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Let (Z(3), τ) be a 3-adic system. we prove in (Z(3), τ) the existence of uncountable distributional
chaotic set of A(τ), which is an almost periodic points set, and further come to a conclusion that τ
is chaotic in the sense of Devaney and Wiggins.

1. Introduction

In 1975, Li and Yorke introduced in [1] a new definition of chaos for interval maps. The central
point in their definition is the existence of a scrambled set. Later, it was observed that positive
topological entropy of interval map implies the existence of a scrambled set [2]. Many shar-
pened results come into being in succession (see [3–11]). One can find in [3, 4, 12] equivalent
conditions for f to be chaotic and in [13] or [14] a chaotic map with topological entropy zero,
which showed that positive topological entropy and Li-Yorke chaos are not equivalent.

By the result, it became clear that the positive topological entropy is a much stronger
notion than the definition of chaos in the sense of Li and Yorke. To remove this disadvantage,
Zhou [15] introduced the notion of measure center and showed importantly dynamical pro-
perties of system on its measure center. To decide the concept of measure center, he defined
weakly almost periodic point, too, showing that the closure of a set of weakly almost periodic
points equals to its measure center and the set of weakly almost periodic points is a set of
absolutely ergodic measure 1. These show that it is more significant to discuss problems
on a set of weakly almost periodic points. On the other hand, one important extensions of
Li-Yorke definition were developed by Schweizer and Smı́tal in [16]; this paper introdu-
ced the definition of distributional chaos and prove that this notion is equivalent to positive



2 Journal of Applied Mathematics

topological entropy for interval maps. And many scholars (such as Liao, Du, and Zhou,
Wang) proved that the positive topological entropy of interval map is equivalent to the
uncountable Li-Yorke chaotic set and the uncountable distributional chaotic set for A(f),
W(f), and R(f). Meanwhile Liao showed that the equivalent characterization is no longer
valid when f acts on more general compact metric spaces.

In this paper, we discuss the existence of uncountable distributional chaotic set ofA(f)
in 3-adic system.

The main results are stated as follows.

Main Theorem. Let (Z(3), τ) be a 3-adic system. Then

(1) A(τ) contains an uncountable distributional chaotic set of τ ;

(2) τ is chaotic in the sense of Devaney;

(3) τ is chaotic in the sense of Wiggins.

2. Basic Definitions and Preparations

Throughout this paper,X will denote a compact metric space with metric d, I is the closed in-
terval [0, 1].

For a continuous map f : X → X, we denote the set of almost periodic points of f by
A(f) and denote the topological entropy of f by ent(f), whose definitions are as usual; fn

will denote the n-fold iteration of f .
For x, y in X, any real number t and positive integer n, let

ξn
(
f, x, y, t

)
= #

{
i | d

(
fi(x), f i(y

))
< t, 1 ≤ i ≤ n

}
, (2.1)

where we use #(·) to denote the cardinality of a set. Let

F
(
f, x, y, t

)
= lim inf

n→∞
1
n
ξn
(
f, x, y, t

)
F∗(f, x, y, t

)
= lim sup

n→∞

1
n
ξn
(
f, x, y, t

)
. (2.2)

Definition 2.1. Call x, y ∈ X a pair of points displaying distributional chaos, if

(1) F(f, x, y, t) = 0 for some t > 0;

(2) F(f, x, y, t) = 1 for any t > 0.

Definition 2.2. f is said to display distributional chaos, if there exists an uncountable setD ⊂ X
such that any two different points in D display distributional chaos.

Definition 2.3. Let X be a metric space and f : X → X be a continuous map. The dynamical
system (X, f) is called chaotic in the sense of Devaney, if

(1) (X, f) is transitive;

(2) the periodic points are dense in X;

(3) (X, f) is sensitive to initial conditions.
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Definition 2.4. Let X be a metric space and f : X → X be a continuous map. The dynamical
system (X, f) is called chaotic in the sense of Wiggins, if there exists a compact invariant
subset Y ⊂ X such that

(1) f |Y is sensitive to initial conditions;

(2) f |Y is transitive.

