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This paper deals with approximating properties of the q-generalization of the Szász-Mirakjan
operators in the case q > 1. Quantitative estimates of the convergence in the polynomial-weighted
spaces and the Voronovskaja’s theorem are given. In particular, it is proved that the rate of
approximation by the q-Szász-Mirakjan operators (q > 1 ) is of order q−n versus 1/n for the classical
Szász-Mirakjan operators.

1. Introduction

The approximation of functions by using linear positive operators introduced via q-Calculus
is currently under intensive research. The pioneer work has been made by Lupaş [1] and
Phillips [2] who proposed generalizations of Bernstein polynomials based on the q-integers.
The q-Bernstein polynomials quickly gained the popularity, see [3–11]. Other important
classes of discrete operators have been investigated by using q-Calculus in the case 0 < q < 1,
for example, q-Meyer-König operators [12–14], q-Bleimann, Butzer and Hahn operators [15–
17], q-Szász-Mirakjan operators [18–21], and q-Baskakov operators [22, 23].

In the present paper, we introduce a q-generalization of the Szász operators in the case
q > 1. Notice that different q-generalizations of Szász-Mirakjan operators were introduced
and studied by Aral and Gupta [18, 19], by Radu [20], and by Mahmudov [21] in the case
0 < q < 1. Since we define q-Szász-Mirakjan operators for q > 1, the rate of approximation
by the q-Szász-Mirakjan operators (q > 1) is of order q−n, which is essentially better than 1/n
(rate of approximation for the classical Szász-Mirakjan operators). Thus our q-Szász-Mirakjan
operators have better approximation properties than the classical Szász-Mirakjan operators
and the other q-Szász-Mirakjan operators.
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The paper is organized as follows. In Section 2, we give standard notations that will be
used throughout the paper, introduce q-Szász-Mirakjan operators, and evaluate the moments
of Mn,q. In Section 3 we study convergence properties of the q-Szász-Mirakjan operators in
the polynomial-weighted spaces. In Section 4, we give the quantitative Voronovskaja-type
asymptotic formula.

2. Construction of Mn,q and Estimation of Moments

Throughout the paper we employ the standard notations of q-calculus, see [24, 25].
q-integer and q-factorial are defined by

[n]q :=

⎧
⎪⎨

⎪⎩

1 − qn

1 − q
, if q ∈ R+ \ {1},

n, if q = 1,
for n ∈ N, [0] = 0,

[n]q! := [1]q[2]q . . . [n]q, for n ∈ N, [0]! = 1.

(2.1)

For integers 0 ≤ k ≤ n q-binomial is defined by

[
n
k

]

q

:=
[n]q!

[k]q![n − k]q!
. (2.2)

The q-derivative of a function f(x), denoted by Dqf , is defined by

(
Dqf
)
(x) :=

f
(
qx
) − f(x)

(
q − 1

)
x

, x /= 0,
(
Dqf
)
(0) := lim

x→ 0

(
Dqf
)
(x). (2.3)

The formula for the q-derivative of a product and quotient are

Dq(u(x)v(x)) = Dq(u(x))v(x) + u
(
qx
)
Dq(v(x)). (2.4)

Also, it is known that

Dqx
n = [n]qx

n−1, DqE(ax) = aE
(
qax
)
. (2.5)

If |q| > 1, or 0 < |q| < 1 and |z| < 1/(1 − q), the q-exponential function eq(x) was defined by
Jackson

eq(z) :=
∞∑

k=0

zk

[k]q!
. (2.6)
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If |q| > 1, eq(z) is an entire function and

eq(z) =
∞∏

j=0

(

1 +
(
q − 1

) z

qj+1

)

,
∣
∣q
∣
∣ > 1. (2.7)

There is another q-exponential function which is entire when 0 < |q| < 1 and which converges
when |z| < 1/|1 − q| if |q| > 1. To obtain it we must invert the base in (2.6), that is, q → 1/q:

Eq(z) := e1/q(z) =
∞∑

k=0

qk(k−1)/2zk

[k]q!
. (2.8)

We immediately obtain from (2.7) that

Eq(z) =
∞∏

j=0

(
1 +
(
1 − q

)
zqj
)
, 0 <

∣
∣q
∣
∣ < 1. (2.9)

The q-difference equations corresponding to eq(z) and Eq(z) are

Dqeq(az) = aeq
(
qz
)
, DqEq(az) = aEq

(
qaz
)
,

D1/qeq(z) = D1/qE1/q(z) = E1/q

(
q−1z
)
= eq
(
q−1z
)
, q /= 0.

(2.10)

Let Cp be the set of all real valued functions f , continuous on [0,∞), such that wpf is
uniformly continuous and bounded on [0,∞) endowed with the norm

∥
∥f
∥
∥
p := sup

x∈[0,∞)
wp(x)

∣
∣f(x)

∣
∣. (2.11)

Here

w0(x) := 1, wp(x) := (1 + xp)−1, if p ∈ N. (2.12)

The corresponding Lipschitz classes are given for 0 < α ≤ 2 by

Δ2
hf(x) := f(x + 2h) − 2f(x + h) + f(x),

ω2
p

(
f ; δ
)
:= sup

0<h≤δ

∥
∥
∥Δ2

hf
∥
∥
∥
p
, Lip2

pα :=
{
f ∈ Cp : ω2

p

(
f ; δ
)
= 0(δα), δ → 0+

}
.

(2.13)

Now we introduce the q-parametric Szász-Mirakjan operator.
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Definition 2.1. Let q > 1 and n ∈ N. For f : [0,∞) → R one defines the Szász-Mirakjan
operator based on the q-integers

Mn,q

(
f ;x
)
:=

∞∑

k=0

f

(
[k]q
[n]q

)
1

qk(k−1)/2
[n]kqx

k

[k]q!
eq
(
−[n]qq−kx

)
. (2.14)

Similarly as a classical Szász-Mirakjan operator Sn, the operator Mn,q is linear and
positive. Furthermore, in the case of q → 1+ we obtain classical Szász-Mirakjan operators.

Moments Mn,q(tm;x) are of particular importance in the theory of approximation
by positive operators. From (2.14) one easily derives the following recurrence formula and
explicit formulas for moments Mn,q(tm;x), m = 0, 1, 2, 3, 4.

Lemma 2.2. Let q > 1. The following recurrence formula holds

Mn,q

(
tm+1;x

)
=

m∑

j=0

(
m
j

)
xqj

[n]m−j
q

Mn,q

(
tj ; q−1x

)
. (2.15)

Proof. The recurrence formula (2.15) easily follows from the definition ofMn,q and q[k]q+1 =
[k + 1]q as show below:

Mn,q

(
tm+1;x

)

=
∞∑

k=0

[k]m+1
q

[n]m+1
q

1
qk(k−1)/2

[n]kqx
k

[k]q!
eq
(
−[n]qq−kx

)

=
∞∑

k=1

[k]mq
[n]mq

1
qk(k−1)/2

[n]k−1q xk

[k − 1]q!
eq
(
−[n]qq−kx

)

=
∞∑

k=0

(
q[k]q + 1

)m

[n]mq

1
qk(k+1)/2

[n]kqx
k+1

[k]q!
eq
(
−[n]qq−kq−1x

)

=
∞∑

k=0

1
[n]mq

m∑

j=0

(
m
j

)

qj[k]jq
1

qk(k+1)/2

[n]kqx
k+1

[k]q!
eq
(
−[n]qq−kq−1x

)

=
m∑

j=0

(
m
j

)
xqj

[n]m−j
q

∞∑

k=0

[k]jq

[n]jq

1
qk(k−1)/2

[n]kqx
k

[k]q!qk
eq
(
−[n]qq−kq−1x

)

=
m∑

j=0

(
m
j

)
xqj

[n]m−j
q

Mn,q

(
tj ; q−1x

)
.

