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For a polynomial p(z) of degree n, we consider an operator D, which map a polynomial p(z)
into D,p(z) = (a - 2)p'(z) + np(z) with respect to a. It was proved by Liman et al. (2010)
that if p(z) has no zeros in |z| < 1, then for all a [5 € Cwith |a] > 1, || < 1and |z] =
=Dep() el D/2p() < (/) el 1) 2l Bl ) )l ()] - ot
B((lal =1)/2)| - |z + B((|| - /2)|]m1n‘z‘ 1lp(z)]}. In this paper we extend the above inequality for
the polynomials having no zeros in |z| < k, where k < 1. Our result generalizes certain well-known
polynomial inequalities.

1. Introduction and Statement of Results

According to a result well known as Bernstein’s inequality on the derivative of a polynomial
p(z) of degree n, we have

lﬂai(lp (z)] < nrlnax|p(z)| (1.1)

The result is best possible, and equality holds for a polynomial having all its zeros at the
origin (see [1, 2]).

The inequality (1.1) can be sharpened, by considering the class of polynomials having
no zeros in |z| < 1.

In fact, P. Erdos conjectured, and later Lax [3] proved that if p(z) #0 in |z| < 1, then
(1.1) can be replaced by

n
r‘rzllai(|p(z| 270 ax|p z)|. (1.2)
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As a refinement of (1.2), Aziz and Dawood [4] proved that if p(z) is a polynomial of degree
n having no zeros in |z| < 1, then

max|p'(z)] < g{rlglgﬁlp(Z)l ~min|p(z )|}~ (1.3)

As an improvement of (1.3), Dewan and Hans [5] proved that if p(z) is a polynomial
of degree n having no zeros in |z| < 1, then for any g with || < 1and |z| =1,

29/ () + Ppia)| < A (| “ g\)rlgg;dp(zﬂ
3

2
Let a be a complex number. For a polynomial p(z) of degree n, D,p(z), the polar derivative

1+ §| - ‘§|>min|p(z)|}.
of p(z) is defined as

+

(1.4)

|z]=1

Dup(z) = np(z) + (a - 2)p'(2). (1.5)

It is easy to see that D,p(z) is a polynomial of degree at most n—1 and that D,p(z) generalizes
the ordinary derivative in the sense that

lim [D ild (Z)] = p'(2). (1.6)

a— o o

As an extension to (1.1) for the polar derivative D,p(z), Aziz and Shah [6] proved that if p(z)
is a polynomial of degree 7, then for every a with |a| > 1,

m§i<|Dup(z)| < nlal r|r1|§i<|p(z) | (1.7)

||

As a refinement and extension of (1.7), Aziz and Mohammad Shah [7] proved that if
p(z) is a polynomial of degree n having no zeros in |z| < 1, then, for every a with |a| > 1,

max|Dop(2)] < 5 { (ol + Dimaxlp(a)] - (ol - Dminlp(a)] | (18

Recently Dewan et al. [8] generalized (1.8) to the polynomial of the form p(z) = ag +
St ayz”, 1 <t < nand proved that if p(z) = ap + >, ayz", 1 <t < n is a polynomial
of degree n having no zeros in |z| < k, k > 1, then for |a| > 1

max| D,p(2)] < ¥ (19)

s { Qe+ omaxlp(@)] - (el - D)

where so = K H{(((t/n)(|a:|/ (|ao| — m))) k' + 1)/ (((¢/n) (|| / (|lao| — m)))k™*! +1)}, and m =
min—k|[p(2)|.
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As a generalization of (1.9), Bidkham et al. [9] proved thatif p(z) = a +Z::,4 a,z’, 1<
u < nis a polynomial of degree n having no zerosin |z| < k, k> 1, thenfor 0 <r < R< k and
la| > R

R
g}gnguP(z)l <7 fsg { <|%| + 56) eXp{nJ‘r Atdt}ﬁgl’v_lflp(z)l

. . (1.10)
+sy+1 - (i + 56> exp{nfr Atdt}fﬂi?|p(z)|},
where
/) (Ial/ Gl - m)ieie 4
YT ke (u/n) (|ag ]/ (aol — m)) (ki + k20E)
m =min|p(z)|. (1.11)

! —_—
Sp =

<k>”+1{ (u/n)(|au|/ (a0l — m)) Rk + 1 } Izl=k

R (u/n) (|a.|/ (R(jao| - m)))k#+1 +1

As an improvement and generalization to (1.8) and (1.4), Liman et al. [10] proved
that if p(z) is a polynomial of degree n having no zeros in |z| < 1, then, for all a, f with
laf 21, [f<1and |z[ =1,

|t

-1
T‘)l@é}flp(z)l

{

RN B e it LS

In this paper, we obtain the following extension of (1.12).

