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We study general solutions and generalized Hyers-Ulam-Rassias stability of the following n-
dimensional functional equation f(

∑k
i=1 xi) + (k − 2)

∑k
i=1 f(xi) =

∑k
i=1
∑k

j=1,j>i f(xi + xj), k ≥ 3,
on non-Archimedean normed spaces.

1. Introduction

In 1960, Ulam [1] proposed the following question: under what conditions does there exist
an additive mapping near an approximately additive mapping? Hyers [2] showed that if X
and Y are Banach spaces, ε > 0 and f : X → Y are a mapping such that

∥
∥f
(
x + y

) − f(x) − f(y)∥∥ < ε (1.1)

for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that ‖f(x) −
T(x)‖ < ε, for all x ∈ X.

Let f : X → Y be a mapping such that f(tx) is continuous in t ∈ R , for each fixed
x ∈ X. Suppose for some ε > 0 and p ∈ [0, 1),

∥
∥f
(
x + y

) − f(x) − f(y)∥∥ < ε(‖x‖p + ∥∥y∥∥p), (1.2)
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for all x, y ∈ X. Rassias [3] showed that there exists a unique R-linear mapping T : X → Y
such that

∥
∥f(x) − T(x)∥∥ < 2ε

2 − 2p
‖x‖p, (1.3)

for all x ∈ X. Găvruţa [4] generalized the results of Rassias.
The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called the quadratic

functional equation. In particular every solution of the quadratic functional equation is said
to be a quadratic mapping (see [5, 6]). It is well known that a mapping f between real vector
spaces is quadratic if and only if there exists a unique symmetric biadditive mapping B such
that f(x) = B(x, x), for all x (see [7–9]).

A generalized Hyers-Ulam stability problem for the quadratic functional equation was
proved by Skof [10] for mappings f : X → Y , where X is a normed space and Y is a Banach
space. Cholewa [11] noticed that the theorem of Skof is still true if the relevant domain X is
replaced by an Abelian group. In [12], Czerwik proved the generalized Hyers-Ulam stability
of the quadratic functional equation. Borelli and Forti [13] generalized the stability result as
follows (cf. [14, 15]): letG be anAbelian group andX a Banach space. Assume that amapping
f : G → X satisfies the functional inequality

∥
∥f
(
x + y

)
+ f
(
x − y) − 2f(x) − 2f

(
y
)∥
∥ ≤ ϕ(x, y), (1.4)

for all x, y ∈ G, and ϕ : G ×G → [0,∞) is a function such that

φ
(
x, y
)
:=

∞∑

i=0

ϕ
(
2ix, 2iy

)

4i+1
<∞, (1.5)

for all x, y ∈ G. Then there exists a unique quadratic mapping Q : G → X with the property
‖f(x) −Q(x)‖ ≤ φ(x, x), for all x ∈ G.

Stability of the quadratic functional was also studied bymany other authors in various
cases (see, e.g., [16–25]).

Let X and Y be some given vector spaces, and let f : X → Y be a given mapping. For
any k ≥ 3, define

Df(x1, . . . , xk) := f

(
k∑

i=1

xi

)

+ (k − 2)
k∑

i=1

f(xi) −
k∑

i=1

k∑

j=1,j>i

f
(
xi + xj

)
, (1.6)

where xi ∈ X, i = 1, . . . , k. One can see that the quadratic function f : R → R defined by
f(x) = x2 and any additive mapping satisfy not only the following functional equation:

f
(
x + y + z

)
+ f(x) + f

(
y
)
+ f(z) = f

(
x + y

)
+ f
(
y + z

)
+ f(z + x) (1.7)

but also

Df(x1, . . . , xk) = 0, (1.8)

for all xi ∈ R . So it is natural that these functional equations are called quadratic additive.
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The functional equation (1.7) was first solved by Kannappan. In fact he proved that a
mapping f on a real vector space is a solution of (1.7) if and only if there exists a symmetric
biadditive mapping B and an additive mapping A such that f(x) = B(x, x) + A(x), for
any x (see [9]). The stability problem for (1.7) is also studied in [26]. Moreover (1.7) was
pexiderized and solved by Kannappan [9].