(2.16)
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Lemma 2.3. The following identities hold for all q > 1, x ∈ [0,∞), n ∈ N, and k ≥ 0:

xDqsnk
(
q;x
)
= [n]q

(
[k]q
[n]q

− x

)

snk
(
q;x
)
,

Mn,q

(
tm+1;x

)
=

x

[n]q
DqMn,q(tm;x) + xMn,q(tm;x),

(2.17)

where snk(q;x) := (1/qk(k−1)/2)([n]kqx
k/[k]q!)eq(−[n]qq−kx).

Proof. The first identitiy follows from the following simple calculations

xDqsnk
(
q;x
)

= [k]q
1

qk(k−1)/2
[n]kqx

k

[k]q!
eq
(
−[n]q−kx

)
− xq−k[n]q

1
qk(k−1)/2

[n]kqq
kxk

[k]q!
eq
(
−[n]qq−kx

)

= [k]qsnk
(
q;x
) − x[n]qsnk

(
q;x
)
= [n]q

(
[k]q
[n]q

− x

)

snk
(
q;x
)
.

(2.18)

The second one follows from the first:

xDqMn,q(tm;x) = [n]q
∞∑

k=0

(
[k]q
[n]q

)m( [k]q
[n]q

− x

)

snk
(
q;x
)

= [n]q
∞∑

k=0

(
[k]q
[n]q

)m+1

snk
(
q;x
) − [n]qx

∞∑

k=0

(
[k]q
[n]q

)m

snk
(
q;x
)

= [n]qMn,q

(
tm+1;x

)
− [n]qxMn,q(tm;x).

(2.19)

Lemma 2.4. Let q > 1. One has

Mn,q(1;x) = 1, Mn,q(t;x) = x, Mn,q

(
t2;x
)
= x2 +

1
[n]q

x,

Mn,q

(
t3;x
)
= x3 +

2 + q

[n]q
x2 +

1

[n]2q
x,

Mn,q

(
t4;x
)
= x4 +

(
3 + 2q + q2

) x3

[n]q
+
(
3 + 3q + q2

) x2

[n]2q
+

1

[n]3q
x.

(2.20)

Proof. For a fixed x ∈ R+, by the q-Taylor theorem [24], we obtain

ϕn(t) =
∞∑

k=0

(t − x)k1/q
[k]1/q!

Dk
1/qϕn(x). (2.21)
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Choosing t = 0 and taking into account

(−x)k1/q = (−1)kxkq−k(k−1)/2, Dk
1/qeq

(
−[n]qx

)
= (−1)kq−k(k−1)/2[n]kqeq

(
−[n]qq−kx

)
(2.22)

we get for ϕn(x) = eq(−[n]qx) that

1 = ϕn(0) =
∞∑

k=0

(−1)kxk

qk(k−1)/2[k]1/q!
Dk

1/qϕn(x)

=
∞∑

k=0

(−1)kxk

[k]q!
(−1)kq−k(k−1)/2[n]kqeq

(
−[n]qq−kx

)

=
∞∑

k=0

[n]kqx
k

[k]q!qk(k−1)/2
eq
(
−[n]qq−kz

)
.

