Bllal < sup® 4,

5 17)
vevV "V"V

then the variational inequality (16) is equivalent to the
following: find u € V such that forallv e V,

av-w+bmuv-u)+j(v,)—j(u)=(Ev-u).
(18)

The existence and uniqueness theorem of the solution u to the
problem (18) has been shown in [19]. Here, we only recall it.

Theorem 1. If the following uniqueness condition holds

4, N (I + |92 )

<1, (19)
>

then there exists a unique solution u € V, to the variational
inequality problem (18) such that

2
lully < f (IE1+ gl o) < 500 (20)

where k; > 0 satisfies
|E,v) = j (vl < &, (I + gl o)) IVlys Vv €V, (2D)

3. Iteration Penalty Finite
Element Approximation

Suppose that ) is a convex and polygon domain. Let 7, be a
family of quasi-uniform triangular partition of Q). The corre-
sponding ordered triangles are denoted by K, K, ..., K,,. Let
h; = diam(K;), i = 1,...,n, and h = max{h,, h,,..., h,}. For
every K € 9, let P,(K) denote the space of the polynomials

on K of degree at most r. For simplicity, we consider the
conforming finite element spaces V}, and M;, defined by

Vo= VW, with W, = {v, € C(Q)", vl

e [P, (K)]*,VK € T, }

Q
(22)

Denote V, = V, n W, It is well known that V, and M,
satisfy the Babuska-Brezzi condition [24, 25]:

d (th %)

, (23)
il

x| < sup
W5 €Von

where k > 0 is a constant independent of . Denote R, and Q,,
as the L* orthogonal projections onto V}, and M,,, respectively,
which satisfy

||v - thH + h||v - th"V < chi||v||i,
24)

wweH(Q?nV, i=1,23,

lg - Quall < cWllall;, Yqe H (@ nM, j=1,2. (25
It follows from the trace inequality ||v|| 2 < clIvIIY?|Iv| I‘l,/2
[26] that
Iv =Rl 25
< cv =Ry v - Ryv| (26)
<ch PIvl, WveHQ)?NV,i=12,3.

Lete > 0 be some small parameter. The one-level iteration
penalty finite element method for the problem (16) has been
studied in [20], which can be described as follows.

Step 1. Find (), p,) € (V,, Mj,) such that for all (v, q,) €
(Vh) Mh)

a (“Sh"’h - “Sh) +b (“gw “ngh - “gh) +j (Vi)
=] (“(s)hr) -d (Vh - u(e)h’pgh) = (f) Vi — “gh) , (27)
d (“gh’ Qh) te (Pgh’%) =0.

Step 2. For k = 1,2,..., find (ulgh,pfh) € (V,,, M) such that
for all (v, q3,) € (V},, M},)

a (“];h)"h - “I;h) +b (“fh’ “fh"’h - “I;h) + 7 (Vi)
-j (“fhf) -d (Vh - “I.:h’Pfh) 2 (f’ Vi, — “I;h)’ (28)
d (ulgh’ Qh) +e (Pichs Qh) =€ (pr:1>Qh) .

First, we give the a priori estimate of the solution (u®,, pf,)
to the problem (28).



Theorem 2. Suppose that (ulgh, pfh) € (V;,, My,) is the solution
to the problem (28); then it satisfies

f “2 . k+ 1)K

il + bl < =5, 061+ lgliao)'. 29

Proof. Setting v, = 0, g, = pJ, in (27), using (12) and Young’s

inequality, it yields that
il + elpal

< (f’ “(s)h) - (u(s)hr)

<y (1€ + |9l ) Y
2
< Bl + L0+ ol )
Then we have
2
aulall, + 2l < 200+ lgllae) D

_:

Fork =1,2,...,settingv, =0, g, = pi‘h in (28), it yields that

k|2 k%
sl + el pel

< (fufy,) - j(us,) +e (Pl pl)

) (32)
< Ul !+ ;‘7;(||f|| +lole)’
% Pfh psh H
Thus, we obtain
uul [+ ]|
2
< ;l(nfn lalze) + o5
2 (33)
<coos (160 + lologo) + bl
2k + 1) k2
. %(ufu +lalz)-
O

The next theorem gives the error estimate between the
solutions (u, p) and (ufh, pi‘h) to the problems (16) and (28),
respectively. The proof can be found in [20].

Theorem 3. Let (u, p) € H}*(Q)* nV x HX(Q) N M and
(u];h, pfh) € (V3,, My,) be the solutions to the problems (16) and
(28), respectively; then they satisfy

o, lo- bl = ). o0
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Next, we will show the error estimate ||lu — u';hll for
the penalty finite element approximation (28). This L error
analysis is based on the regularity assumption that the
following linearized problem (35) is (H 2(Q)%, HY(Q) regular.

Given z € L*(Q)% find (w,7) € (V, M) such that for all
(v,q) € (V, M)

a(w,v) + b( u,,,V,w ) +b(v,u,w)—d(v,7) =(z,v),
35)
d(w,q) =0.

According to (12) and (20), it is easy to verify that there exists
a unique solution (w, ) to the problem (35). The assumption
that (35) is (H*(Q)%, H'(Q)) regular means that (w, ) also
belongs to (H 2(Q)%, HY(Q)) and the following inequality
holds:

Iwlly + llzll, < cliz]. (36)
Let I, be the L* orthogonal projections onto V, and satisfy

[w - Lwl, < chlwl,. (37)
Theorem 4. Let (u, p) € H}(Q)P? NV x H(Q) N M and

(ui‘h,pfh) € (V,, My,) be the solutions to the problems (16) and
(28), respectively; then they satisfy

Proof. Settingz = u-— u];h andv =u- ulgh in the first equation
of (35), we get

<c (h9/4 +eh’t 4 sk“) ) (38)

2 k k k
=a (w, u-— ush) +b (ueh, u-ug, w)

+b(u—uk uw)—d(u—uk 71) )
ch> ™ ch’ .