-1
a+ﬁL|+‘z

+p
(1.12)

Theorem 1.1. Let p(z) be a polynomial of degree n that does not vanish in |z| < k, k < 1, then, for
all a, p € Cwith |a| > k, |p| < 1and |z| =1, we have

|| — k Ial—k)
[l Rl R flleliﬂp(zﬂ

lal — k| la| -k |\ .
a+ -2 P g}glp(z)l-

zDap(z) + nﬁ";tkkp(z)‘ < g{ <k’" a+
e

If we take k = 1 in Theorem 1.1, then (1.13) reduces to (1.12).
Theorem 1.1 simplifies to the following result by taking f = 0.

(1.13)
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Corollary 1.2. Let p(z) be a polynomial of degree n does not vanish in |z| < k, k <1, then for any
a € C with |a| > k, we have

IIIleii(|Dup(Z)| < g{(k‘"|a| + 1)1\121\3("’(2)' — (k™| - 1)g}g<l|p(z)| } (1.14)

If we take k = 1 in Corollary 1.2, then (1.14) reduce to (1.8).
Dividing two sides of inequality (1.13) by |a| and letting |a| — oo, we have the fol-
lowing generalization of the inequality (1.4).

Corollary 1.3. Let p(z) be a polynomial of degree n, having no zeros in |z| < k, k < 1, then, for any
p € Cwith |p| < 1and |z| = 1, we have

’ Tlﬁ n - ‘B 'B
@ )| <G (i ][ ) mee (115)
SR AR |
_<k Mx _‘1+k )ﬁiﬁlp(z)l}'

Taking f = 0 and k =1 in Corollary 1.3, (1.15) reduces to (1.3).

2. Lemmas

For proof of the theorem, we need the following lemmas. The first lemma is due to Laguerre
[11,12].

Lemma 2.1. If all the zeros of an nth degree polynomial p(z) lie in a circular region C, and w is any
zero of Dap(z), then at most one of the points w and a may lie outside C.

Lemma 2.2. If p(z) is a polynomial of degree n, having all its zeros in the closed disk |z| < k, k <1,
thenon |z| =1

P2 o lp@)- 2.1)

This lemma is due to Malik [13].

Lemma 2.3. Let p(z) be a polynomial of degree n and have no zero in |z| < k, k > 1, then on |z| =1

klp'(2)] <14 (2)], 2.2)

where q(z) = z"p(1/z).

The above lemma is due to Chan and Malik [14].
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Lemma 2.4. If p(z) is a polynomial of degree n, having all its zeros in the closed disk |z| < k, k <1,
then on |z| =1

|9 (2)] < k|p'(2)], (2.3)

where q(z) = z"p(1/z).

Proof. Since p(z) has all its zeros in |z| < k, k < 1; therefore, g(z) has no zero in |z| < 1/k,
1/k > 1. Now applying Lemma 2.3 to the polynomial g(z) and the result follows. O

Lemma 2.5. If p(z) is a polynomial of degree n, having all its zeros in the closed disk |z| < k, k <1,
then for all real or complex number a with |a| > k and |z| = 1, we have

IDep(2)| 2 w2 K (). 4)

Proof. Let q(z) = z"p(1/%), then |4'(2)| = |np(z) — zp'(z)| on |z| = 1. Thus on |z| = 1

|Dap(2)| = |np(2) + (a - 2)p ()]
= |ap'(z) + np(2) - zp'(2)] (2.5)

> |ap'(z)| - |np(z) - zp'(2)],
which implies that
|Dap(2)| 2 |al|p'(2)] - |4'(2)]- (2.6)
Combining (2.3) and (2.6), we get the following:
|Dap(2)| 2 (lal - K)|p'(2)], (2.7)
along with Lemma 2.2, which gives the following;:

-k
=E el 28)

O

|Dap(z)| 21

Lemma 2.6. Let p(z) be a polynomial of degree n having all its zeros in |z| < k, k < 1. Then for every
a,p e Cwith |a] > k, |f| <1and |z| =1, we have

zDup(z) + nﬁlil';kkp(z) o] — K min|p(z)|. (2.9)

