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We prove the generalized Hyers-Ulam stability of the 2nd-order linear differential equation of
the form y′′ + p(x)y′ + q(x)y = f(x), with condition that there exists a nonzero y1 : I → X
in C2(I) such that y′′

1 + p(x)y′
1 + q(x)y1 = 0 and I is an open interval. As a consequence of our

main theorem, we prove the generalized Hyers-Ulam stability of several important well-known
differential equations.

1. Introduction

The stability problem of functional equations started with the question concerning stability
of group homomorphisms proposed by Ulam [1] during a talk before a Mathematical
Colloquium at the University of Wisconsin, Madison. In 1941, Hyers [2] gave a partial
solution of Ulam’s problem for the case of approximate additive mappings in the context
of Banach spaces. In 1978, Rassias [3] generalized the theorem of Hyers by considering the
stability problem with unbounded Cauchy differences ‖f(x + y) − f(x) − f(y)‖ ≤ ε(‖x‖p +
‖y‖p), (ε > 0, p ∈ [0, 1)). This phenomenon of stability that was introduced by Rassias [3] is
called the Hyers-Ulam-Rassias stability (or the generalized Hyers-Ulam stability).

Let X be a normed space over a scalar field K, and let I be an open interval. Assume
that for any function f : I −→ X satisfying the differential inequality

∥
∥
∥an(t)y(n)(t) + an−1(t)y(n−1)(t) + · · · + a1(t)y′(t) + a0(t)y(t) + h(t)

∥
∥
∥ ≤ ε (1.1)
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for all t ∈ I and for some ε ≥ 0, there exists a function f0 : I −→ X satisfying

an(t)y(n)(t) + an−1(t)y(n−1)(t) + · · · + a1(t)y′(t) + a0(t)y(t) + h(t) = 0,
∥
∥f(t) − f0(t)

∥
∥ ≤ K(ε)

(1.2)

for all t ∈ I; hereK(t) is an expression for εwith limε−→0K(ε) = 0. Then, we say that the above
differential equation has the Hyers-Ulam stability.

If the above statement is also true when we replace ε andK(ε) by ϕ(t) and φ(t), where
ϕ, φ : I −→ [0,∞) are functions not depending on f and f0 explicitly, then we say that the
corresponding differential equation has the Hyers-Ulam-Rassias stability (or the generalized
Hyers-Ulam stability).

The Hyers-Ulam stability of differential equation y′ = y was first investigated by
Alsina and Ger [4]. This result has been generalized by Takahasi et al. [5] for the Banach
space-valued differential equation y′ = λy. In [6], Miura et al. also proved the Hyers-Ulam-
Rassias stability of linear differential of first order, y′+g(t)y(t) = 0, where g(t) is a continuous
function, while the author [7] proved the Hyers-Ulam-Rassias stability of linear differential
of the form c(t)y′(t) = y(t). Jung [8] proved the Hyers-Ulam-Rassias stability of linear
differential of first order of the form c(t)y′(t) + g(t)y(t) + h(t) = 0.

In this paper, we investigate the generalized Hyers-Ulam stability of differential
equations of the form

y′′ + p(x)y′ + q(x)y = f(x). (1.3)

We assume that X is a complex Banach space, I = (a, b) is an arbitrary interval, and y1 : I −→
X is a nonzero solution of corresponding homogeneous equation of (1.3), where

y′′
1 + p(x)y′

1 + q(x)y1 = 0. (1.4)

2. Main Results

Taking some idea from [8], we are going to investigate the stability of the 2nd-order linear
differential equations. For the sake of convenience, all the integrals and derivations will be
viewed as existing and R(ω) denotes the real part of complex number ω. Moreover, let I =
(a, b) be an open interval, where a, b ∈ R

⋃{±∞} are arbitrarily given with a < b.