Takingv =u+tI,w, g = Q,min (16) and v, = u’s‘h +Iw, q, =
Q7 in (28), respectively, we obtain

a(a,Iw)+b(wuI,w)—d(Iw,p)=
d(u,Q,m) =0,
a (ufh, Ihw) +b (ulgh, ui‘h, Ihw) -d (Ihw, pfh) = (f, I,w),

d (“I;h’ Qh”) +e (Pi(h’ Qhﬂ) =€ (PZ:I’QW) .

(. I,w),

(40)
Subtracting them, we get
a (u —ub, Ihw) +b(w,u,I,w)-b (ufh, ut, Ihw)
~d(I,w,p-p,) =0, (41)

d (u - ug, Q) +&(py ' Qur) — & (P Qur) = 0.
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Substituting the previous equation into (39), it yields that
k 2
o - v

=a (w -Iw,u- uﬁh) +b (ulzh, u- ufh,w)
i J2

+b (u —uf,u, w) +b (u];h, u, Ihw) -b(u,u,I,w)
2

+d(Ihw—w,p—pfh)—d(u—ufh,ﬂ—th)

I3
+e (P> Q) — & (Plip Qut)-
" (42)
Using (34), (36), and (37), J, is estimated by
Jy =a(w-ILw,u-ul,)
< lju—uly |, Iw - Lwl, ")

< ch (K + €47 Iwl,
<ch (h5/4 + sk+1) ”u - u];h" .
Similarly, using (25), (34), (36), and (37), J; is estimated by

B :d(Ihw—w,p—pi‘h)—d(u—ui(h,n—th)

k
+ |u-uf,

< [nw—wly |2 - 5, ol = Q|
< ch (K" + &) (Iwll, + I7ll,)

<ch (h5/4 + sk“) "u - ufh

We rewrite ], as
J,=b (u];h, u- ulzh, w) +b (u - ufh, u, w)
+b (u];h, ut, Ihw) -b(u,u,I,w)
=b (ulgh, u- ul;h,w) +b (u - ul;h, u, w)
+b (ui‘h,ulgh —-u, Ihw) -b (u - ui‘h, u, Ihw)

= b(u];h,u - ulzh,w - Ihw) +b (u - ulzh, uw- Ihw) .
(45)

Then, from (13), (20), (29), (34), (36), and (37), it holds that

T, < N (ug]l, + ) Ju = w, |, Iw = Rywl,

< ch (K" + &) Iwll, (46)

IN

ch (K" + ) "u —u,

5
Finally, we estimate ], by
Jo=¢ (Pf;:l’ Qhﬂ) - € (Pfh’ Qh”)
=¢ (Pfﬁl - p Qh”) te (P - Pfh’ Qh”)
<e(|pa’ — 2| + |- Ph]) IQurl (47)

<ce(R* + &) |ml,
<ce (h5/4 + sk) “u - u];h" .

Combining these estimates with (42), we conclude that (38)
holds. O

4. Two-Level Iteration Penalty Methods

In this section, based on the iteration penalty method
described in the previous section, the two-level iteration
penalty finite element methods for (16) are proposed in terms
of the Stokes iteration, Oseen iteration, or Newtonian itera-
tion. From now on, H and h with h < H are two real positive
parameters. The coarse mesh triangulation J; is made as
in Section 3. And a fine mesh triangulation 7, is generated
by a mesh refinement process to ;. The conforming finite
element space pairs (V;,, M) and (Vg, My) < (V,, My,)
corresponding to the triangulations 73, and I, respectively,
are constructed as in Section 3. With the preavious notations,
we propose the following two-level iteration finite element
methods.

4.1. Two-Level Stokes Iteration Penalty Method. In Steps 1
and 2, we solve (27) and (28) on the coarse mesh, as in the
follwing.

Step 1. Find (ugH,ng) €
(VH: qH) € (VH) MH)

(V> My;) such that for all

0 0 0 .0 0 )
a (usH’VH - usH) +b (usH’ WVl — “sH) +j (Vi)

—-J (ugH'r) -d (VH - “2H>PSH) = (f) Vg — USH) >

d (“gH’CIH) te (PSH’ ‘lH) =0.
(48)

Step 2. Fork =1,2,...,find (uifH, pr) € (Vg Myy) such that
for all (v, q) € (Viy, Mpy)

k k k k k .
a (usH’ VH ~ usH) +b (usH’ WV — usH) +j (Vi)
ok k k k
-] (usH‘r) -d (VH - usH’psH) 2 (f’VH - usH) >

d (ul;H’ QH) +é (PfH’ CIH) =& (Picl_il’ Qh) .
(49)

In Step 3, we solve a Stokes-type variational inequality
problem on the fine mesh in terms of the Stokes iteration, as
in the following.



Step 3. Find (uy,, p,,) € (V},, M;,) such that for all (v,,q;,) €
(Vh> Mh)
a (ush’ \/ e sh) + .] (Vh‘r)

(f.v, —ug,), (50)

k
ah) + b( Uerp Wepps Vi —

- ] (ushf) -d (vh — Ugp> psh) =

d (uy, qp) + € (e qn) = € (PI;H’%) .

As a direct consequence of Theorem 2, the solution
(uI;H, pr) to the problem (49) satisfies

"“EH"v = \]2k2+ -4 (|f" + ||9||L2(S>) (1)

(2k + I)K1
eptal = 205

€1 + ||9”L2(5))2~ (52)

Next, we estimate u,;,. Taking v, = 0, g, = p,;, in (50), it yields

uluaslly + ellponl”
< (f,uy) -

SK ("f" + ||9||L2(5)) Jue

( ehr) b( sH’uls(H’ueh)-l_s(psH’Psh)

2
+ N[ ol + 2] 1pal

pal + 5okl

u 2
< Sluall +

2 N2
+ %("f" + ||9||L2(5))2 + 7”“%“3

(53)
That is,

V2N

Vg % Job].
u

(U6 +gl25))+ ~—— il +

ol <
(54)

Suppose that the initial data satisfies

7N, 2k+1
J " (16 + 9] 26)) < 1 (55)

2
then using (51)-(52), we can estimate u,, by

V2K, V2
fll +{|g| 2
o (61 alag) + =

N v21;+1

k
Uy

5y
7N

el <

9% il
)5 00+ o)+

U
>7V2k+ IN 12N
b _

3 _> Bu ¢
T 49N " 2N’
(56)
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By the classical existence theorem for the variational inequal-
ity problem of the second kind in the finite dimension [27],
we have the following.