In [27], solutions and the generalized Hyers-Ulam-Rassias stability of the functional
equation (1.8) have been studied for k = 3.

The generalized Hyers-Ulam-Rassias stability problem for the functional equation
(1.8) was first considered by Bae and Park [28]. Also solutions and the generalized Ulam-
Găvruţa-Rassias stability of this functional equation were studied by Nakmahachalasint [29].
Indeed for its solutions the following theorem is proved.

Theorem 1.1 (see [29, Theorem 2.1]). Let n > 2 be a positive integer, and let X and Y be vector
spaces. A mapping f : X → Y satisfies the functional equation (1.8) if and only if the even part of
f , defined by fe(x) = (1/2)(f(x) + f(−x)) for all x ∈ X, satisfies the classical quadratic functional
equation and the odd part of f , defined by fo(x) = (1/2)(f(x) − f(−x)) for all x ∈ X, satisfies the
Cauchy functional equation f(x + y) = f(x) + f(y).

In Section 2 of this paper, we will prove that the functional equation (1.8) is equivalent
to the functional equation (1.7). In Section 3, first we prove the generalized Hyers-Ulam-
Rassias stability of the functional equation (1.8) in non-Archimedean normed spaces, and
then as a consequence of this result, we prove the generalized Hyers-Ulam-Rassias stability
of (1.8) in non-Archimedean normed spaces. Finally using the methods of Theorem 3.1.
in [29], directly the generalized Hyers-Ulam-Rassias stability of (1.8) will be proved in
non-Archimedean normed spaces. The stability problem in non-Archimedean case has been
studied by many authors, for example, see [30–34].

First we need some preliminaries in non-Archimedean normed space.
Let K be a field. A non-Archimedean absolute value on K is a function | · | : K → R

such that for any a, b ∈ K we have

(i) |a| ≥ 0 and equality holds if and only if a = 0,

(ii) |ab| = |a||b|,
(iii) |a + b| ≤ max{|a|, |b|}.

Condition (iii) is called the strong triangle inequality. By (ii), we have |1| = | − 1| = 1. Thus, by
induction, it follows from (iii) that |n| ≤ 1, for each integer n. We always assume in addition
that | · | is nontrivial, that is,

( iv ) there is an a0 ∈ K such that |a0|/= 0, 1.

Let X be a linear space over a scalar field K with a non-Archimedean nontrivial
valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it is a
norm over K with the strong triangle inequality (ultrametric); namely,

∥
∥x + y

∥
∥ ≤ max

{‖x‖,∥∥y∥∥}, (
x, y ∈ X). (1.9)

Then (X, ‖ · ‖) is called a non-Archimedean normed space.
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By a complete non-Archimedean normed space we mean one in which every Cauchy
sequence is convergent.

Thanks to the inequality

‖xn − xm‖ ≤ max
{∥
∥xj+1 − xj

∥
∥ : m ≤ j ≤ n − 1

}
(n > m) (1.10)

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-Archimedean
space.

2. Solution of the Functional Equation (1.8)

Throughout this section, X and Y will be some vector spaces. The following theorem proves
that the functional equation (1.8) is equivalent to the functional equation (1.7), and so every
solution of the functional equation (1.8) is a summation of a quadratic and an additive
mappings.

Theorem 2.1. Let X and Y be common domain and range of the f ’s in the functional equations (1.7)
and (1.8). Then the functional equation (1.8) is equivalent to (1.7).