- | -
> n
2 nk 1+k |z=k

a+p

Proof. If p(z) has a zero on |z| = k, then (2.9) is trivial. Therefore, we assume that p(z) has all
its zeros in |z| < k. Let m = minp;_x|[p(z)|, then m > 0 and |p(z)| > m where |z| = k. Therefore,
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for [A| < 1, it follows by Rouche’s Theorem that the polynomial G(z) = p(z) — Am(z/k)" has
all its zeros in |z| < k. By using Lemma 2.1, D,G(z) = D,p(z) — almn(z"1/k") has all its
zeros in |z| < k, where |a| > k. Applying Lemma 2.5 to the polynomial G(z) yields

al -k
DG 2 n 2 KiG), =1 (2.10)

Since zD,G(z) has all its zeros in |z| < k < 1, by using Rouche’s Theorem, it can be easily
verified from (2.10) that the polynomial

|| — k

|
zD,G(z) + pn T+ k

G(2) (2.11)

has all its zeros in |z| < 1, where |f] < 1.
Substituting for G(z), we conclude that the polynomial

T(z)= (zD,xp(z) +np |TI+_kkp(z)> - Amn(%)n <a +p lblt|+_kk) (2.12)

will have no zeros in |z| > 1. This implies for every f with || <1 and |z| > 1,

|a| — k z|" |a| — k
zDqp(z) + np Tk p(z)| 2 nm NG +p Tk | (2.13)
If (2.13) is not true, then there is a point z = zy with |zp| > 1 such that
|| - k zo | || - k
zoDyap(z0) + np Tk p(zo)| <nm . p ik | (2.14)
Take
_ 20Dup(z0) + mp((Jal = K) /(L + K)p(z0) 015)

nm(zo/k)" (a+p((la| —k)/(1+k)))

then || < 1 and with this choice of A, we have T(zp) = 0 for |zg| > 1, from (2.12). But this
contradicts the fact that T(z) #0 for |z| > 1. For g with |B| = 1, (2.13) follows by continuity.
This completes the proof of Lemma 2.6. O

Lemma 2.7. If p(z) is a polynomial of degree n, then for all a, p € C with |B| < 1 and |a| > k, where
k <1, we have

|| — k

zD,p(z) + np 1|+_k p(z) |«

|-k
1+k

r|11‘51]><<|p(z)|, |z| = 1. (2.16)

<nk™

a+p

Proof. Let M = max;-k|p(z)|, if [A| < 1, then [Ap(z)| < [M(z/k)"| for |z| = k. Therefore, it
follows by Rouche’s Theorem that the polynomial G(z) = M(z/k)" — Ap(z) has all its zeros
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in |z| < k. By using Lemma 2.1, D,G(z) = aMn(z""!/k") — AD,p(z) has all its zeros in |z| < k
for |a| > k.
On applying Lemma 2.5 to the polynomial G(z), we have

al -k
AKG@l =1 (2.17)

|zD,G(z)| > n
Now, using a similar argument as used in the proof of Lemma 2.6, the result follows.
O

Lemma 2.8. If p(z) is a polynomial of degree n, then for all a, p € C with |p| < 1 and |a| > k, where
k <1, we have

2D.0() + nps L)

-k
zD4p(z) + np |Tl+ . p(z)

+

(2.18)

< n{k‘"

|a|—k‘ | |a|—k‘}
Ll B =1
atp T+k | Z+p 1+k ﬁ‘z}i‘{"P(z)L Izl=1,

where Q(z) = (z/k)"p(k2/Z).

Proof. Let M = maxp;-k|p(z)|. For A with |A| > 1, it follows by Rouche’s Theorem that the
polynomial G(z) = p(z) — AM has no zeros in |z| < k. Consequently the polynomial

H(z) = (%)@ (2.19)

has all its zeros in |z| < k, also |G(z)| = |H(z)| for |z| = k. Since all the zeros of H(z) lie in
|z| < k; therefore, for & with |6| > 1, by Rouche’s Theorem all the zeros of G(z) + §H(z) lie in
|z| < k. Hence by Lemma 2.5 for every a with |a| > k, and |z| = 1, we have

lal -k
1+k

IG(2) + 6H (2)| < |zDa(G(z) + 6H(2))]. (2.20)