Theorem 5. Under the uniqueness condition (55), there exists
a unique solution (ug,, py,) to the problem (50). Moreover, u,
satisfy (56).

It follows from Theorems 3 and 4 that (u];H, pr) is of the
following error estimates:

Ju—wll, +lp - peu] < c (4 ), (57)
'lu—u];H” < C(H9/4+£H5/4+sk+1). (58)

Next, we begin to prove the following error estimate for the
solution (u,y,, p,;,) to the problem (50).

Theorem 6. Suppose that the uniqueness condition (55) holds.
Let (u,p) € H*(Q)’ NV x H*(Q) N M and (u, p,) €
(Vi,, M) be the solutions to the problems (16) and (50),
respectively; then they satisfy

||u - ueh"V + ||p - psh” < c(hs/4 veH !t + B+ sk+1).
(59)

Proof. Define a generalized bilinear form on (V},, M;) X
(Vi M) by

Ben (W Py Vi 1) = a (W, v) = d (Vi, 1)

+d (uy, q,) + & (P> qn) -
Qy,p in (50), we have

(60)

Taking v, = Ry, q;, = pgy, —
ulug, - Ryl + ellpa - Qupl’
= Bep (Ugy — Ry, pgy, = Qupsug, — Ry, pyy, —
Ryu) —d (ug, - Ryu, pgy,)
Qup)
Qup)

< (f’ Uy, — Rhu) +b ( Uepp sH’ Rhu uah)

Qup)
=a (ush> Uy, —
+d (g Pe, = Qup) + € (Pe> Pen —

B (Ryu, Qpps ug, — Ry, pyg, —

+é (pI;H’ Pen — th) + ] (Rhu‘l’) - ] (ush‘r)

~ Bey (R, Qpps ug, — Ryu, py, = Qpp) .

(61)

Letv = u,, and v = 2u — Rj,u in the first inequality of (16);
then

u) + J (ush‘r)
_j(u‘r) _d(ueh _u’P) = (f’ush —ll),
a(w,u-Ryu)+b(w,u,u-Ryu)+ j(2u, - Ryu,)

—j(u)—d(u-Ryu p) 2 (fu-Ryu).

a(w,uy—u)+b(w,uuy, -

(62)
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Adding the above two inequalities gives

(f,uy, - Ryu) < a(u,uy - Ryu)
Ryu) - d (uy, - Ryu, p) (63)
- Rhur) + ] (ush‘r) - 2j (u‘r) .

Substituting the above inequality into (61), it yields that

+b(u,u,uy, -

+j(2u,

ulug, = Ryull, + el pen — Q|
=a (u - Rhu, ush - Rhu)
I

ko k
+b (ueH, u g, Ryu - ush) -b(uw,u,Ru-u,)
IZ

—d (uy, - Ryu, p— Q,p) +d (u—Ryu, py, — Q,p)
13
+&(ply — Qups pen — Qup)
n
+ ] (zu‘r - Rhur) - 2j (ur) + ] (Rhur)'
15
(64)

It follows from Hélder’s inequality and Young’s inequality that

I, = a(u - Ryu,ug, - Ryu) < pllu - Ryul, lug, — Ry,
< Elug - Ryl + 2ufu - Ryuly,

Qup) —d (ugy, — Ryu, p - Qp)
= Ryl e = Qupl + e = Ryl 2~ Qupl

E o, = Ry, + 7oy - Qupl

I =d(u-Ryu,py -

IN

IN

1 2 1 2
+ ;"P - Qup| + W"“ - Ryuly,

(65)

where 7 > 0 is some small constant determined later. We
rewrite I, as

12 - b( Uerp ueH’ Rhu ush) b(ll, u’Rhu_ush)
—b( u,; —u,u,Ru— ush)+b(u uI;H u, R,u-— ush)

+b( H uukH u, Ryu — ueh)
(66)

Then using (13), (15), and Young’s inequality, we can estimate
I, by

L < Nlul,|Ryu - ug |, [ul; - u

+ N - ““\Z/HRh“ —ugl, (67)

4
Uerr — u"v)'

k
eH

< %"Rhu - ush"é + c( u

7
It is easy to show that
e (Pir = Qup> Pon ~ Qup)
- Qupl
2 2 €k 2
<1 pen - Qupll” + @Ilpm - Q|
& 2
<o lpas = Quel + 55 (I = pial + 1o - Quel’).
(68)
Finally, from triangle inequality, I, is estimated by
IS = j(zur - Rhur) - Zj (ur) + ] (Rhur)
<2 J glu, - Ryu,|ds (69)
s
= 2”9”1}(5) lu, - Rh“r"LZ(S)'
Substituting (65)-(69) into (64), it yields that
o= waly
< Jlu = Ryully + oy = Ryull,
2
< 7:1 [P = Qup
+c(fju =Ryl + o - Qupl + fu, - Ryl
2
velp = pea] + o - vl tll)
< 21 [y @yl + e (1 e 1 ),
N7
(70)

where we use (24)-(26) and (57)-(58). Next, we estimate
[|per, — Qpupll. For all w;, € Vi, let v.=u + wy, in (16) and
v, = u,, = wy, in (50), respectively. Then we get

a(u,wy) +b(wu,w,) —d(w,p) = (fw,),

a(ueh’wh) +b( Uepp ufH’wh) d(wh’Psh) = (f’wh)‘

(71)

Subtracting them and using (13), (15), we obtain

d(Wy, P = Pen)
=a(u-uy,w,) +b(u,u,w,)-b (u]:H,u];H, wh)
=a(u—uy,w,)+b (u, u- uI;H,wh)

k k k
+b (u - Uy u,wh) -b (u —u ,u- usH,wh)

< (M"u - ush”V + N|ul,

N - uby ) Wil
(72)



Therefore, it follows from (23) that ||Q,p — pgll can be
estimated by

[ Qup — P
< sup d (Wy,, Qup = Pen)
wiev, [Wally
= sup d (Wy,, Qup — p) +d (W, p = pe,)
W€V [wally 73)

< |p-Qupl + ulu - vy,
+ Nl Ju = by + Nl - o]

< pllu =gy, +c (B +eH* + B 4 ).