Theorem 2.1. Let X be a complex Banach space. Assume that p, q : I −→ C and f : I −→ X are
continuous functions and y1 : I −→ X is a nonzero twice continuously differentiable function which
satisfies the differential equation (1.4). If a twice continuously differentiable function y : I −→ X
satisfies

∥
∥y′′ + p(x)y′ + q(x)y − f(x)

∥
∥ ≤ ϕ(x) (2.1)
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for all x ∈ I, where k = y(a)/y1(a) ∈ X and ϕ : I −→ (0,∞) is a continuous function, then there
exists a unique x0 ∈ X such that

∥
∥
∥
∥
∥
y(x) − y1(x) ·

(∫x

a

(

exp

{

−
∫s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
[

x0 +
∫ s

a

f(v)
y1(v)

exp

{∫v

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

dv

])

ds + k

)∥
∥
∥
∥
∥

≤ ∥
∥y1(x)

∥
∥ ·

∫x

a

(

exp

{

−R

∫ s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
∣
∣
∣
∣
∣

∫b

s

exp

{

R

(∫ t

a

(

2y1(u)′

y1(u)
+ p(u)du

))

· ϕ(t)
∥
∥y1(t)

∥
∥
dt

}∣
∣
∣
∣
∣

)

ds.

(2.2)

Proof. We assume that

v(x) =
y(x)
y1(x)

(2.3)

for all x ∈ I. It follows from (1.4), (2.1), and (2.3) that

∥
∥
∥

(

v(x)y1(x)
)′′ + p(x)

(

v(x)y1(x)
)′ + q(x)

(

v(x)y1(x)
) − f(x)

∥
∥
∥

=
∥
∥
∥

(

v(x)′y1(x) + v(x)y1(x)′
)′ + p(x)

(

v(x)′y1(x) + v(x)y1(x)′
)

+q(x)v(x)y1(x) − f(x)
∥
∥

=
∥
∥v(x)′′y1(x) + v(x)′

(

2y1(x)′ + p(x)y1(x)
)

+v(x)
(

y1(x)′′ + p(x)y1(x)′ + q(x)y1(x)
) − f(x)

∥
∥

=
∥
∥v(x)′′y1(x) + v(x)′

(

2y1(x)′ + p(x)y1(x)
) − f(x)

∥
∥

=
∥
∥y1(x)

∥
∥

∥
∥
∥
∥
∥
v(x)′′ + v(x)′

(

2y1(x)′

y1(x)
+ p(x)

)

− f(x)
y1(x)

∥
∥
∥
∥
∥

≤ ϕ(x),

(2.4)

so, we have

∥
∥
∥
∥
∥
v(x)′′ + v(x)′

(

2y1(x)′

y1(x)
+ p(x)

)

− f(x)
y1(x)

∥
∥
∥
∥
∥
≤ ϕ(x)

∥
∥y1(x)

∥
∥
. (2.5)
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For simplicity, we use the following notation:

z(s) : = exp

{∫ s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
(

y(s)
y1(s)

)′

−
∫ s

a

(

f(v)
y1(v)

exp

{∫v

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

})

dv

(2.6)

for all s ∈ I. By making use of this notation and by (2.5), we get

‖z(s) − z(l)‖ =

∥
∥
∥
∥
∥
exp

{∫s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
(

y(s)
y1(s)

)′

−
∫ s

a

(

f(v)
y1(v)

exp

{∫v

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

})

dv

− exp

{∫ l

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
(

y(l)
y1(l)

)′

+
∫ l

a

(

f(v)
y1(v)

exp
∫v

a

(

2y1(u)′

y1(u)
+ p(u)

)

dudv

)∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∫s

l

dt

(

exp
∫ t

a

(

2y1(u)′

y1(u)
+ p(u)

)

du ·
(

y(t)
y1(t)

)′

−
∫ t

a

(

f(v)
y1(v)

exp

{∫v

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

})

dv

)∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∫s

l

((

2y1(t)′

y1(t)
+ p(t)

)

· exp
{∫ t

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
(

y(t)
y1(t)

)′
+ exp

{∫ t

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
(

y(t)
y1(t)

)′′)

+

(

− f(t)
y1(t)

exp

{∫ t

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

})

dt

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∫s

l

exp

{∫ t

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
((

2y1(t)′

y1(t)
+ p(t)

)

·
(

y(t)
y1(t)

)′
+
(

y(t)
y1(t)

)′′
− f(t)
y1(t)

