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The purpose of this paper is to introduce new types of asymptotically (g, ϕ)-contractions which
generalize the Binayak S. Choudhury type contraction on fuzzy metric spaces and prove some
fixed-point theorems for single- and multivalued mappings on fuzzy metric spaces. Hence, our
results can be viewed as a generalization and improvement of many recent results.

1. Introduction and Preliminaries

The concept of fuzzy metric space was introduced in different ways by some authors (see,
i.e., [1, 2]) and further,the fixed-point theory in this kind of spaces has been intensively
studied (see [3–5]). Contraction mappings in probabilistic and fuzzy metric spaces have
considered by many authors. Singh and Chauhan were the first to introduce contraction
mapping principle in probabilistic metric space [6]. The result has been known as Seghal
contraction. The structures of these spaces allow to extend the contraction mapping principle
to these spaces in more than one inequivalent ways. One such concept is C-contraction which
was originally introduced by O. Hadžic in [7] and subsequently studied and generalized
in several works like [2, 8, 9]. In [7] O. Hadžic introduced the notion of a C-contraction in
probabilistic metric space. In [10], Goleţ introduced the concept of g-contraction where g is a
bijective function to generalize the Hicks-type contraction. Some other works may be noted
in [4, 11–20].
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In this paper we establish two coincidence point results for three mappings. For this
purpose we consider fuzzy (g, ϕ)-contraction and fuzzy asymptotically (g, ϕ)-contraction,
and prove several important fixed-point theorems for single- and multivalued mappings.

Definition 1.1 (see [18]). A binary operation ∗ : [0, 1]×[0, 1] → [0, 1] is said to be a continuous
t-norm if it is satisfies the following conditions:

(a) ∗ is associative and commutative;

(b) ∗ is continuous;
(c) a ∗ 1 = a for all a ∈ [0, 1];

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

In [8], Kramosil and Michálek gave the following definition of fuzzy metric space.

Definition 1.2. The 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary
set, ∗ is a continuous t-norm, and M is a fuzzy set on X2 × [0,∞), satisfying the following
conditions. For all x, y, z ∈ X and t, s > 0,

(M1) M(x, y, 0) = 0;

(M2) M(x, y, t) = 1 if and only if x = y;

(M3) M(x, y, t) = M(y, x, t);

(M4) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s);

(M5) M(x, y, ·) : (0,∞) → [0, 1] is left-continuous.

Example 1.3 (see [21]). Let (X, d) be ametric space. Define a∗b = a·b (or a∗b = min{a, b}) and
for all x, y ∈ X and ε > 0,

M
(
x, y, ε

)
=

ε

ε + d
(
x, y

) . (1.1)

Then (X,M, ∗) is a fuzzy metric space. We call this fuzzy metric M induced by the metric d
the standard fuzzy metric. On the other hand, note that there exists no metric on X satisfying
(1.1).

Lemma 1.4. Let ∗ be a continuous t-norm according to Definition 1.1. Then the condition

a ∗ a ≥ a for every a ∈ [0, 1] (1.2)

holds if and only if

a ∗ b = min{a, b} for every a, b ∈ [0, 1]. (1.3)

Proof. Suppose (1.2) holds. Let a, b ∈ [0, 1] such that a ≤ b. Then

min{a, b} = a = a ∗ 1 ≥ a ∗ b ≥ a ∗ a ≥ a = min{a, b}. (1.4)
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Therefore, for all a, b ∈ [0, 1], we have a ∗ b = min{a, b}. Suppose (1.3) holds. Then clearly

a ∗ a = min{a, a} = a (1.5)

and so (1.2) holds.

Definition 1.5 (see [8]). Let (X,M, ∗) be a fuzzy metric space: a sequence {xn} in X is said to
be convergent to a point x ∈ X (denoted xn → x) if

lim
n→∞

M(xn, x, t) = 1 for each t > 0. (1.6)

Definition 1.6 (see [21]). Let (X,M, ∗) be a fuzzy metric space: a sequence {xn} in X is called
a Cauchy sequence if and only if for any ε > 0, t > 0, there exists n0 ∈ N such that

M(xn, xm, t) > 1 − ε (1.7)

for all n,m ≥ n0.

Definition 1.7 (see [8]). Let (X,M, ∗) be a fuzzy metric space: a sequence {xn} in X is called a
Cauchy sequence if

lim
n→∞

M
(
xn+p, xn, t

)
= 1 for each t > 0, p > 0. (1.8)

Definition 1.8. Let (X,M1, ∗) and (Y,M2, ∗) be two fuzzy metric spaces. A mapping f : X →
Y is said to be (uniformly) continuous if for each ε > 0, s > 0, there exist δ > 0, t > 0 such that

M1
(
x, y, s

)
> 1 − δ =⇒ M2

(
f(x), f

(
y
)
, t
)
> 1 − ε, (1.9)

for each x, y ∈ X.

Definition 1.9. Let (X,M, ∗) be a fuzzy metric space and let T : X → X be a self-mapping on
X. The mapping T is called asymptotically regular at x ∈ X if

lim
n→∞

M
(
Tnx, Tn+1x, t

)
= 1. (1.10)

2. Main Results

Let Φ be the class of all mappings ϕ : [0,∞) → [0,∞) with the following properties:

(i) ϕ is strictly increasing;

(ii) ϕ is right-continuous;

(iii) ϕ(t) < t for all t > 0.
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Lemma 2.1. For all t > 0, limn→∞ϕn(t) = 0, where ϕn is the n-iteration of ϕ.