If we choose 7 = x/4+/pt such that 21/ /pr) - (/) = 1/2, then
substituting (73) into (70), we show

lu =g, < c (B +em”* + B + ). (74)
From (73), again, we obtain

Ip = penll < c (W +eH* + M+ 1) (79)

Thus, we complete the proof of (59). O

4.2. Two-Level Oseen Iteration Penalty Method. In Steps 1
and 2, we solve (48) and (49) on the coarse mesh, as in the
following.

Step 1. Find (u’y, p%y) € (Vig, M) by (48).
Step 2. Fork = 1,2,..., find (u*,, p~,;) € (Vi, My,) by (49).

In Step 3, we solve an Oseen type variational inequality
problem on the fine mesh in terms of the Oseen iteration, as
in the following.

Step 3. Find (uy,, p,,) € (V},, M},) such that for all (v,,q;,) €
(Vh) Mh)
k .
a(uy, v, —ug,) +b (“sH» Uepy> Vi — “sh) + 7 (Vie)
—j(uge) = d (v —wg o) = (v, —uy,),  (76)
d (ug qp) + € (P qn) = € (pr’ Qh) .

From (12), it is easy to show that the solution (u,, p,;,) to
the problem (76) satisfies

2 2

Hluelly + el penl
< (f’ ush) - ] (ush‘r) te (pr’ psh)
K (”f" + "g"Lz(S)) lagy, +e PicH

u € € 2
s 5"“sh“\2/ + §||Psh||2 5 pr'

leal

2

2
K
+ ﬁ(ufn +19ls)
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Suppose that the initial data satisfies

2V4k + 2N
(e lglg) < 09)

then using (52), we can estimate u,, by

MMNSJE

2k +1
= <\/ 2+ * 1> % ("f" + "g“U(s)) (79)
VAR T 3k,
<
‘M

k
PsH

K
+ ;1 (€1 + ||g||L2<s>)

N
2N’

I+ |9l s)) <

For two-level Oseen iteration penalty method, the solu-
tion (ug,, py,) is of the following error estimate.

Theorem 7. Suppose that the uniqueness condition (78) holds.
Let (u,p) € H*(Q)* N V x HX(Q) N M and (ug, py,) €
(Vi, M) be the solutions to the problems (16) and (76),
respectively; then they satisfy

— _ 5/4 5/4 9/4 k+1
& &l -
lu—wgly +p = pel] < c (B + eH*M* + B 4 651,
(80)

Proof. Proceeding as in the proof of (64), we can get

ey = Rpully + el o~ Qupll
=a(u-R,u,u, - Ryu)
L

k
+b (usH, u,,, R,u— ush) -b(u,u,Ru-u,,)

16
=d (uy, = Ryu, p - Q,p) +d (u—-Ryu, py, — Qup)
I
+& (s — Qubs pen — Qup)
I,

+j (20, - Ryu,) —2j(u,) + j(Ryuy).
IS

(81)
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In the above equation, I;, I;, I, and I; have been estimated
in the proof of Theorem 6. Here, we only estimate I;. Using
(12), (13), (15), and Young’s inequality, we have

Ig=0b (u];H, u,,, Ru— ueh) -b(u,u,Ru—uy,)
=b (ulgH, u,, — R,u, Ryu - ueh)
+b (ufH, Ryu—u,Ryu-— ueh)
+b (ufH -uwu,Ru-— ush)
= b (ufy Ryu —u, Ryu -y, (82)
+b (ufH -uwu,Ru-— ush)

<N

k
usH

VIR = ufy | Ryw = g,

+ Nllull, [Ryu = ug, |, oy — v

2
< guRhu gl + e (Juby - ul + R - ul}).

Then substituting (65), (68), (69), and (82) into (81), it yields
that

21
u-u, S — ||Pe -Q p
lw - ug 7 | pen = Qupl )

+ c(hs/4 +eH !t + B 4 sk“).

In (83), we use (24)-(26) and (57)-(58). Next, we estimate
[|per, — Qupll. For all wy, € V,,, proceeding as in the proof
of (72), from (51) and (78), we can show

d (Wy> P = Pen)

=a(u-ugy,w,) +b(u,uw,)
-b (“];H> ush’wh)
=a(u—uy,w,)+b (u’;H, u- ush,wh)
+b (u - ufH, u, wh) (84)
< (el - ugs ]y, + Niull, o - ul |
+ Ny = wglly ) [willy
< (2= sl + Nl o - ] ) -

It follows from (23) and (84) that

[ Qup ~ Pl
< sup d (Wy, Qup = Pen)
wive [wally
= sup d (Wy,, Qup = p) +d (Wp,, P = Pe)
Wi EVo, Wl

5
< lp - Qupll + 7 =gyl + Niul, Ju - uly,

< E%ﬂuu —ugly +c (B + e+ B+ ).
(85)

If we choose 17 = x/5+/p such that 2/ +/u) - (5u/4x) = 1/2,
then substituting (85) into (83), we show

fu—ugly <c(P*+em> + B+ 1), (86)

From (85), again, we obtain
2= penl Sc(h5/4+£H5/4+H9/4+sk“). (87)
Thus, we complete the proof of (80). O

4.3. Two-Level Newton Iteration Penalty Method. In Steps 1
and 2, we solve (48) and (49) on the coarse mesh, as in the
following.