)

dt

∥
∥
∥
∥
∥

≤
∣
∣
∣
∣
∣

∫ s

l

exp

{

R

(∫ t

a

(

2y1(u)′

y1(u)
+ p(u)du

))

· ϕ(t)
∥
∥y1(t)

∥
∥
dt

}∣
∣
∣
∣
∣

(2.7)
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for all l, x ∈ I. Since exp{R(
∫ t

a((2y1(u)
′/y1(u)) + p(u)du)) · (ϕ(t)/‖y1(t)‖) is assumed to be

integrable on I, we may select l0 ∈ I, for any given ε > 0, such that l, x ≥ l0 implies ‖z(x) −
z(l)‖ < ε. That is, {z(l)}l∈I is a Cauchy net. By completeness of X, there exists an x0 ∈ X such
that z(l) converges to x0 as l −→ b. It follows from (2.7) and the previous argument that, for
any x ∈ I,

∥
∥
∥
∥
∥
y(x) − y1(x)

(∫x

a

(

exp

{

−
∫ s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

×
[

x0 +
∫ s

a

f(v)
y1(v)

exp

{∫v

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

dv

])

ds + k

)∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
y1(x) ·

(∫x

a

(

exp

{

−
∫ s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

· (z(s) − x0)

)

ds

)∥
∥
∥
∥
∥

≤ ∥
∥y1(x)

∥
∥ ·

∫x

a

(

exp

{

−R

∫s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

· ‖z(s) − z(l)‖
)

ds

+
∥
∥y1(x)

∥
∥ ·

∫x

a

(

exp

{

−R

∫s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

· ‖z(l) − x0‖
)

ds

≤ ∥
∥y1(x)

∥
∥ ·

∫x

a

(

exp

{

−R

∫s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
∣
∣
∣
∣
∣

∫s

l

exp

{

R

(∫ t

a

(

2y1(u)′

y1(u)
+ p(u)du

))

· ϕ(t)
∥
∥y1(t)

∥
∥
dt

∣
∣
∣
∣
∣

)

ds

+
∥
∥y1(x)

∥
∥ ·

∫x

a

(

exp

{

−R

∫s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

· ‖z(l) − x0‖
)

ds

−→ ∥
∥y1(x)

∥
∥ ·

∫x

a

(

exp

{

−R

∫ s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
∣
∣
∣
∣
∣

∫b

s

exp

{

R

(∫ t

a

(

2y1(u)′

y1(u)
+ p(u)du

))

· ϕ(t)
∥
∥y1(t)

∥
∥
dt

∣
∣
∣
∣
∣

)

ds

(2.8)

as l −→ b. Moreover,

y0(x) = y1(x) ·
(∫x

a

(

exp

{∫s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
[

x0 +
∫ s

a

f(v)
y1(v)

exp

{∫v

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

dv

])

ds + k

) (2.9)

is a solution of (1.3).
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Now, we prove the uniqueness property of x0. Assume that x1, x2 ∈ X satisfy
inequality (2.2) in place of x0. Then, we have

∥
∥
∥
∥
∥
y1(x) ·

∫x

a

(

exp

{

−
∫ s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

· (x2 − x1)

)

ds

∥
∥
∥
∥
∥

≤ 2
∥
∥y1(x)

∥
∥ ·

∫x

a

(

exp

{

−R

∫s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
∣
∣
∣
∣
∣

∫b

s

exp

{

R

(∫ t

a

(

2y1(u)′

y1(u)
+ p(u)du

))

· ϕ(t)
∥
∥y1(t)

∥
∥
dt

∣
∣
∣
∣
∣

)

ds,

(2.10)

thus,

‖x2 − x1‖

≤
2 ·

∫x

a

(

exp
{

−R

∫s

a

Adu

}

·
∣
∣
∣
∣
∣

∫b

s

exp

{

R

(∫ t

a

(Adu)

)

· (ϕ(t)/∥∥y1(t)
∥
∥
)

dt

∣
∣
∣
∣
∣

)

ds

∣
∣
∣
∣

∫x

a

(

exp
{

−R

∫s

a

Adu

})

ds

∣
∣
∣
∣

,

(2.11)

where A denotes ((2y1(u)
′/y1(u)) + p(u)).