(2.23)

In other words Mn,q(1;x) = 1.
Calculation of Mn,q(ti;x), i = 1, 2, 3, 4, based on the recurrence formula (2.17)

(or (2.15)). We only calculate Mn,q(t3;x) and Mn,q(t4;x):

Mn,q

(
t3;x
)
=

x

[n]q
DqMn,q

(
t2;x
)
+ xMn,q

(
t2;x
)

=
x

[n]q

(

[2]qx +
1

[n]q

)

+ x

(

x2 +
1

[n]q
x

)

=
1

[n]2q
x +

2 + q

[n]q
x2 + x3,

Mn,q

(
t4;x
)
=

x

[n]q
DqMn,q

(
t3;x
)
+ xMn,q

(
t3;x
)

=
x

[n]q

⎛

⎝
1

[n]2q
+
2 + q

[n]q
[2]qx + [3]qx

2

⎞

⎠ + x

⎛

⎝
1

[n]2q
x +

2 + q

[n]q
x2 + x3

⎞

⎠

=
1

[n]3q
x +
(
3 + 3q + q2

) x2

[n]2q
+
(
3 + 2q + q2

) x3

[n]q
+ x4.

(2.24)
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Lemma 2.5. Assume that q > 1. For every x ∈ [0,∞) there hold

Mn,q

(
(t − x)2;x

)
=

x

[n]q
, (2.25)

Mn,q

(
(t − x)3;x

)
=

1

[n]2q
x +
(
q − 1

) x2

[n]q
, (2.26)

Mn,q

(
(t − x)4;x

)
=

1

[n]3q
x +
(
q2 + 3q − 1

) x2

[n]2q
+
(
q − 1

)2 x3

[n]q
. (2.27)

Proof. First of all we give an explicit formula forMn,q((t − x)4;x).

Mn,q

(
(t − x)3;x

)
= Mn,q

(
t3;x
)
− 3xMn,q

(
t2;x
)
+ 3x2Mn,q(t;x) − x3

= x3 +
2 + q

[n]q
x2 +

1

[n]2q
x − 3x

(

x2 +
x

[n]q

)

+ 3x3 − x3

=
1

[n]2q
x +
(
q − 1

) x2

[n]q
,

Mn,q

(
(t − x)4;x

)
= Mn,q

(
t4;x
)
− 4xMn,q

(
t3;x
)
+ 6x2Mn,q

(
t2;x
)
− 4x3Mn,q(t;x) + x4

=
1

[n]3q
x +
(
3 + 3q + q2

) x2

[n]2q
+
(
3 + 2q + q2

) x3

[n]q
+ x4

− 4x

⎛

⎝
1

[n]2q
x +

2 + q

[n]q
x2 + x3

⎞

⎠ + 6x2

(

x2 +
x

[n]q

)

− 4x4 + x4

=
1

[n]3q
x +
(
−1 + 3q + q2

) x2

[n]2q
+
(
q − 1

)2 x3

[n]q
.

(2.28)

Now we prove explicit formula for the momentsMn,q(tm;x), which is a q-analogue of
a result of Becker, see [26, Lemma 3].

Lemma 2.6. For q > 1, m ∈ N there holds

Mn,q(tm;x) =
m∑

j=1

Sq

(
m, j
) xj

[n]m−j
q

, (2.29)
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where

Sq

(
m + 1, j

)
=
[
j
]
Sq

(
m, j
)
+ Sq

(
m, j − 1

)
, m ≥ 0, j ≥ 1,

Sq(0, 0) = 1, Sq(m, 0) = 0, m > 0, Sq

(
m, j
)
= 0, m < j.

(2.30)

In particularMn,q(tm;x) is a polynomial of degreem without a constant term.

Proof. Because ofMn,q(t;x) = x,Mn,q(t2;x) = x2+x/[n]q, the representation (2.29) holds true
for m = 1, 2 with Sq(2, 1) = 1, Sq(1, 1) = 1.

Now assume (2.29) to be valued form then by Lemma 2.3 we have

Mn,q

(
tm+1;x

)
=

x

[n]q
DqMn,q(tm;x) + xMn,q(tm;x)

=
x

[n]q

m∑

j=1

[
j
]

qSq

(
m, j
) xj−1

[n]m−j
q

+ x
m∑

j=1

Sq

(
m, j
) xj

[n]m−j
q

=
m∑

j=1

[
j
]

qSq

(
m, j
) xj

[n]m−j+1
q

+
m∑

j=1

Sq

(
m, j
) xj+1

[n]m−j
q

=
x

[n]m
Sq(m, 1) + xm+1

Sq(m,m)

+
m∑

j=2

([
j
]

qSq

(
m, j
)
+ Sq

(
m, j − 1

)) xj

[n]m−j+1
q

.