Step 1. Find (ugH,ng) € (Vg, M) by (48).

Step 2. Fork =1,2,..., find (u¥,, p&,) € (Viy, My;) by (49).

In Step 3, we solve a linearized Navier-Stokes type
variational inequality problem on the fine mesh in terms of
the Newton iteration, as in the following.

Step 3. Find (u,, p,;,) € (V},, M;,) such that for all (v,,q;,) €
(Vh: Mh)

a (g, vy, —u,,) +b (u};H’ Uepys Vi — “eh)
+b (ueh, ufH,vh - ueh)
+J (Vie) = 7 (Uee) = d (V) =g pey) - (88)
> (f,v, —uy,) +b (“I;H ngH’Vh - ueh) >
d (ug, qp) + € (P qn) = € (P?H’ Qh) .

In this section, we will suppose that the initial data
satisfies

8N 2k +1
MJ = (114 lgllpg) <1 69

Then from (51), uI;H satisfies ||ufH||V < u/8N. Let v, =
0, g, = p., in (88). Using (12), we obtain
ulueally = b (wip uen ug,) + el panll
< (fug,) - j(ug,)-b (“I;H’ u]:H>ush) te (wapeh)
<K (”f" + "9"L2(S)) (L
+N Peaa] 1Pl

< Elually + Slpal” + okl

2
el + &

k
usH

4
v

k
eH

u

2 2

K] 2 N
+ —(lIfll + +—
u ( ||9||L2(3)) " o)
90

Since

/’l"ush"é -b (uI;H’ Uep ush)

(91)
2 /’l”ush”f/ -N

7
o I L M




10 Abstract and Applied Analysis
then Theorem 8. Suppose that the uniqueness condition (89) holds.
) 2\/_ AN L fet (u,;)a) be I—f(Q)l2 ﬂ V x H;(Q) ?,ZM alzd)(ush,aps?) )E
w,l,, < Ifll + ||g Pg g Vi, M) be the solutions to the problems (16) and (88),
Il < \/_ ( " “LZ(S) @ " ' \/5.” " |V respectively; then they satis
P Y Y Y
P A
4V3V2k+1N 43 4\/’ N
< (l N 1 + l) b _ S74p < H ||u—ush||v +]lp = panll < c(h5/4 +eH* + B +sk+2).
4755 6/N 130N 2N (93)
(92) Proof. Proceeding as the in proof of (64), we can get
2 2
Hluen = Ryully + ellpen = Qupl
=a(u-Ryu,u, — R,u)
L
+—d (ug, — Ryu, p - Q,p) +d (u - Ryu, py, — Q,p)
I3
e (Ples — Qups Pen — Qup) (94)
I,
+ J (2u'r — Rhur) — 2j (ur) + ] (Rhur)
Is
+b (ul;H, u,,, R,u— u£h> +b (ush, ut, Ru - ush) -b(w,u,Ru-u,)-b (ui‘H, v, Ru - ush).
17
‘In the above equation, I, I;, I,, and I; have befen estimated g"Rh“ “sh“v ”Rh“ - ush”V"Rhu - “”V
in the proof of Theorem 6. Here, we only estimate I,. We
rewrite I, as u 2 u 2 2
’ < SR = ugffy + Ry = wepfy + 4p Ryw — wlfy
(96)

k k
IL=b (ueH’ u,, Ryu - ush) +b (ush’ u,, Ryu - ueh)

-b(w,u,Ru—-uy) - b( Wepyps “sH’Rh“ ush)

= b(uy, —uwu,Ryu—u,,) +b(uy, vy —u,Ru-u,,)
k k
-b (ush U Wy — Ugpps Rhu - ush)
=b(uy, - Ru,u,Ru-u,)+b(R,u—-uu R,u-u,,)

Iy

+b(u,, Ryu—u, Ru—uy,,)
I9

k
+b (Rhu —u,, Ryu—uy, Ryu - ush)

IIO
b(u*, - RuR k R
T O\ Uy — KW KU = Uypy, [0 — Uy, ).
Ill

(95)
From (13), (20), and Young’s inequality, I; is estimated by

Iy =b(u, - R,u,u,R,u—u,,)+b(R,u-u,u R,u—u,,)

< Nilully|Ryu = ugy [y + Nltully [ Ryu = gy | Ryu — ull,

Using (13) and (24), we estimate I, by

Iy = b(ugy, R,u—u,Ru—ug,)
=b(uy, - Ryu,R,u—u,Ru—uy,,)
+b(R,u,Ryu—u,Ru—-u,,)

< N|[Ryu —uf, [Ryu ~ ugl;

+ N[ Ryl [Ryu - ully Ry - uey

< G IR =gl + SR =g [} + Ry -l

(97)

where C; > 0 is independent of h, H, and e. Similarly, it
follows from (13), (24), and (57) that

k
I,=0 (Rhu —u,, Ryu—u, Ryu - ush)

e N e
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< N ([Ryu—ully + Ju—uy],) IRwu = uyll
<G, (h2 +H ek+1) ||Rhu - ush"f,,
(98)

where C, > 0 is independent of h, H, and &. Finally, we can
estimate I}; by

k k
Ill =b (usH - Rhu’ Rhu — Ugpps Rhu - ueh)

ko112
< N"Rhu Uy V”Rhu - ush"V

< SIRu = ug [+ e (IR~ uly + fu - ulyy

V)

(99)

For sufficiently small h, H, and e such that C,i* + C,(h* +
H'* + 1) = 1/32, substituting (65), (68), (69), and (95)-
(99) into (94), it yields that

4n
o = wepfly < — [l per = Qupl
nlly VB n— Qn 100)

+ c(hs/4 + et + HO? +ek+2).