It follows from the integrability hypothesis that

∣
∣
∣
∣
∣

∫b

s

exp

{

R

(∫ t

a

(

2y1(u)′

y1(u)
+ p(u)du

))

· ϕ(t)
∥
∥y1(t)

∥
∥
dt

∣
∣
∣
∣
∣
−→ 0 (2.12)

as s −→ b. This implies that x1 = x2 and the proof is complete.

Remark 2.2. It follows from Theorem 2.1 that

y(x) = y1(x) ·
(∫x

a

(

exp

{∫ s

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

·
[

c1 +
∫s

a

f(v)
y1(v)

exp

{∫v

a

(

2y1(u)′

y1(u)
+ p(u)

)

du

}

dv

])

ds + c2

) (2.13)

is the general solution of the differential equation (1.3), where c1, c2 are arbitrary elements of
X and y1(x) is a nonzero solution of the corresponding homogeneous equation (1.3).

Remark 2.3. If we replace C by R in the proof of Theorem 2.1 and we assume that p, q are
real-valued continuous functions, then we can see that Theorem 2.1 is true for a real Banach
space X.
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Hence, every 2nd-order linear differential equation has the generalized Hyers-Ulam
stability with the condition that there exists a solution of corresponding homogeneous
equation or there exists a general solution in the ordinary differential equations.

Example 2.4. Consider the second-order linear differential equation with constant coefficients

y′′ + by′ + cy = f(x). (2.14)

Let b2 − 4c ≥ 0, m = (−b ±
√
b2 − 4c)/2, and let f : I −→ R, ϕ : I −→ [0,∞) be continuous

functions. Assume that y : I −→ R is a twice continuously differential function satisfying the
differential inequality

∣
∣y′′ + by′ + cy − f(x)

∣
∣ ≤ ϕ(x) (2.15)

for all x ∈ I. On the other hand, by ordinary differential equations, we know that y1(x) =
exp(mx) is a solution of corresponding homogeneous equation of (2.14). It follows from
Theorem 2.1, Remark 2.3, and (2.14) that there exists a solution y0 : I −→ R of (2.14) such
that

y0(x) = exp(mx) ·
(∫x

a

(

exp(−(2m + b)(s − a))

·
[

x0 +
∫s

a

f(v) · exp(v(m + b) − a(2m + b))dv
])

ds + k

)
(2.16)

for all x ∈ I and that

∣
∣y(x) − y0(x)

∣
∣ ≤ ∣

∣exp(mx)
∣
∣ ·

∫x

a

(

exp(−(2m + b)(s − a))

·
∣
∣
∣
∣
∣

∫b

s

exp((2m + b)(t − a)) · ϕ(t)
∣
∣exp(mx)

∣
∣
dt

∣
∣
∣
∣
∣

)

ds.

(2.17)

Example 2.5. Consider (2.14). Let b2 − 4c < 0, m = (−b ±
√
b2 − 4c)/2 = α ± iβ, and let f :

I −→ R, ϕ : I −→ [0,∞) be continuous functions. Let y : I −→ R be a twice continuously
differential function satisfying the differential inequality of (2.15) for all x ∈ I. It follows
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from the ordinary differential equations that y1(x) = exp(αx) cos(βx). Then it follows from
Theorem 2.1, Remark 2.3, and (2.15) that there exists a solution y0 : I −→ R of (2.14) such that

y0(x) = exp(αx) cos
(

βx
) ·

(

x0 cos2
(

βa
)
∫x

a

exp((2α + b)(a − s))
cos2

(

βs
) ds

)

+ exp(αx) cos
(

βx
) ·

(∫x

a

exp(−(2α + b)s)
cos2

(

βs
) ·

(∫s

a

f(v) · expv(α + b)

· cos(βv)dv · expv(α + b)
)

ds + k

)

(2.18)

for all x ∈ I, where k = y(a)/(exp(αa) cos(βa)) and x0 ∈ R is unique and

∣
∣y(x)−y0(x)

∣
∣≤∣∣exp(αx) cos(βx)∣∣·

∫x

a

(

exp(−(2α+b)s)
cos2

(

βs
) ·

∣
∣
∣
∣
∣

∫b

s

cos2
(

βt
)· exp((α+b)t)·ϕ(t)dt

∣
∣
∣
∣
∣

)

ds.

