
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 928587, 12 pages
doi:10.1155/2011/928587

Research Article
Periodic Problems of Difference Equations
and Ergodic Theory

B. A. Biletskyi,1 A. A. Boichuk,2 and A. A. Pokutnyi2

1 Department of Inductive Modeling and Control Glushkov, Institute of Cybernetics NAS Ukraine,
No. 40 Glushkov Avenue, Kyiv 03680, Ukraine

2 Laboratory of boundary value problems of differential equations theory,
Institute of Mathematics of NAS of Ukraine, No. 3 Tereshenkivska Street, Kyiv 01601, Ukraine

Correspondence should be addressed to A. A. Boichuk, boichuk@imath.kiev.ua

Received 1 February 2011; Accepted 11 May 2011

Academic Editor: Miroslava Růžičková
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The necessary and sufficient conditions for solvability of the family of difference equations
with periodic boundary condition were obtained using the notion of relative spectrum of linear
bounded operator in the Banach space and the ergodic theorem. It is shown that when the
condition of existence is satisfied, then such periodic solutions are built using the formula for the
generalized inverse operator to the linear limited one.

1. The Problem and The Main Statement

The problem of existence of periodic solutions for classes of equations is well known. Though
it is hard to mention all the contributors in a single paper, we would like to mark out well-
developed Floke theory [1], which is used in analysis of linear differential equation systems
by the means of monodromy matrix. Operator analogy of such theory in noncritical case
(when there is single solution) for differential equations in Banach space was developed by
Daletskyi and Krein [2].

This paper is dedicated to obtaining analogous conditions for a family of difference
equations in Banach space and to building representations of corresponding solutions. The
proposed approach allows obtaining solutions for both critical and noncritical cases. Note
that this problem can be approached using well-developed pseudoinverse techniques in
theory of boundary value problems [3]. In this paper we firstly build a new representation
of the pseudoinverse operator based on results of ergodic theory, and then we provide
the necessary and sufficient conditions that guarantee the existence of the corresponding
solutions.



2 Abstract and Applied Analysis

Let B-complex Banach space with norm ‖ · ‖ and zero-element 0; L(B)-Banach space
of bounded linear operators from B to B. In this paper we consider existence of periodic
solutions of the equation

xn+1 = λAn+1xn + hn+1, n � 0, (1.1)

with periodicity condition

x0 = xm, (1.2)

where An ∈ L(B), An+m = An, for all n � 0, λ is a complex parameter, and {hn}∞n=0 is a
sequence in B. The solution of the corresponding homogeneous equation to (1.1) has the
following form [4]:

xm(λ) = Φ(m,n, λ)xn(λ), m � n, (1.3)

where

Φ(m,n, λ) = λm−nAm+1Am · · ·An+1, m > n (1.4)

is evolution operator for problem (1.1); Φ(m,m, λ) = E, where E is identity operator. Let us
remark that U(m,λ) = Φ(m, 0, λ), U(0, λ) = E and U(k + n, λ) = U(k, λ)U(n, λ). Operator
U(m,λ) is traditionally called monodromy operator.

We can represent [4] the solution (1.1)with arbitrary initial condition x(0, λ) = x0, x0 ∈
B in the form

xk(λ) = Φ(k, 0, λ)x0 + g(k, λ), (1.5)

where

g(k, λ) =
k∑

i=0

Φ(k, i, λ)hi. (1.6)

If we substitute this representation in boundary condition (1.2), we obtain operator equation

x0(λ) − xm(λ) = x0 −Φ(m, 0, λ)x0 − g(m,λ) = 0. (1.7)

According to notations, we get operator equation

(E −U(m,λ))x0 = g(m,λ). (1.8)

Boundary value problem (1.1), (1.2) has periodic solution if and only if operator
equation (1.8) is solvable.
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Following the paper [5], point λ is called right stable point if monodromy operator
satisfies inequality {‖Un(m,λ)‖ � c, n � 0}.