For all w;, € V,,, proceeding as in the proof of (72), we can
show

d (Vi P = Pen)
=a(u-uy,v, +b(u,uv,)-b (uI;H, u,, vh) (101)
-b (ush, ul;H, vh) +b (ul;H, ufH, vh) .
Since
b(wuv,) -b (ufH, ush,vh) -b (ush, ut, Vh)
+b (u’SH, ufH,vh)
=b(u-uy wv,) +b(w,u-R,u,v)
-b(u-uy,u-R,u,v,)
+b (ush - u];H, Ryu - ui(H, vh)
-b (u};H, u,, — Ryu, vh)
< (NlullyJu =g}, + Niuly[u - Ryul,
- Ryl -l ) bl
(ol ook

X (u =Ryl + o= ugil, ) vl

k

+ Niu

[y (e = wenlly + o = Ryfy) vl

<G (1 +H +H + ek“) o = weny [vally

+c(Ju-Ryuly + Ju-Ryuly + fu— b |2) il
(102)

1

where C; > 0 is independent of h, H, and &, then from (23)
we have

«|Qup = panll < Cs (1 +h+ H* + sk“) =g,
+c(Ju=Ryul, +p - Qupl (103)

v

Thus, for sufficiently small h, H, &, and # such that

+ ||u - Rhu”‘z, + Hu - ul;H

C3(1+h2+H2+sk”)ﬂ<l’ (104)
K VB2
substituting (103) into (100), we obtain
fu—ugll, <c(P*+eB> + B 4+ £42). (105)
From (103), again, we obtain
Ip = penll < c (K +eH™* + B + 7). (106)
Thus, we complete the proof of (93). O

Remark 9. In terms of Theorems 6, 7, and 8, if we choose
e = OH), H = O(h°"°) for the two-level Stokes or Oseen
iteration penalty methods and ¢ = O(H*), H = O(hl/z) for
the two-level Newton iteration penalty method, then

lw =gl + 2~ pal| < cH”"*. (107)

4.4. An Improved Scheme. In this section, we will propose a
scheme to improve the error estimates derived in Theorems
6-8, which is described as follows.

In Steps 1 and 2, we solve (48) and (49) on the coarse
mesh, as in the following.

Step 1. Find (w2, p%y) € (Vig, M) by (48).

Step 2. Fork = 1,2,..., find (u*,, p¥,;) € (Viy, My,) by (49).

At Step 3, we solve a linearized problem (50) or (76) or
(88) on the fine mesh in terms of Stokes iteration or Oseen
iteration or Newton iteration, as in the following.

Step 3. Find (u,, py,) € (Vy,, M) by (50) or (76) or (88).

At Step 4, we solve a Newton correction of (u,,, p,y)
on the fine mesh in terms of Newton iteration, as in the
following.

Step 4. Find (u},, p,) € (V;,, M,) such that for all (v, q,) €
(Vh) Mh)

a (ug, vy —ug,) + b (ug, ug, v, —ug,)
+b (ug, ug, vy, — uy,)
+j (Vi) = j(u3) —d (v, —ugps)  (108)
> (f,v, —uy,) + b (uy, ug, v, —ul,),
d (wgy, ) + & (P dn) = € (Penr 1) -

First, we show the following theorem.
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Theorem 10. Let (uf, p¥,) and (u};, pl,) be the solutions of
(28) and (108), respectively. Then there holds that

"uls(h - “:h"V + "Pﬁh - p:h"
(109)

k 2 1/2 k-1
sc ("ueh - ush"V +e "Psh = Den ”) »

where (W, p,y,) is the solution to the problem (50) or (76) or
(88).

Proof. Under the uniqueness condition (89), the solution u,,
satisfies ||ug|ly < #/2N. Taking v, =}y, g, = ply, — P&, in
(28) and v, = ufh, qn = pfh - pl, in (108) and adding them
yield

2
+&
\%4

k 2

*
U, — Uy

* k
Pen = Pen

¢

k-1 * k k k * k
¢ (Psh = Pen > Pen — Psh) +b (“sh’ Uy Uy — “sh)

b * * k
- ush’ush’ush - ush)
* * k * k
-b (ush,ugh,ush - ueh) +b (ush, u,, U, — ush)
f—1 * k k * k
=& (psh = DPen ’psh) +b (ush_ush’ ush_ueh’ush_ush)

k * * k
+b (ush — Uy, Uy, Uy, — ush) :
(110)

Using (13), Holder’s inequality, and Young’s inequality, we
obtain

* k 2 * k 2
iU, — Uy, V+£ Psh Psh
< k=1l || .. k N k|2
S €|\ Pen — Pen Pen = Pen|| + Uy, — Uy, v
* k N * k|12
XYy, — Uy V+ ||u£h||V U, — Uy, '
ENl k2, € k=102 | B+ k |12
S S Peh — Pen|| * 5||Pen — Pen ” + 3 uah_ushv
2 2 2
2 N? 4
ﬁ * .k N .k
+ 4 Upp — Uy V+ u Ugp — Uy, v’
1)
That is,

X 2¢ Ly 2N
“ush - “fh“v < \/f “psh - Pfhlu + 7”“8*! - uls(h"\Z/ (112)

For all w;, € V,, taking v;, = u];h + wy, in the first inequality
of (28) and v;, = u}, + wy, in the first inequality of (108), it
yields that

a (uls(h’wh) +b (uih’ul;h’wh) -d (wh’Pich) = (fwy,),
a (ujy, wy,) + b (ug, ujy, wy,) +b (0, ug, w,) (113)

—d (W, p3,) = (£.wy,) + b (ug,, ug,, wy) .
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1 2
T S;
0
T 1 x

FIGURE 1: Domain .