(2.31)

Remark 2.7. Notice that Sq(m, j) are Stirling numbers of the second kind introduced by
Goodman et al. in [8]. For q = 1 the formulae (2.30) become recurrence formulas satisfied
by Stirling numbers of the second type.

3. Mn,q in Polynomial-Weighted Spaces

Lemma 3.1. Let p ∈ N ∪ {0} and q ∈ (1,∞) be fixed. Then there exists a positive constant K1(q, p)
such that

∥
∥Mn,q

(
1/wp;x

)∥
∥
p
≤ K1

(
q, p
)
, n ∈ N. (3.1)

Moreover for every f ∈ Cp one has

∥
∥Mn,q

(
f
)∥
∥
p
≤ K1

(
q, p
)∥
∥f
∥
∥
p, n ∈ N. (3.2)

Thus Mn,q is a linear positive operator from Cp into Cp for any p ∈ N ∪ {0}.
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Proof. The inequality (3.1) is obvious for p = 0. Let p ≥ 1. Then by (2.29)we have

wp(x)Mn,q

(
1/wp;x

)
= wp(x) +wp(x)

p∑

j=1

Sq

(
p, j
) xj

[n]p−jq

≤ K1
(
q, p
)
, (3.3)

K1(q, p) is a positive constant depending on p and q. From this follows (3.1). On the other
hand

∥
∥Mn,q

(
f
)∥
∥
p
≤ ∥∥f∥∥p

∥
∥
∥
∥
∥
Mn,q

(
1
wp

)∥
∥
∥
∥
∥
p

, (3.4)

for every f ∈ Cp. By applying (3.1), we obtain (3.2).

Lemma 3.2. Let p ∈ N ∪ {0} and q ∈ (1,∞) be fixed. Then there exists a positive constant K2(q, p)
such that

∥
∥
∥
∥
∥
Mn,q

(
(t − ·)2
wp(t)

; ·
)∥
∥
∥
∥
∥
p

≤ K2
(
q, p
)

[n]q
, n ∈ N. (3.5)

Proof. The formula (2.25) imply (3.5) for p = 0. We have

Mn,q

(
(t − x)2

wp(t)
;x

)

= Mn,q

(
(t − x)2;x

)
+Mn,q

(
(t − x)2tp;x

)
, (3.6)

for p, n ∈ N. If p = 1 then we get

Mn,q

(
(t − x)2(1 + t);x

)
= Mn,q

(
(t − x)2;x

)
+Mn,q

(
(t − x)2t;x

)

= Mn,q

(
(t − x)3;x

)
+ (1 + x)Mn,q

(
(t − x)2;x

)
,

(3.7)

which by Lemma 2.5 yields (3.5) for p = 1.
Let p ≥ 2. By applying (2.29), we get

wp(x)Mn,q

(
(t − x)2tp;x

)

= wp(x)
(
Mn,q

(
tp+2;x

)
− 2xMn,q

(
tp+1;x

)
+ x2Mn,q(tp;x)

)

= wp(x)

⎛

⎝xp+2 +
p+1∑

j=1

Sq

(
p + 2, j

) xj

[n]p+2−jq

− 2xp+2 − 2
p∑

j=1

Sq

(
p + 1, j

) xj+1

[n]p+1−jq

+xp+2 +
p−1∑

j=1

Sq

(
p, j
) xj+2

[n]p−jq

⎞

⎠
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= wp(x)