On the other hand by Lemma 2.1, all the zeros of D,(G(z) + 6H(z)) lie in |z| < k < 1, where
|a| > k. Therefore, for any p with || < 1, Rouche’s Theorem implies that all the zeros of
zDy(G(z) + 6H (z)) + pn((|la] — k) /(1 + k))(G(z) + 6H(z)) lie in |z| < 1. This means that the
polynomial

la| - k
1+k

laf - k
1+k

T(z) = zD,G(z) + np G(z) + 6<zDaH(z) +np H(z)) (2.21)

will have no zeros in |z| > 1. Now using a similar argument as used in the proof of Lemma 2.6,
we get for |z| > 1,

|laf — k
1+k

zD,G(z) + nﬁ'?'Jr_kkG(z) < |zDaH(z) + np

H(z) ‘ (2.22)
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Therefore by the equalities

ne- (7)'e(%) - (i

> Jm(%)" - Q) Jm(%)", (223)

or
H(z) = Q(z) - m( 2) , (2.24)

and substitute for G(z) and H(z) in (2.22), we get the following:

(ﬂ%mﬂ+an;:p@O-Jnm(z+ﬁ?g;)|

(2.25)
(s tofas) Y 520
This implies that
ZD#“”*"A?_:p&)_A”M<Z+M?;:>‘
(2.26)
<|(zpe0@ + 50 ) - Tuma (£) (a+ p22E)|

As |p(z)| = |Q(2)| for |z| = k, thatis, max;—k|p(z)| = max|z-x|Q(z)| = M, by Lemma 2.7
for Q(z), we obtain the following:

zDQ(2) +n ﬂ—Q(Z)

< [\[nMK™

a+ﬁM| ' (2.27)

Thus, taking suitable choice of argument of A, result is

700) - T(E) (40557

<zD Q(z) + nﬂ

(2.28)
= |\|lnMKk™" a+ﬂM| ‘ zDgy@+nMT;:Q@4.
By combining right hand side of (2.26) and (2.28) for |z| = 1 and || < 1, we get that
|| — k B ( || — k>|
zD.p(z) + np 1_'_kp(z) AnM|( z+p Tk
(2.29)
< W+ =K kot - |zD0(2) + mp =K (z)
_aﬁlkn zaznﬁ1+k z)|,
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That is,

2Dep(@) + npl 2 ()

« |00 + mp'T=E Q2|

(2.30)
e P e gL Lo,
Taking |[A| — 1, we have
Dup(2) + nplE=Epa)| + 20002 + mplE =K Qo)
(2.31)
{ +ﬁ|“| +|z+ﬁ%'}nM

Then, by applying the Principal Maximum Modulus for polynomial p(z) when k < 1,
we get

1|r1‘a]><<|p(z)| < max|p(z)| (2.32)

This in conjunction with (2.31) gives the following result. O

Lemma 2.9. Let H(z) be a polynomial of degree n having all its zeros in |z| < k, k < 1, and G(z) be
a polynomial of degree not exceeding that of H(z). If |G(2)| < |H(z)| for |z| = k, k < 1, then for all
a, peCuwith|a| >k, || <1and |z| =1, we have

2D,G(2) +np(|“| )G(z)

2D H(z)+nﬁ<|"‘| )H( )' (2.33)

Proof. Since [AG(z)| < |G(z)| £ |H(z)|, for [A| < 1, and |z| = k, then by Rouche’s Theorem
H(z) - AG(z) and H(z) have the same number of zeros in |z| < k. On the other hand by
inequality |G(z) < |H(z)| for |z| = k, any zero of H(z), that lies on |z| = k, is the zero of G(z).
Therefore, H(z) — AG(z) has all its zeros in the closed disk |z| < k. Hence by Lemma 2.5, for
all real or complex numbers a with |a| > k and |z| = 1, we have

|zDa(H(2) - )LG(z))|>n| ' |H() AG(2)|. (2.34)

Now, consider a similar argument as used in the proof of Lemma 2.6, that for any value f
with |g| < 1, we have

|zDn(H(z) - )LG(Z))|>T[| | |H(z) AG(z2)|

>nlpl5

|a| (2.35)

IH( ) = AG(2)],
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where |z| = 1, resulting in

Ial

T(z) = [zD,H(z) - AzD,G(z)] +nﬂ [H(z) AG(z)] # (2.36)

where |z| = 1.
That is,

Ial

T(z) = [ZD H(z)+nﬁ H( )] )L[ZD G(z) +n[5 G( )] , (2.37)

for |z| = 1.
We also conclude that

zD,H(z) + nﬁ zD,G(z) + nﬁ

G( )‘ (2.38)

for |z| = 1.
If (2.38) is not true, then there is a point z = zy with |zg| = 1 such that