Definition 2.5. Let (X, f) and (Y, g) be dynamical systems; if there exists a homeomorphism
h : X → Y such that h ◦ f = g ◦ h, then f and g are said to be topologically conjugate.

The notion of adic system is defined as follows.

Definition 2.6. Put

Z(3) =

{ ∞∑

i=1

ai3i−1 | ai = 0, 1, 2

}

. (2.3)

We use the sequence a = a1a2 · · · to denote simply the member
∑∞

i=1ai3i−1 in Z(3). Define ρ :
Z(3) × Z(3) → R as follows: for any a, b ∈ Z(3), if a = a1a2 · · · , b = b1b2 · · · , then

ρ(a, b) =

⎧
⎪⎨

⎪⎩

0, if a = b,

1
3k

, if a/= b, k = min{m ≥ 1 | am /= bm}.
(2.4)

It is not difficult to check that ρ is a metric on Z(3) and (Z(3), ρ) is a compact abelian group.
Define τ : Z(3) → Z(3) by τ(a) = a + 1 for a = a1a2 · · · ∈ Z(3); τ or (Z(3), τ) is called the
3-adic system. (see [17])

Call an invariant closed setA ⊂ I 3-adic, if the restriction f |A is topologically conjugate
to the 3-adic system.

Consider the following functional equation:

f3(λx) = λf(x),

f(0) = 1, 0 ≤ f(x) ≤ 1,
(2.5)

where λ ∈(0,1) is to be determined, x ∈ [0, 1] and f3 is the 3-fold iteration of f .
By F we denote the set of continuous solutions of (2.5) such that any f ∈ F satisfies:

(p1) there exists α ∈ (λ, 1) such that f(α) = 0; the restrictions f |[λ,α] and f |[α,1] are both once
continuously differentiable, and f ′(x) ≥ 1 on [α, 1], f ′(x) < −2 on [λ, α]; (p2)f(λα) < f(λ).

The following Lemma can be concluded by in [18, Theorem 2.1].

Lemma 2.7. Let 0 < λ < 1, α ∈ (λ, 1). Let f0 : [λ, 1] → [0, 1] be C1 on each of the interval [λ, α]
and [α, 1], and satisfy

(1) f0(α) = 0;

(2) f ′
0(x) < −2 on [λ, α] and f ′

0(x) ≥ 1 on [α, 1];

(3) there exists α0 ∈ (α, 1) such that f0(α0) = α and α < f0(1) < α0 < f0(λ) < 1;

(4) f2
0 (1) = λ, f3

0 (λ) = λf0(1).
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Then there exists a unique f ∈ F with f |[λ,1] = f0. Conversely, if f0 is the restriction on [λ, 1] of some
f ∈ F, then it must satisfy (1)–(4).

Proposition 2.8. F /= ∅.

Proof. Let λ = 2/9, α = 1/2. Define f0 : [λ, 1] → [0, 1] by

f0(x) =

⎧
⎪⎨

⎪⎩

27
16

− 27x
8

,
2
9
≤ x ≤ 1

2
,

4x
3

− 2
3
,

1
2
≤ x ≤ 1.

(2.6)

It is not difficult to check that f0 satisfies the condition (1)–(4) in Lemma 2.7. So F /= ∅.
We will be concerned in the notions of Hausdorff metric and Hausdorff dimension,

whose definitions can be found in [19].

Lemma 2.9 (see [19, Theorem 8.3]). Let φ1, φ2, . . . , φm be contractions on Rn. Then there exists a
unique nonempty compact set E such that

E = φ(E) =
m⋃

i=1

φi(E), (2.7)

where

φ =
m⋃

i=1

φi (2.8)

is a transformation of subsets of Rn. Furthermore, for any nonempty compact subset F of Rn, the
iterates φk(F) converge to E in the Hausdorff metric as k → ∞.