Denote ρNS(E − U(m,λ)) = {λ ∈ C : R(E − U(m,λ)) = R(E −U(m,λ))} (this set
coincides with the set of all λ ∈ C such that operator E − U(m,λ) is normally solvable). It
follows easily that resolvent set ρ(E − U(m,λ)) of the operator E − U(m,λ) lies in ρNS(E −
U(m,λ)).

In the sequel we assume that B is reflexive for simplicity [6].
The main result of this paper is contained in Theorem 1.1.

Theorem 1.1. Let λ ∈ ρNS(E −U(m,λ)) be right stability point for (1.1). Then

(a) boundary value problem (1.1), (1.2) has solutions if and only if sequence {hn}n∈Z+
, hn ∈ B

satisfies condition

lim
n→∞

∑n
k=1
∑m

i=0 U
k(m,λ)Φ(m, i, λ)hi

n
= 0, (1.9)

(b) under condition (1.9), solutions of boundary value problem (1.1), (1.2) have the following
form:

xn = U(n, λ) lim
k→∞

∑k
m=1 U

m(k, λ)
k

c +U(n, λ)G(n, λ)[hn], (1.10)

where c is an arbitrary element of Banach space B, G(n, λ)-generalized Green operator of
boundary value (1.1), (1.2), which is defined by equality

G(n, λ)[hn] =
∞∑

k=0

(
1 − μ

)k
{ ∞∑

l=0

μ−l−1(U(m,λ) −U0(λ))
l

}k+1 m∑

i=0

Φ(m, i, λ)hi

−U0(λ)
m∑

i=0

Φ(m, i, λ)hi +
n∑

i=0

Φ(n, i, λ)hi.

(1.11)

2. Auxiliary Result

Let us formulate and prove a number of auxiliary lemmas, which entail the theorem.

Lemma 2.1. If λ ∈ ρNS(E − U(m,λ)), then boundary value problem (1.1), (1.2) is solvable if and
only if sequence hn satisfies the condition

lim
n→∞

∑n
k=1
∑m

i=0 U
k(m,λ)Φ(m, i, λ)hi

n
= 0. (2.1)
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Proof. From the assumption above it follows that the conditions of statistical ergodic theorem
hold [6]. Then

R(E −U(m,λ)) =

{
x ∈ B : lim

n→∞
Un(m,λ)x = 0, Un(m,λ) =

∑n
k=1 U

k(m,λ)
n

}
. (2.2)

It follows from the equation above that element g(m,λ) lies in value set of the operator E −
U(m,λ) if and only if

lim
n→∞

∑n
k=1 U

k(m,λ)
n

m∑

i=0

Φ(m, i, λ)hi = 0, (2.3)

which proves the lemma.

Consider the following consequences of the assumptions above for further reasoning.
Suppose that λ ∈ ρNS(E − U(m,λ)) and λ is right stable point of the monodromy operator,
such that λ define eigenspaceN(E−U(m,λ)), which coincides with the values set of operator
U0(λ)x = limn→∞Un(m,λ)x. This operator satisfies the following conditions [6]:

(i) U0(λ) = U2
0(λ), (ii) U0(λ) = U(m,λ)U0(λ), (iii) U0(λ) = U0(λ)U(m,λ).

(2.4)

Lemma 2.2. Operator E −U(m,λ) +U0(λ) : B → B has bounded inverse of the form

(E −U(m,λ) +U0(λ))
−1 =

∞∑

k=0

(
μ − 1

)k
{ ∞∑

l=0

μ−l−1(U(m,λ) −U0(λ))
l

}k+1

, (2.5)

for all μ > 1 : |1 − μ| < 1/‖Rμ‖.