G( 0)|-

(2.39)

zoD,H (zo) + nﬂ H(zo)

zoD, G(Z()) + Tlﬂ

Take

20DaH (20) + np((la| — k)/(1 + k))H (zo)

= 20D.G(z0) + nf((Ja| — k) /(1 + k))G(z0) (2.40)

then || < 1 and with this choice of A, we have from (2.37), T(zy) = 0 for |zg| = 1. But this
contradicts the fact that T(z) #0 for |z| = 1. For g with |p| = 1, (2.38) follows by continuity.
This completes the proof. O

3. Proof of the Theorem

Proof of the Theorem 1.1. Under the assumption of Theorem 1.1, the polynomial p(z)#0 in
|z| < k, and thus if m = minp;—x|p(z)|, then m < |p(z)| for |z| < k. Now, for A with |A| < 1, we
have

|Am| < (3.1)

where |z| =
It follows by Rouche’s Theorem that the polynomial G(z) = p(z) — Am has no zero in
|z| < k. Therefore, the polynomial

H(z)z(%)nG<k§2> Q(z) - Am<E>n, (3.2)
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will have all its zeros in |z| < k, where Q(z) = (z/k)"p(k?/Z). Also |G(z)| = |H(z)| for |z| =
Applying Lemma 2.9 for the polynomials H(z) and G(z), we have

zD,G(z) + nﬁ G(z) zD,H(z) + nﬁ H(z) (3.3)

where |a] > k, || <1 and |z| = 1. Substituting for G(z) and H(z) in the above inequality, we
conclude that for every a, p, with |a| >k, |f| <1,and |z| =1

zD,p(z) — \nmz + nf |th|+—kk (p(z) — Am) ‘
(3.4)
<1zD,Q(z) - Aanm( > + ﬂ'al <Q(z) Am(k) > ,
that is,
zDqp(z) + nﬂ o kkp(z) )mm(z +p 1| _kk>‘
(3.5)

<|=Dez) + mpl

ka(z) —Xnm<£>n<a +[3|[;|+_kk> |

Since all the zeros of Q(z) lie in |z| < k and |p(z)| = |Q(z)| for |z| = k; therefore, by applying
Lemma 2.6 to Q(z), we have

| -

|0¥| — -n
2D,Q(2) + 32 Q(2)| 2 nk |+ pE=E minio(z)
(3.6)
=nk™|a+ [3 |“| ‘
Then, for an appropriate choice of the argument of A, we have
2D Q(z)+nﬁ|“|_kQ(z)—Xnm<f>n<a+p|“| > 2D Q(z)+n[5| | Q(z)
“ 1+k k 1 .
— [k |a + ﬁ'“' ‘
(3.7)

where |z| = 1.
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Then combining the right hand sides of (3.5) and (3.7), we can rewrite (3.5) as

|| — k
zD.p(z) + np Tk p(z)| — [Anm z+ﬂ 1 k
(3.8)
< |2D.Q(z) + np|‘i‘| _ka(z) — \nmk ™" |a +ﬁ|“| |
where |z| = 1.
Equivalently,
|| — k
zDap(2) +nﬁ ( )| £12PaQ(2) + np=——=-Q(2)
(3.9)
. . |a|—k|_‘ |a|—k|}
|)u|nm{k zx+ﬁ1+k Z+ﬁ1+k .
As|A| — 1 wehave
la| - k |a - k
zDap(z) + np T+ k p(z)| £ 1zDaQ(2) + np 11k Q(z)
(3.10)
—nm{ (x+ﬂ|a| z+ﬂ|a|_k }
1+k
It implies for every real or complex number p with || < 1and |z| =1,
|| — k
22Dap(2) + np—=p(2)| < |zDap(2) +nﬂ ( )
‘x —_
+1zD,Q(z) + np Tk Q(z)‘ (3.11)
B Ial _ || — k
nm{ a+ ﬂ z+p Tkl
This in conjunction with Lemma 2.8 gives for |[f| <1 and |z| =1,
zD,,,p(z)+nﬂ p(z) <n{ zx+[5|“| ' lz+ﬁm'}max|p(z)|
+k 1+k |z=1
| | ] - k (3.12)
a a
_n{ Py ‘ 'Z+ﬂ1+ Huklp(z)l

The proof is complete. O
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