Lemma 2.10 (see [19, Theorem 8.8]). Let {φi}m1 be contractions on R for which the open set
condition holds; that is, there is an open interval V such that

(1) φ(V ) =
⋃m

i=1 φi(V ) ⊂ V ,

(2) φ1(V ), φ2(V ), . . . , φm(V ) are pairwise disjoint.

Moreover, suppose that for each i, there exists ri, such that |φi(x) − φi(y)| ≤ ri|x − y| for all x, y ∈ V .
Then dimE ≤ t, where dim(·) denotes the Hausdorff dimension and t is defined by

m∑

i=1

rti = 1. (2.9)

Lemma 2.11 (see [20, Theorem 3.2], [21]). Let f : I → I be continuous. Then the followings are
equivalent:

(1) ent(f) > 0;

(2) A(f) contains an uncountable distributional chaotic set of f .
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Lemma 2.12 (see [21]). Let f : X → X, g : Y → Y be continuous, where X, Y are compact
metric spaces. If there exists a continuous surjection h : X → Y such that g ◦ h = h ◦ f , then
h(A(f)) = A(g).

Lemma 2.13 (see [22]). Let ent(f) = 0 and x ∈ I be recurrent but not periodic such that f(x) > x.
Then the inequality fm(x) < fn(x) holds for all even m and all odd n.

Lemma 2.14 (see [23, Theorem 6.1.4]). Let f : I → I be an interval map. Then ent(f) > 0 if and
only if there exists a closed invariant subset ∧ ⊂ I such that f |∧ is chaotic in the sense of Devaney.

Lemma 2.15 (see [23, Theorem 6.2.4]). Let f : I → I be an interval map. If ent(f) > 0, then f is
chaotic in the sense of Wiggins.

3. Proof of Main Theorem

In the sequel, we always suppose that f ∈ F and f take the minimum at α ∈ (λ, 1).
Let I = [0, 1], f+ = f |[α,1]. For i = 0, 1, 2, define φi : I → I by φ2(x) = λx, φ1(x) = f−1

+ (φ2(x)),
φ0(x) = f−1

+ (φ1(x)). Then φi is a contraction for every i = 0, 1, 2. Let φ(x) =
⋃2

i=0 φi(x). By
Lemma 2.9, there exists a unique nonempty compact set E with

φ(E) = E. (3.1)

For simplicity, we write φi1···ik for φi1 ◦ φi2 ◦ · · · ◦ φik .

Step 1. Prove that for any x ∈ I, f ◦ φ0(x) = φ1(x), f ◦ φ1(x) = φ2(x), f ◦ φ2(x) = φ0 ◦ f(x).

Proof. Letting f act on both sides of the equality φ0(x) = f−1
+ (φ1(x)), we get immediately the

first equality. A similar argument yields the second equality. To show the third equality, we
write (2.5) as f(f(f(φ2(x)))) = λf(x). Since φ2(x) ∈ [0, λ], it follows from Lemma 2.7 that
f ◦ φ2(x) ∈ [α, 1] and f2 ◦ φ2(x) ∈ [α, 1]. By this and definitions of φ0 and φ1, we get

f ◦ φ2(x) = f−1
+

(
f−1
+
(
λf(x)

))
= f−1

+
(
φ1

(
f(x)

))
= φ0 ◦ f(x). (3.2)

Step 2. Prove that for any subsets φi1···ik(I) and φj1···jk(I), there is an n > 0 such that fn ◦
φi1···ik(I) = φj1···jk(I).