Proof. Let us show that Ker(I −U(m,λ) +U0(λ)) = 0. Indeed, if x ∈ Ker(I −U(m,λ) +U0(λ)),
then

(I −U(m,λ) +U0(λ))x = 0. (2.6)

Since (I −U(m,λ))x ∈ Im(I −U(m,λ)) andU0(λ)x ∈ Ker(I −U(m,λ)) [6], subspaces Im(I −
U(m,λ)) and Ker(I −U(m,λ)) intersect only at zero point, and condition (2.6) is satisfied if
and only if (I−U(m,λ))x = 0 andU0(λ)x = 0. This is possible if and only if x = 0. Let us show
that Im(I−U(m,λ)+U0(λ)) = B. Note [6] B = Ker(I−U(m,λ))⊕Im(I−U(m,λ)) = Im(U0(λ))⊕
Im(I −U(m,λ)). It follows from the last decomposition that any element x ∈ B has the form
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(I − U(m,λ))y + U0(λ)z, where y, z ∈ B, which proves that Im(I − U(m,λ) + U0(λ)) = B.
Hence according to the Banach theorem [6] original operator has inverse since it bijectively
maps B to itself. Therefore point μ = 1 is regular [6] for the operator μI − U(m,λ) + U0(λ).
Since powers of the operator U(m,λ) are uniformly bounded and spectral radius rU(m,λ) � 1
( n
√
‖U(m,λ)n‖ � n

√
c, then rU(m,λ) = limn→∞ n

√
‖U(m,λ)n‖ � limn→∞ n

√
c = 1). It is well known

[6] that resolvent set of a bounded operator is open. Number μ = 1 ∈ ρ(U(m,λ) − U0(λ));
thus there exist a neighborhood of μ such that each point from the neighborhood belongs to
resolvent set. For any point μ > r(U(m,λ)−U0(λ)) that belongs to the neighborhood there exists a
resolvent [6], which has the form of converging in the norm series

Rμ := Rμ(U(m,λ) −U0(λ)) =
∞∑

l=0

μ−l−1(U(m,λ) −U0(λ))
l. (2.7)

Using the analyticity of the resolvent and well-known identity for points μ > 1 such
that |1 − μ| < 1/(‖Rμ(U(m,λ) −U0(λ))‖),we obtain

R1 =
∞∑

k=0

(
μ − 1

)k
Rk+1

μ . (2.8)

Finally, by substituting the series in the equation above, we get (2.5), which proves the lemma.

Let us introduce some notation first before proving next statement.

Definition 2.3. Operator L− ∈ L(B) is called generalized inverse for operator L ∈ L(B) [3] if the
following conditions hold:

(1) LL−L = L, (2) L−LL− = L−. (2.9)

Lemma 2.4. Operator E −U(m,λ) is generalized inverse and

(E −U(m,λ))− = (E −U(m,λ) +U0(λ))
−1 −U0(λ), (2.10)

or in the form of converging operator series

(E −U(m,λ))− =
∞∑

k=0

(
μ − 1

)k
{ ∞∑

l=0

μ−l−1(U(m,λ) −U0(λ))
l
}k+1

−U0(λ), (2.11)

for all μ > 1 : |1 − μ| < 1/‖Rμ‖.
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Proof. It suffices to check conditions (1) and (2) of the Definition 2.3. We use both representa-
tions (2.10), (2.11) and the expression (2.4) for operator U0(λ). Consider the following
product:

(I −U(m,λ))
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)
(I −U(λ))

= ((I −U(m,λ) +U0(λ)) −U0(λ)) ×
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)
(I −U(m,λ))

=
(
I −U0(λ)(I −U(m,λ) +U0(λ))

−1 − (I −U(m,λ) +U0(λ))U0(λ) +U0(λ)
2
)

× (I −U(m,λ))

=
(
I −U0(λ)(I −U(m,λ) +U0(λ))

−1
)
× (I −U(m,λ))

=
(
I −U0(λ)(I −U(m,λ) +U0(λ))

−1
)
((I −U(m,λ) +U0(λ)) −U0(λ))

= I −U(m,λ) +U0(λ) −U0(λ) −U0(λ) +U0(λ)(I −U(m,λ) +U0(λ))
−1U0(λ)

= I −U(m,λ) −U0(λ) +U0(λ)(I −U(m,λ) +U0(λ))
−1U0(λ).