(2.19)

Example 2.6. Consider the equation

y′′ − 2x
1 + x2

y′ +
2

1 + x2
y = 6

(

1 + x2
)

. (2.20)

Let I = (a, b) be an open interval, where a, b ∈ [1,+∞] are arbitrarily given with a < b,
f : I −→ R and ϕ : I −→ [0,∞) are continuous functions. Assume that y : I −→ R is a twice
continuously differential function satisfying the differential inequality

∣
∣
∣
∣
y′′ − 2x

1 + x2
y′ +

2
1 + x2

y − 6
(

1 + x2
)
∣
∣
∣
∣
≤ ϕ(x) (2.21)

for all x ∈ I. By the trial of y0(x) = x, we see that it is a solution of corresponding
homogeneous equation of (2.20). Then it follows from Theorem 2.1, Remark 2.3, and (2.21)
that there exists a solution y0 : I −→ R of (2.20) such that

y0(x) = x

(

x0a

(

1 − a2

1 + a2

)

+ k − 6a + 2a3

)

+
(

x2 − 1
)
(

x0
a2

1 + a2
− 3a2

)

+ x4 + 3x2 (2.22)

for all x ∈ I, where k = y(a)/a and x0 ∈ R is unique and

∣
∣y(x) − y0(x)

∣
∣ ≤ x ·

∫x

a

((

1 + s2

s2

)

·
∣
∣
∣
∣
∣

∫b

s

t

1 + t2
· ϕ(t)dt

∣
∣
∣
∣
∣

)

ds. (2.23)
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Remark 2.7. We know that Eulars differential equation of second order has the general
solution in ordinary differential equations, then we can use Theorem 2.1 and Remark 2.3 for
the Hyers-Ulam-Rassias stability in this case.

Let p be a real constant, and I = [−1, 1]. We know that Legender’s differential equation

(

1 − x2
)

y′′ − 2xy′ + p
(

p + 1
)

y = 0 (2.24)

has the general solution

y = a0y1(x) + a1y2(x), (2.25)

where

y1(x) = 1 − p
(

p + 1
)

2
x2 +

(

p − 2
)

p
(

p + 1
)(

p + 3
)

4!
x4 − · · · ,

y2(x) = x − (P − 1)
(

p + 2
)

3!
x3 +

(

p − 3
)(

p − 1
)(

p + 2
)(

p + 4
)

5!
x5 − · · ·

(2.26)

and a0, a1 are arbitrary constants. By Theorem 2.1 and Remark 2.3, Legender’s differential
equation has Hyers-Ulam-Rassias stability.

Hermite’s differential equation

y′′ − 2xy′ + 2py = 0, (2.27)

where p is a real constant, has the general solution

y = a0y1(x) + a1y2(x) (2.28)

that

y1(x) = 1 +
∞∑

n=1

(−1)n2np(p − 2
) · · · (p − 2n + 2

)

(2n)!
x2n,

y2(x) = x +
(−1)n2n(p − 1

)(

p − 3
) · · · (p − 2n + 1

)

(2n + 1)!
x2n+1

(2.29)

for all x ∈ R, and a0, a1 are arbitrary constants. Thus Hermites differential equation has
generalized Hyers-Ulam stability.

It is well known from the ordinary differential equations that

y1(x) = Jp(x) =
∞∑

n=0

(−1)n
n!Γ

(

n + p + 1
)

(x

2

)2n+p
, (2.30)
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for all x ∈ R, is a solution of Bessel’s differential equation

x2y′′ + xy′ +
(

x2 − p2
)

y = 0 (2.31)

that p ≥ 0.
Then Bessel’s differential equation has Hyers-Ulam-Rassias stability.
We know from the ordinary differential equations that Laguerre, Chebyshev, and

Gauss hypergeometric differential equations have the general solution. Then we can show
that those have generalized Hyers-Ulam stability.
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