Proof. If x ∈ I, i = 0, 1, 2, then f3 ◦ φi(x) = φi ◦ f(x) by Step 1. Using this repeatedly, we get
for any k > 0

f3k ◦ φi(x) = φi ◦ f3k−1(x). (3.3)

If for each r = 1, 2, . . . , k, we all have ir = jr , then from (3.3),

f3k ◦ φi1···ik(I) = φi1 ◦ f3k−1 ◦ φi2···ik(I) = · · · = φi1···ik ◦ f(I) = φj1···jk(I) (3.4)
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(nothing that f(I) = I). Thus the lemma holds for this special case. Assume that there exists
some r, 1 ≤ r ≤ k, such that iq = jq for q < r, but ir ≤ jr . Then by using (3.3) repeatedly,
we know that f3r−1 ◦ φi1···ik(I) or f

2·3r−1 ◦ φi1···ik(I) has the form φl1···lr lr+1···lk(I), where lq = jq for
q = 1, . . . , r. Continuing this procedure, wemust get some n, such that fn◦φi1···ik(I) = φj1···jk(I).

In, Steps 3, 5, and 6, we always suppose that the notation E is as in (3.1).

Step 3. Prove that

E =
∞⋂

k=0

φk(I). (3.5)

Proof. Since φ(I) ⊂ I, we have φk+1(I) = φk ◦ φ(I) ⊂ φk(I) for any k > 0. So from Lemma 2.9
we get

∞⋂

k=0

φk(I) = lim
k→∞

φk(I) = E. (3.6)

Step 4. Prove that for any k > 0, φk(I) =
⋃2

i1···ik=0(I) is an invariant set of f , that is, f(φk(I)) ⊂
φk(I).

Proof. Note that each φi1···ik has the form φ22···2 or φ22···20ir ···ik or φ22···21ir ···ik . Then, by using Step 1
repeatedly, we have

f ◦ φ22···2 = φ00···0 ◦ f, f ◦ φ22···20ir ···ik = φ00···01ir ···ik , f ◦ φ22···21ir ···ik = φ00···2ir ···ik . (3.7)

Thus by f(I) ⊂ I, we have f ◦ φi1···ik(I) ⊂ φk(I). Moreover,

f
(
φk(I)

)
⊂

2⋃

i1···ik=0
f ◦ φi1···ik(I) ⊂ φk(I). (3.8)

Step 5. Prove that the restriction f |E is topologically conjugate to τ , where τ is the 3-adic sys-
tem as defined in Section 1.

Proof. By the definition of φ, we have φ(I) =
⋃2

i=0 φi(I) with this union disjoint. Then trans-
forming by φi1···ik ,

2⋃

i=0

φi1···iki(I) ⊂ φi1···ik(I) (3.9)

again with a disjoint union. Thus the sets {φi1···ik(I)} (with k arbitrary) form a net in the sense
that any pair of sets from the collection are either disjoint or such that one is included in the
other. It follows from Step 3 that for any a = a1a2 · · · ∈ Z(3), if let

φa(I) =
∞⋂

k=1

φa1···ak(I), (3.10)

then φa(I) ⊂ E is nonempty, and if x ∈ E, then there exists a unique a ∈ Z(3) with x ∈ φa(I).
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We now define a map H of E onto Z(3) by setting H(x) = a if x ∈ φa(I). Then H is
well defined. It is easy to see that for each i = 0, 1, 2, the contraction ratio of φi ≤ λ, so the
contraction ratio of φi1···ik ≤ λk. It follows that diam φi1···ik(I) converges to zero uniformly for
ir ∈ {0, 1, 2} as k → ∞ (where diam denotes diameter). Thus φa(I) is a single point for each
a ∈ Z(3). And so H is injective. Moreover the map H is continuous. Let δk > 0 be the least
distance between any two of the 3k interval φa1···ak(I). If x ∈ φα(I), y ∈ φβ(I), and |x − y| < δ,
then ρ(α, β) < 3−k. Finally, since f(φa(I)) = φτ(a)(I) by (3.7), we haveH ◦ f(x) = τ ◦H(x) for
each x ∈ E.

Step 6. Prove that if f has an n-adic set and the n is not a power of 2, then ent(f) > 0.