⎛

⎝
p∑

j=2

(
Sq

(
p + 2, j

) − 2Sq

(
p + 1, j

)
+ Sq

(
p, j
)) xj+1

[n]p+1−jq

+ Sq

(
p + 2, 1

) x

[n]p+1q

+
(
Sq

(
p + 2, 2

) − 2Sq

(
p + 2, 1

)) x2

[n]pq

⎞

⎠

= wp(x)
x

[n]q
Pp

(
q;x
)
,

(3.8)

where Pp(q;x) is a polynomial of degree p. Therefore one has

wp(x)Mn,q

(
(t − x)2tp;x

)
≤ K2

(
q, p
) x

[n]q
. (3.9)

Our first main result in this section is a local approximation property of Mn,q stated
below.

Theorem 3.3. There exists an absolute constant C > 0 such that

wp(x)
∣
∣Mn,q

(
g;x
) − g(x)

∣
∣ ≤ K3

(
q, p
)∥
∥g ′′∥∥ x

[n]q
, (3.10)

where g ∈ C2
p, q > 1 and x ∈ [0,∞).

Proof. Using the Taylor formula

g(t) = g(x) + g ′(x)(t − x) +
∫ t

x

∫s

x

g ′′(u)duds, g ∈ C2
p, (3.11)

we obtain that

wp(x)
∣
∣Mn,q

(
g;x
) − g(x)

∣
∣ = wp(x)

∣
∣
∣
∣
∣
Mn,q

(∫ t

x

∫ s

x

g ′′(u)duds;x

)∣
∣
∣
∣
∣

≤ wp(x)Mn,q

(∣
∣
∣
∣
∣

∫ t

x

∫ s

x

g ′′(u)duds

∣
∣
∣
∣
∣
;x

)

≤ wp(x)Mn,q

(
∥
∥g ′′∥∥

p

∣
∣
∣
∣
∣

∫ t

x

∫s

x

(1 + um)duds

∣
∣
∣
∣
∣
;x

)

≤ wp(x)
1
2
∥
∥g ′′∥∥

pMn,q

(
(t − x)2

(
1/wp(x) + 1/wp(t)

)
;x
)
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≤ 1
2
∥
∥g ′′∥∥

p

(
Mn,q

(
(t − x)2;x

)
+wp(x)Mn,q

(
(t − x)2wp(t);x

))

≤ K3
(
q, x
)∥
∥g ′′∥∥

p

x

[n]q
.

(3.12)

Now we consider the modified Steklov means

fh(x) :=
4
h2

∫∫h/2

0

[
2f(x + s + t) − f(x + 2(s + t))

]
dsdt. (3.13)

fh(x) has the following properties:

f(x) − fh(x) =
4
h2

∫∫h/2

0
Δ2

s+tf(x)dsdt, f ′′
h(x) = h−2

(
8Δ2

h/2f(x) −Δ2
hf(x)

)
(3.14)

and therefore

∥
∥f − fh

∥
∥
p ≤ ω2

p

(
f ;h
)
,

∥
∥f ′′

h

∥
∥
p
≤ 1

9h2
ω2

p

(
f ;h
)
. (3.15)

We have the following direct approximation theorem.

Theorem 3.4. For every p ∈ N ∪ {0}, f ∈ Cp and x ∈ [0,∞), q > 1, one has

wp(x)
∣
∣Mn,q

(
f ;x
) − f(x)

∣
∣ ≤ Mpω

2
p

(

f ;
√

x

[n]q

)

= Mpω
2
p

⎛

⎝f ;

√
√
√
√

(
q − 1

)
x

(
qn − 1

)

⎞

⎠. (3.16)

Particularly, if Lip2pα for some α ∈ (0, 2], then

wp(x)
∣
∣Mn,q

(
f ;x
) − f(x)

∣
∣ ≤ Mp

(
x

[n]q

)α/2

. (3.17)

Proof. For f ∈ Cp and h > 0

∣
∣Mn,q

(
f ;x
) − f(x)

∣
∣ ≤ ∣∣Mn,q

((
f − fh

)
;x
) − (f − fh

)
(x)
∣
∣ +
∣
∣Mn,q

(
fh;x
) − fh(x)

∣
∣ (3.18)

and therefore

wp(x)
∣
∣Mn,q

(
f ;x
) − f(x)

∣
∣ ≤ ∥∥f − fh

∥
∥
p

(

wp(x)Mn,q

(
1

wp(t)
;x

)

+ 1

)

+K3
(
q, p
)∥
∥f ′′

h

∥
∥
p

x

[n]q
.