(2.12)

Note that U0(λ)(U(m,λ) −U0(λ))
l = 0 for any l ∈ N (this directly follows from (2.4) using

formula of binominal coefficient). Now, prove that

U0(λ)(I −U(m,λ) +U0(λ))
−1U0(λ) = U0(λ)(I −U(m,λ) +U0(λ))

−1

= (I −U(m,λ) +U0(λ))
−1U0(λ)

= U0(λ).

(2.13)

Indeed

U0(λ)(I−U(m,λ)+U0(λ))
−1U0(λ)=

∞∑

k=0

(
μ−1)kU0(λ)

{ ∞∑

l=0

μ−l−1(U(m,λ)−U0(λ))
l

}k+1

U0(λ)

=
∞∑

k=0

⎛

⎝
(
μ−1
)k+1(

μ − 1
)k
U0(λ) +

(
μ − 1

)k
U0(λ)

×
{ ∞∑

l=1

μ−l−1(U(m,λ) −U0(λ))
l

}k+1
⎞

⎠U0(λ)

=
+∞∑

k=0

μ−k−1(μ − 1
)k
U0(λ)

=
1
μ

+∞∑

k=0

(
μ − 1
μ

)k

U0(λ)

=
1
μ

1
1 − (μ − 1

)
/μ

U0(λ)

= U0(λ).
(2.14)
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Thus

I −U(m,λ) −U0(λ) +U0(λ)(I −U(m,λ) +U0(λ))
−1U0(λ) = I −U(m,λ). (2.15)

We have that the operator I −U(m,λ) satisfies condition (1) of the Definition 2.3. Let us check
condition (2)

(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)
(I −U(m,λ))

(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)

=
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)
((I −U(m,λ) +U0(λ)) −U0(λ))

×
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)

=
(
I −U0(λ)(I −U(m,λ) +U0(λ)) − (I −U(m,λ) +U0(λ))

−1U0(λ) +U0(λ)
2
)

×
(
(I −U(m,λ) +U0(λ))

−1 −U0(λ)
)

=
(
I − (I −U(m,λ) +U0(λ))

−1U0(λ)
)(

(I −U(m,λ) +U0(λ))
−1 −U0(λ)

)

= (I −U(m,λ) +U0(λ))
−1 − (I −U(m,λ) +U0(λ))

−1U0(λ)(I −U(m,λ) +U0(λ))
−1

−U0(λ) + (I −U(m,λ) +U0(λ))
−1U0(λ)

= (I −U(m,λ) +U0(λ))
−1 −U0(λ) −U0(λ) +U0(λ)

= (I −U(m,λ) +U0(λ))
−1 −U0(λ).

(2.16)

3. Proof of Theorem 1.1

According to general theory of linear equations solvability [3], we obtain that the problem
(1.1), (1.2) is solvable for sets {hn}n ∈ Z+ that satisfy the condition

U0(λ)g(m,λ) = 0. (3.1)

This condition along with Lemma 2.1 is equivalent to represantion (a) of the Theorem 1.1.
Under such a condition, all solutions of the problem (1.1), (1.2) have the form

xn = U(n, λ)U0(λ)c +U(n, λ)(I −U(m,λ))−g(m,λ) + g(n, λ)

= U(n, λ)U0(λ)c +U(n, λ)
∞∑

k=0

(
μ − 1

)k
{ ∞∑

l=0

μ−l−1(U(m,λ) −U0(λ))
l

}k+1

g(m,λ)

−U(n, λ)U0(λ)g(m,λ) + g(n, λ),

(3.2)

which along with notations introduced is equivalent to representation (b) of the theorem.
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4. Comments and Examples

Remark 4.1. Suppose B is Hilbert space, in such case we can show that formulas (2.10), (2.11)
give us the representation for the Moore-Penrose pseudoinverse [7, 8] for E − U(m,λ) with
U0(λ) being self-adjoint operator (orthogonal projector) [6].