Proof. Suppose that limn→∞ϕn(t0) = l < 0 for some t0 ∈ (0,∞). By the monotonicity and right
continuity of ϕ, we have

l = lim
n→∞

ϕn+1(t0) = ϕ

(
lim
n→∞

ϕn(t0)
)

= ϕ(l) < l, (2.1)

which is a contradiction.

Definition 2.2. Let (X,M, ∗) be a fuzzy metric space and ϕ ∈ Φ. We say that the mapping
f : X → X is a fuzzy (g, ϕ)-contraction if there exists a bijective function g : X → X such
that for every x, y ∈ X, t > 0 the following implication holds:

M
(
g(x), g

(
y
)
, t
)
> 1 − t =⇒ M

(
f(x), f

(
y
)
, ϕ(t)

)
> 1 − ϕ(t). (2.2)

Note that, if ϕ(t) = kt for k ∈ (0, 1), t > 0, then (2.2) is a g-contraction in the sense of
Goleţ [10]. On the other hand, if g is an identity function, then (2.2) is called g-H-contraction
due to Miheţ [9]. Thus, our definition (g, ϕ)-contraction is a generalization of the Goleţ and
Miheţ’s type contraction principle in the fuzzy settings.

Definition 2.3. Let (X,M, ∗) be a fuzzy metric space and let ϕ ∈ Φ. Let f, g, and T are three
mappings defined on (X,M, ∗) with values into itself and let one take T as asymptotically
regular at x ∈ X. Then f is called fuzzy asymptotically (g, ϕ)-contraction with respect to T if

M
(
gTnx, gTn+1x, t

)
> 1 − t =⇒ M

(
fTnx, fTn+1x, ϕ(t)

)
> 1 − ϕ(t). (2.3)

Note that, if ϕ(t) = kt for k ∈ (0, 1), t > 0, then (2.3) is asymptotically g-contraction with
respect to T in the sense of Binayak S. Choudhury.

Lemma 2.4. Let f satisfy the condition given in Definition 2.2. Then g−1f is a continuous mapping
onM(gx, gy, t) with values into itself.

Proof. Let {xn} be a sequence in X such that xn → x in X under the fuzzy metric (X,Mg, ∗);
this implies thatM(g(xn),g(x), t) = Mg(xn, x, t) → 1 as n → ∞ for all t > 0. By definition, it
follows that

M
(
f(xn), f(x), ϕ(t)

) −→ 1, (2.4)

as n → ∞ for all t > 0, which implies that

M
(
gg−1f(xn), gg−1f(x), ϕ(t)

)
−→ 1, (2.5)

as n → ∞ for all t > 0, which implies that,

Mg
(
g−1f(xn), g−1f(x), ϕ(t)

)
−→ 1, (2.6)
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as n → ∞ for all t > 0. This shows that g−1f is continuous mapping on (X,Mg, ∗)with values
into itself.

Theorem 2.5. Let f, g, T be three mappings defined on complete fuzzy metric space (X,M, ∗) with
values into itself where g is bijective, T is asymptotically regular at x ∈ X, and f is fuzzy asymptoti-
cally (g, ϕ)-contraction with respect to T with fT = Tf, gT = Tg at x ∈ X, and g−1fT is continuous
in X. Then fTx = gx.

Proof. Since f is fuzzy asymptotically (g, ϕ)-contraction with respect to T , we get for t > 0,

M
(
gTnx, gTn+1x, t

)
> 1 − t =⇒ M

(
fTnx, fTn+1x, ϕ(t)

)
> 1 − ϕ(t), (2.7)

where t > 0, this implies that

Mg
(
g−1fTTn−1x, g−1fTTnx, ϕ(t)

)
> 1 − ϕ(t) (2.8)

which implies that

Mg
(
αTn−1x, αTnx, ϕ(t)

)
> 1 − ϕ(t), (2.9)

where α = g−1fT ; this implies that

M
(
fαTn−1x, fαTnx, ϕ2(t)

)
> 1 − ϕ2(t), (2.10)

which implies that

M
(
fg−1fTTTn−2x, fg−1fTTTn−1x, ϕ2(t)

)
> 1 − ϕ2(t), (2.11)

which implies that

M
(
gg−1fTg−1fTTn−2x, gg−1fTg−1fTTn−1x, ϕ2(t)

)
> 1 − ϕ2(t), (2.12)

which implies that

Mg
(
α2Tn−2x, α2Tn−1x, ϕ2(t)

)
> 1 − ϕ2(t). (2.13)

Continuing this process, we get

Mg(αnx, αnTx, ϕn(t)
)
> 1 − ϕn(t). (2.14)
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For every ε > 0 and λ ∈ (0, 1) there exists n0 ∈ N such that ϕn(t) ≤ min(ε, λ)whenever n ≥ n0.
Thus, we have

Mg(αnx, αnTx, ε) ≥ Mg(αnx, αnTx, ϕn(t)
)
> 1 − ϕn(t) > 1 − λ, (2.15)

which implies that Mg(αnx, αnTx, ε) > 1 − λ. Let {xn} be the sequence defined as xn+1 = αxn.
Now, taking Tx = xm−n and x = x0, then we get from the above inequality

Mg(xn, xm, ε) > 1 − λ, (2.16)

for every n,m ≥ n0. This implies that {xn} is a fuzzy Cauchy sequence in (X,M, ∗). Since
(X,M, ∗) is complete fuzzy metric space, then also (X,Mg, ∗) is complete fuzzy metric space,
there exists z ∈ X such that xn → z (n → ∞) under Mg . Again, α is continuous on
(X,Mg, ∗), it follows that αx = x, which implies that fTx = gx.
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