Subtracting them and using (23), (112), we obtain

* 3
K\\Per — psh"
* k
< sup d (Wh’Peh - peh)
Wi€Von )%
V. A
k
a (u:h — Uy Wh) +b (ug, ufy, wy)
= sup
w,E€Von ”wh“V
b (ul, ug, wy,)—b (b, ub, w, ) =b (v, v, w,)
eh> Yeh> Wh eh> Yeh> h eh> Yeh> Wh
+ sup
w, €V ”wh"V
k k
a (“:h - ush’wh) +b (“:h - ush’ush’wh)
= sup
W€V "wh”V
* k k k
b (ush’ U, — Uy Wh)_b (ush = Ugpy Uy — Uy Wh)
+ sup
w,E€Von “wh“V
* k * k
< Uil — Uy \'% + 2N||u€h||V U, — Uy %
k 2
+ Niu,, —uy v
<2 * k N k 2
S Sp|Uy, — Uy ||, T N Ug, = Uy,
k-1 k 2
<2 VZ:“S DPen — psh " +5N Uy, — Uy v
(114)
O

From (34) and Theorems 6-10, we get the following error
estimates.

Theorem 11. Let (u, p) € H*(Q)* NV x HX(Q) N M and
(u), pl) € (Vy, My,) be the solutions to the problems (16)
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IsoValue

IsoValue
0.0115226
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FIGURE 2: Streamline of flow and pressure contour for exact solution.

and (108), respectively. Then for the two-level Stokes or Oseen
iteration penalty methods, they satisfy

Ju=uily +lp - pal

<c <h5/4 + H9/2 + 83/2H5/4 + 81/2H9/4 + 8k+1/2) .

(115)
And for the two-level Newton iteration penalty method, they
satisfy
Ju=wiilly +lp - pal

(116)
< c(h5/4 L H 4 PP 4 R +€k+1/2).

Remark 12. If we choose H = O(h°/'®), &€ = O(h*) in (115)
for two-level Stokes or Oseen iteration penalty methods and
H = O(h'*), £ = O(h°'*) in (116) for the two-level Newton
iteration penalty method, then we obtain

Ju=wly +lp - Pl < cn™. (117)

5. Numerical Results

In this section, we will give numerical results to confirm the
error analysis obtained in Section 4. Since these two-level
Stokes/Oseen/Newton iteration penalty methods are given in

the form of the variational inequality problems which are
not directly solved, the appropriate iteration algorithm must
be constructed. Here we use the Uzawa iteration algorithm
introduced in [28].

For simplicity, we only give the Uzawa iteration
method for solving the variational inequality problem
(16). Similar schemes can be used to solve the two-
level Stokes/Oseen/Newton iteration penalty schemes in
Section 4. First, there exists a multiplier A € A such that
the variational inequality problem (16) is equivalent to the
following variational identity problem:

a(wv)+b(wu,v)—d(v,p)+ J Agv.ds = (f,v),
s

WeV 1)

d(u,q)=0, VYgeM,

Au, = |u|, ae on S,

where A € A = {y ¢ LX(S) : [y(x)| < 1 a.e.on S}. In this
case, we can solve the problem (16) by the following Uzawa
iteration scheme:

e A

is given; (119)
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IsoValue IsoValue
m (0.0115226
m (0.01262
= (0.0137174
= (0.00384087 = (0.0148148
= (0.00493827 = (0.0159122
= (0.00603566 = (0.0170096
= (0.00713305 = (0.018107
= (0.00823044 = (0.0192044
= (0.00932784 = (0.0203018
= (0.0213992
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IsoValue IsoValue
m (0.0499787
= (0.149978
m (.249978
= —(0.650018 = (.349977
= —(0.550018 n (0.449977
m —0.450019 m (0.549976
= —0.350019 m (0.649975
= —(.25002 m (.749975
= —(0.15002 = (0.849974
= 0.949974

FIGURE 3: Streamline of flow and pressure contour by Stokes method.

then A" is known; we compute (u”, p”) and A"*' by

a(",v)+b(u",u",v)-d (v, p")

=(f,v) - J Ngv.ds, VvevV,
s

(120)
d(u’,q) =0, VqeM,
A =Py (M + pgull), p >0,
where
Py (y) = sup (-1,inf (1,y)), Vy e L*(S). (121)

Consider the problems (1)-(2) in the fixed square domain
(0,1) x (0, 1) (see Figure 1). Let u = 0.1. The external force f
is chosen such that the exact solution (u, p) is

u(x,y) = (u (%, 9),uy (x, ),
p(xy)=02x-1)(2y-1),
122)
u (x,y) = -x"y (x=1)(3y -2),
uy (%) = xy* (= 1) 3x - 2).

It is easy to verify that the exact solution u satisfiesu = 0
onT,un=u,=0,u,#00nS, andu; #0, u-n =u, = 0on

S,. Moreover, the tangential vector 7 on S, and S, are (0, 1)
and (-1, 0). Thus, we have

o, =4uy’(y-1) onS§,
(123)

o, = 4;4362 (x-1) onsS,.

On the other hand, from the nonlinear slip boundary condi-
tions (2), there holds that

o.| < g5 (124)

then the function g can be chosen as g = -0, > 0 on §; and
S,.

In all experiments, we choose ¢ = 0.1, iteration initial
value A° = 1, and p = /2. In terms of Theorems 6 and 7, for

the two-level Stokes/Oseen penalty iteration methods, there
holds that

Ju—ully + 10— panll < e (B + eH™* + B 4 5.
(125)
Then we choose ¢ = O(H), H = O(h°"°), k = 2 such that
Ju—wglly +1p = pesll < cn™". (126)

We pick eight coarse mesh size values; that is, H =
1/4,1/6,1/8,...,1/18. In Table 1, the scaling between 1/H

and 1/h = (1/H)9/5 is given.
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IsoValue

0.00274348
0.00384088
0.00493827
0.00603566
0.00713305
0.00823045
0.00932784
0.0104252

Is
n

oValue

0.0115226
0.01262
0.0137174
0.0148148
0.0159122
0.0170096
0.018107
0.0192044
0.0203018
0.0213992

IsoValue

-0.750017
—-0.650017
—-0.550018
—-0.450018
—-0.350019
-0.250019
—-0.15002
-0.0500204

IsoValue

0.0499791
0.149979
0.249978
0.349977
0.449977
0.549976
0.649976
0.749975
0.849975
0.949974

FIGURE 4: Streamline of flow and pressure contour by Oseen method.