(3.19)
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Since wp(x)Mn,q(1/wp(t);x) ≤ K1(q, p), we get that

wp(x)
∣
∣Mn,q

(
f ;x
) − f(x)

∣
∣ ≤ M

(
q, p
)
ω2

p

(
f ;h
)
[

1 +
x

[n]qh2

]

. (3.20)

Thus, choosing h =
√
x/[n]q, the proof is completed.

Corollary 3.5. If p ∈ N ∪ {0}, f ∈ Cp, q > 1 and x ∈ [0,∞), then

lim
n→∞

Mn,q

(
f ;x
)
= f(x). (3.21)

This converegnce is uniform on every [a, b], 0 ≤ a < b.

Remark 3.6. Theorem 3.4 shows the rate of approximation by the q-Szász-Mirakjan operators
(q > 1) is of order q−n versus 1/n for the classical Szász-Mirakjan operators.

4. Convergence of q-Szász-Mirakjan Operators

An interesting problem is to determine the class of all continuous functions f such that
Mn,q(f) converges to f uniformly on the whole interval [0,∞) as n → ∞. This problem
was investigated by Totik [27, Theorem 1] and de la Cal and Cárcamo [28, Theorem 1]. The
following result is a q-analogue of Theorem 1 [28].

Theorem 4.1. Assume that f : [0,∞) → R is bounded or uniformly continuous. Let

f∗(z) = f
(
z2
)
, z ∈ [0,∞). (4.1)

One has, for all t > 0 and x ≥ 0,

∣
∣Mn,q

(
f ;x
) − f(x)

∣
∣ ≤ 2ω

(

f∗;

√
1

[n]q

)

. (4.2)

Therefore, Mn,q(f ;x) converges to f uniformly on [0,∞) as n → ∞, whenever f∗ is uniformly
continuous.

Proof. By the definition of f∗ we have

Mn,q

(
f ;x
)
= Mn,q

(
f∗(√·);x). (4.3)
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Thus we can write

∣
∣Mn,q

(
f ;x
) − f(x)

∣
∣ =
∣
∣Mn,q

(
f∗(√·);x) − f∗(√x

)∣
∣

=

∣
∣
∣
∣
∣
∣

∞∑

k=0

⎛

⎝f∗

⎛

⎝

√
√
√
√

[k]q
[n]q

⎞

⎠ − f∗(√x
)

⎞

⎠sn,k
(
q;x
)

∣
∣
∣
∣
∣
∣

≤
∞∑

k=0

∣
∣
∣
∣
∣
∣

⎛

⎝f∗

⎛

⎝

√
√
√
√

[k]q
[n]q

⎞

⎠ − f∗(√x
)

⎞

⎠

∣
∣
∣
∣
∣
∣
sn,k
(
q;x
)

≤
∞∑

k=0

ω

⎛

⎝f∗;

∣
∣
∣
∣
∣
∣

√
√
√
√

[k]q
[n]q

− √
x

∣
∣
∣
∣
∣
∣

⎞

⎠sn,k
(
q;x
)

≤
∞∑

k=0

ω

⎛

⎜
⎝f∗;

∣
∣
∣
√
[k]q/[n]q −

√
x
∣
∣
∣

Mn,q

(∣
∣
√· − √

x
∣
∣;x
)Mn,q

(∣
∣
√· − √

x
∣
∣;x
)

⎞

⎟
⎠sn,k

(
q;x
)
.