Proof. Write n = k · 2m, where k ≥ 3 is odd and m ≥ 0 is an integer. Let A be the n-adic set
of f and p = minA. There exists a homeomorphism H : A → Z(n) such that for x ∈ A,
τ ◦ H(x) = H ◦ f(x). We may assume without loss of generality that H(p) = a = 0a2a3 · · · .
Put

V = {z ∈ Z(n) | z1 = 0}. (3.11)

Then V ⊂ Z(n) is an open neighborhood of the sequence a. There exists an ε > 0, such that
for any q ∈ A, if q − p < ε, there H(q) ∈ V . Note that for l → ∞, τn

l
(a) → a and furthermore

fnl
(p) → p, we have that there exists an l ≥ 0 such that

fnl(
p
) − p < ε. (3.12)

Let g = f2lm . Since we easily see that H(fs(p)) = τs(H(p)) ∈ V if and only if n divides s,
it follows that H(f2lm(p)) /∈ V , since n can not divide 2lm. And so g(p) = f2lm(p) ≥ p + ε. In
particular, g(p) > p. By the same argument, we also have g2(p) = f2lm+1

(p) ≥ p+ε. In particular,
g2(p) > p. Since nl = (k · 2m)l = kl · 2lm, from (3.12), gkl

(p) − p = fnl
(p) − p < ε, that is,

gkl
(p) < p + ε. Thus we have for the odd kl,

gkl(
p
)
< g2(p

)
. (3.13)

Note that a is current and nonperiodic for τ2
lm
, and so is p for g. By Lemma 2.13 we get

ent(g) > 0. Moreover ent(f) > 0.
Finally, we prove that A(τ) contains an uncountable distributional chaotic set of τ .

By Step 5, the restriction f |E is topologically conjugate to τ . Thus there is a homeomorphism
h : Z(3) → E such that for any x ∈ Z(3),

f ◦ h(x) = h ◦ τ(x). (3.14)

According to Lemma 2.11, there is an uncountable set ∧ ⊂ A(f), which is distributional chao-
tic. By Lemma 2.12 for any y ∈ ∧, there exists x ∈ A(τ) such that h(x) = y. Let

D =
{
x | x ∈ A(τ), h(x) = y, y ∈ ∧}. (3.15)

Then D is an uncountable set.
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To complete the proof, it suffices to show that D is a distributional chaotic set for τ .
First of all, we prove that for any x1, x2 ∈ D, if F(f, h(x1), h(x2), t) = 0 for some t > 0,

then F(τ, x1, x2, s) = 0 for some s > 0.
For given t > 0, by uniform continuity of h, there exists s > 0, such that for any p, q ∈ D,

|h(p) − h(q)| < t, provided ρ(p, q) < s. Since we easily see that h ◦ τi = fi ◦ h, it follows that if
ρ(τi(x1), τ i(x2)) < s, then

∣
∣
∣fi ◦ h(x1) − fi ◦ h(x2)

∣
∣
∣ < t. (3.16)

This implies

ξn(τ, x1, x2, s) ≤ ξn
(
f, h(x1), h(x2), t

)
(3.17)

for any n ≥ 0. Thus by the definition of F, we immediately have the following result:

F(τ, x1, x2, s) = 0. (3.18)

Secondly, we prove that if F∗(f, h(x1), h(x2), s) = 1 for all s > 0, then F∗(τ, x1, x2, t) = 1
for all t > 0. Since h is homeomorphism, h−1 : E → Z(n) is a surjective continuous map. By
the first proof, we have

ξn
(
f, h(x1), h(x2), s

) ≤ ξn(τ, x1, x2, t), (3.19)

which gives

F∗(τ, x1, x2, t) = 1. (3.20)

By (3.18), (3.20), and the arbitrariness of x1 and x2, we conclude thatD is an uncountable dis-
tributional chaotic set of τ .

The proofs of (2) and (3) of the Main Theorem are obvious.
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