IsoValue

0.00274349
0.00384088
0.00493828
0.00603567
0.00713307
0.00823046
0.00932785
0.0104252

IsoValue
m (0.0115226

= 0.01262

= 0.0137174
= (0.0148148
0.0159122
0.0170096
0.018107
0.0192044
0.0203018
0.0213992

IsoValue

—-0.749999
—-0.65
—-0.550001
-0.450002
—-0.350003
—-0.250004
—-0.150005
—0.0500055

IsoValue
0.0499936

0.149993
0.249992
0.349991
0.44999

0.549989
0.649988
0.749987
0.849986
0.949986

FIGURE 5: Streamline of flow and pressure contour by Newton method.
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TaBLE 1: Comparison of the scaling between 1/H and 1/h. TABLE 5: Numerical relative error for Oseen method.
1/H 4 6 8 10 12 14 16 18 1/H 1/h flu—ugly/luly lIp - pull/lipl Iteration CPU(s)
1/h 12125 25157 42.224 63.095 87.604 115.619 147.033 181.756 4 12 149411e-02  5.38449 - 03 2 0.316
25 3.23052e - 03  1.24245e - 03 2 1.006
, _ o 8 42 1.12567¢—03 4.41332e-04 2 2.613
EA:BEI;I?SI.\IumerlcaI relative error for velocity with H = 1/14 and 10 63  5.08693—04 1.93710¢ — 04 N 5728
12 87  2.81455e - 04 1.04715e - 04 2 11.213
) 0.01 0.001 0.0001 0.00001 14 115 17828le-04 6.13519¢-05 2 20.045
Stokes 1.04374e — 03 1.84283e — 04 1.52977e — 04 1.52631e — 04 16 147 1.26872e - 04  3.91207e — 05 2 42.242
Oseen 1.04345e¢ — 03 1.78281e — 04 1.45638e — 04 1.45275e — 04 18 181  9.95916e — 05  2.73676e — 05 2 59.391
Order 1.728 1.915

TABLE 3: Numerical relative error for pressure with H = 1/14 and
h=1/115.

£ 0.01 0.001 0.0001 0.00001
Stokes 1.85222¢ — 04 6.20827¢ — 05 5.96578e — 05 5.96412e — 05
Oseen 1.85112e — 04 6.13519e — 05 5.88604¢ — 05 5.88398e — 05

TABLE 4: Numerical relative error for Stokes method.

TABLE 6: Numerical relative error for Newton method.

1VH _1/h_lu—-uglly/luly 1= paull/lpll Iteration CPU(s)
4 16 8.10332e-03  3.02474e - 03 2 0.535

6 36 1.51165¢—-03 598186 —04 2 2256

8 64  4.76536e—04 1.89983¢-04 2 6.991

10 100 2.08297e-04  8.02333¢ - 05 2 16.977
12 144 1.1090le-04 3.89471e - 05 2 37.804
14 196 7.20875e-05 2.21184e - 05 2 78.811

Order 1.811 1.947

Then we choose & = 0.01H>* and 1/h = (1/H)? such that

Ju=wglly +lp - pal < ch™.

Because when H = 1/16 and h = 1/256, this method does

(128)

I/H 1/h Ju-wugly/luly lp - peul/lpl Iteration CPU(s)
4 12 1.51517e =02  5.41171e - 03 2 0.281
6 25 3.30825e-03  1.25062e — 03 2 0.889
8 42 1.15862e — 03 4.44992¢ — 04 2 2.302
10 63  5.25908e—-04 1.99251e - 04 2 5.038
12 87  291391e-04 1.05862e — 04 2 9.806
14 115  1.84283e—-04  6.20827e — 05 2 17.621
16 147 1.30602¢e — 04  3.96161e — 05 2 40.549
18 181  1.01944e—-04 2.77123e - 05 2 53.445
Order 1.727 1.913

Setting ¢ = ¢,H, the comparison of relative error

[lu—uglly/llully and [[p — pull/llpll for different g >
0 is shown in Tables 2 and 3 when we use the two-level
Stokes/Oseen penalty iteration methods with 1/H = 14 and
1/h = 115. We can see that, for our present testing case, it
suffices to set ¢ = 0.001H if it is hoped to be as large as
possible.

Thus, set ¢ = 0.001H and 1/h = (1/H)9/5. Tables
4 and 5 display the relative H' errors of the velocity and
the relative L errors of the pressure and their average
convergence orders and CPU time when we use the two-
level Stokes iteration penalty method and two-level Oseen
iteration penalty method, respectively. Based on Tables 4 and
5, the two-level Stokes/Oseen iteration penalty methods can
reach the convergence orders of O(h**) for both velocity
and pressure, in H'- and L*-norms, respectively, as shown in
(126).

Next, we give the numerical results by using the two-level
Newton iteration penalty method. In terms of Theorem 8,
there holds that

o= wlly + o = parll < c (B + eH + B2 4 &%)
127)

not work and the computer displays “out of memory”. Thus,
in this experiment, we pick six coarse mesh size values; that
is, H = 1/4,1/6,...,1/14. Table 6 displays the relative H'
errors of the velocity and the relative L* errors of the pressure
and their average convergence orders and CPU time when
we use the two-level Newton iteration penalty method. Based
on Tables 4 and 5, we can see that the two-level Newton
iteration penalty method also reaches the convergence orders
of O(K”*) for both velocity and pressure, in H ' and L2-
norms, respectively, as shown in (128).

Figures 2, 3, 4, and 5 show the streamline of flow and
the pressure contour of the numerical solution by the two-
level Stokes/Oseen/Newton iteration penalty methods and
the exact solution, respectively.
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