(4.4)

Finally, from the inequality

ω
(
f∗;αδ

) ≤ (1 + α)ω
(
f∗; δ
)
, α, δ ≥ 0, (4.5)

we obtain

∣
∣Mn,q

(
f ;x
) − f(x)

∣
∣ ≤ ω

(
f∗;Mn,q

(∣
∣
√· − √

x
∣
∣;x
)) ∞∑

k=0

⎛

⎜
⎝1 +

∣
∣
∣
√
[k]q/[n]q −

√
x
∣
∣
∣

Mn,q

(∣
∣
√· − √

x
∣
∣;x
)

⎞

⎟
⎠sn,k

(
q;x
)

= 2ω
(
f∗;Mn,q

(∣
∣
√· − √

x
∣
∣;x
))
.

(4.6)

In order to complete the proof we need to show that we have for all t > 0 and x > 0,

Mn,q

(∣
∣
√· − √

x
∣
∣;x
) ≤
√

1
[n]q

. (4.7)
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Indeed we obtain from the Cauchy-Schwarz inequality:

Mn,q

(∣
∣
√· − √

x
∣
∣;x
)
=

∞∑

k=0

∣
∣
∣
∣
∣
∣

√
√
√
√

[k]q
[n]q

− √
x

∣
∣
∣
∣
∣
∣
sn,k
(
q;x
)

=
∞∑

k=0

∣
∣
∣[k]q/[n]q − x

∣
∣
∣

√
[k]q/[n]q +

√
x
sn,k
(
q;x
) ≤ 1√

x

∞∑

k=0

∣
∣
∣
∣
∣

[k]q
[n]q

− x

∣
∣
∣
∣
∣
sn,k
(
q;x
)

≤ 1√
x

√
√
√
√

∞∑

k=0

∣
∣
∣
∣
∣

[k]q
[n]q

− x

∣
∣
∣
∣
∣

2

sn,k
(
q;x
)
=

1√
x

√

Mn,q

(
(· − x)2;x

)

=
1√
x

√
1

[n]q
x =

√
1

[n]q

(4.8)

showing (4.2), and completing the proof.

Next we prove Voronovskaja type result for q-Szász-Mirakjan operators.

Theorem 4.2. Assume that q ∈ (1,∞). For any f ∈ C2
p the following equality holds

lim
n→∞

[n]q
(
Mn,q

(
f ;x
) − f(x)

)
=

1
2
f ′′(x)x, (4.9)

for every x ∈ [0,∞).

Proof. Let x ∈ [0,∞) be fixed. By the Taylor formula we may write

f(t) = f(x) + f ′(x)(t − x) +
1
2
f ′′(x)(t − x)2 + r(t;x)(t − x)2, (4.10)

where r(t;x) is the Peano form of the remainder, r(·;x) ∈ Cp, and limt→xr(t;x) = 0. Applying
Mn,q to (4.10) we obtain

[n]
(
Mn,q

(
f ;x
) − f(x)

)
= f ′(x)[n]qMn,q(t − x;x)

+
1
2
f ′′(x)[n]qMn,q

(
(t − x)2;x

)
+ [n]qMn,q

(
r(t;x)(t − x)2;x

)
.

(4.11)

By the Cauchy-Schwartz inequality, we have

Mn,q

(
r(t;x)(t − x)2;x

)
≤
√

Mn,q(r2(t;x);x)
√

Mn,q

(
(t − x)4;x

)
. (4.12)
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Observe that r2(x;x) = 0. Then it follows from Corollary 3.5 that

lim
n→∞

Mn,q

(
r2(t;x);x

)
= r2(x;x) = 0. (4.13)

Now from (4.12), (4.13), and Lemma 2.5 we get immediately

lim
n→∞

[n]qMn,q

(
r(t;x)(t − x)2;x

)
= 0. (4.14)

The proof is completed.
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