Remark 4.2. Supposing A−1
k

∈ L(B) ∈ L(B) exist for all k = 0, m − 1, then the following
equation holds: Φ(k, i, λ) = U(k, λ)U−1(i, λ), k > i. This allows representing the solutions
of (1.1), (1.2) using only the family of operators U(n, λ) and their inverse.

Let us illustrate the statements proved above on example of two-dimensional systems.
(1) Consider equation

−→xn+1 = λAn+1
−→xn +

−→
hn+1, n � 0 (4.1)

with periodicity condition

−→x3 =
−→x0, (4.2)

where −→xn = (x1
n, x

2
n)

T
, x1

n, x
2
n ∈ R,

−→
hn = ((3

√
3r)/4π, 0)

T
,

An =

⎛
⎜⎜⎝

−1
2

−
√
3
2√

3
2

−1
2

⎞
⎟⎟⎠, ∀n � 0. (4.3)

It is easy to see that

−→x3 = λ3−→x0 + g(3, λ), (4.4)

where

g(3, λ) =

(
−3√3rλ − 3

√
3rλ2 + 6

√
3r

8π
,
9rλ − 9rλ2

8π

)T

. (4.5)

Then the following hold for all k � 0

U(3k + 1, λ) = λ3k+1A2, U(3k + 2, λ) = λ3k+2

⎛
⎜⎜⎝

−1
2

√
3
2√

3
2

−1
2

⎞
⎟⎟⎠, U(3k + 3, λ) = λ3k+3E.

(4.6)

By substituting periodicity condition (4.2) into (4.4)we obtain an equation depending on −→x0 :

(
1 − λ3

)−→x0 = g(3, λ). (4.7)
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Consider the case when λ = 1. In such case (4.7) turns into 0−→x0 = (0, 0)T which holds for
arbitrary initial vector −→x0 ∈ R

2. Obviously Un(1, 1) = U(n, 1) and U0(1) = E. According to
Theorem 1.1, all periodic solutions of (4.1) have the form

(
x1
n(c1, c2)

x2
n(c1, c2)

)
=

⎛
⎜⎝

cos
2π
3
n sin

2π
3
n

− sin
2π
3
n cos

2π
3
n

⎞
⎟⎠
(
c1

c2

)
+

⎛

⎝
3r
2π

sin
2π
3
n

0

⎞

⎠, (4.8)

for all −→c = (c1, c2)
T ∈ R

2.
(2) We can search for periodic solutions of any period w in previous problem. They

have common view

−→xn(c1, c2, w, r) =

⎛
⎜⎝

cos
2π
w

n sin
2π
w

n

− sin
2π
w

n cos
2π
w

n

⎞
⎟⎠
(
c1

c2

)
+

⎛

⎝
rw

2π
sin

2π
w

n

0

⎞

⎠, (4.9)

where c1, c2, w, r are parameters.
To illustrate complexity of the set we did the following.

Recall that the length of vector −→xn is �−→xn =
√
(−→x1

n)
2
+ (−→x2

n)
2
. System (4.9) was

implemented using the Wolfram Mathematica 7 framework. x-axis corresponds to time,
while y-axis corresponds to the length of the vector. The length of the vector was calculated
in the integer moments of time n. The points obtained in such way were connected in a
piecewise linear way. The results obtained for particular values of the parameters are depicted
on the following figures.

We can see how the trajectory of vector length densely fills rectangle or turns into a
line (Figures 3 and 4). Figures 1, 2, 5, and 6 demonstrate that the trajectory can fill structured
sets. The structure depicted on Figure 1 resembles fractal.

This allows us to conclude that behavior of the system is rather complex; it can
undergo unpredictable changes with the slightest variations of a single parameter. We must
admit that effects described need further theoretical investigation.
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