Proof. We can easily see that (1.8) implies (1.7). Now, suppose a mapping f : X → Y satisfies
(1.7), for all x, y ∈ X. Using mathematical induction, we are going to show that, for any k ≥ 3,

f

(
k∑

i=1

xi

)

+ (k − 2)
k∑

i=1

f(xi) =
k∑

i=1

k∑

j=1,j>i

f
(
xi + xj

)
. (2.1)

LetM = f(
∑k−1

i=1 xi) + (k − 3)
∑k−1

i=1 f(xi), and suppose (2.1) holds for k − 1, we prove that (2.1)
is valid for k. Let x1, x2, . . . , xk ∈ X be given and k odd. By the assumption of induction, we
have

k∑

i=1

k∑

j=1,j>i

f
(
xi + xj

)

= f

(
k−1∑

i=1

xi

)

+ (k − 3)
k∑

i=1

f(xi) +
k−1∑

i=1

f(xi + xk)

=M +
(k−1)/2∑

i=1

[
f(x2i−1 + xk) + f(x2i + xk) + f(x2i−1 + x2i) − f(x2i−1 + x2i)

]

=M +
(k−1)/2∑

i=1

[
f(x2i−1 + x2i + xk) + f(x2i−1) + f(x2i) + f(xk)

] −
(k−1)/2∑

i=1

f(x2i−1 + x2i)

=M + f(x1 + x2 + xk) + f(x3 + x4 + xk) + f(x1 + x2 + x3 + x4)

− f(x1 + x2 + x3 + x4) +
(k−1)/2∑

i=3

f(x2i−1 + x2i + xk) +
k−1∑

i=1

f(xi) +
k − 1
2

f(xk)

−
(k−1)/2∑

i=1

f(x2i−1 + x2i)
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=M + f(xk) + f

(
4∑

i=1

xi + xk

)

+ f(x1 + x2) + f(x3 + x4) + f(x5 + x6 + xk)

+ f

(
6∑

i=1

xi

)

− f
(

6∑

i=1

xi

)

− f
(

4∑

i=1

xi

)

+
(k−1)/2∑

i=4

f(x2i−1 + x2i + xk)

+
k−1∑

i=1

f(xi) +
k − 1
2

f(xk) −
(k−1)/2∑

i=1

f(x2i−1 + x2i)

=M + f(xk) + f

(
4∑

i=1

xi + xk

)

+ f(x5 + x6 + xk) + f

(
6∑

i=1

xi

)

− f
(

6∑

i=1

xi

)

− f
(

4∑

i=1

xi

)

+
(k−1)/2∑

i=4

f(x2i−1 + x2i + xk) +
k−1∑

i=1

f(xi) +
k − 1
2

f(xk) −
(k−1)/2∑

i=3

f(x2i−1 + x2i)

=M + f(xk) + f

(
6∑

i=1

xi + xk

)

+ f

(
4∑

i=1

xi

)

+ f(x5 + x6) + f(xk) − f
(

6∑

i=1

xi

)

− f
(

4∑

i=1

xi

)

+
(k−1)/2∑

i=4

f(x2i−1 + x2i + xk) +
k−1∑

i=1

f(xi) +
k − 1
2

f(xk) −
(k−1)/2∑

i=3

f(x2i−1 + x2i)

=M + 2f(xk) + f

(
6∑

i=1

xi + xk

)

+ f(x7 + x8 + xk) + f

(
8∑

i=1

xi

)

− f
(

8∑

i=1

xi

)

− f
(

6∑

i=1

xi

)

+
(k−1)/2∑

i=5

f(x2i−1 + x2i + xk) +
k−1∑

i=1

f(xi) +
k − 1
2

f(xk) −
(k−1)/2∑

i=4

f(x2i−1 + x2i)

=M + 3f(xk) + f

(
8∑

i=1

xi + xk

)

+ f

(
6∑

i=1

xi

)

+ f(x7 + x8) − f
(

8∑

i=1

xi

)

− f
(

6∑

i=1

xi

)

+
(k−1)/2∑

i=5

f(x2i−1 + x2i + xk) +
k−1∑

i=1

f(xi) +
k − 1
2

f(xk) −
(k−1)/2∑

i=4

f(x2i−1 + x2i)

=M + 3f(xk) + f

(
8∑

i=1

xi + xk

)

− f
(

8∑

i=1

xi

)

+
(k−1)/2∑

i=5

f(x2i−1 + x2i + xk)

+
k−1∑

i=1

f(xi) +
k − 1
2

f(xk) −
(k−1)/2∑

i=5

f(x2i−1 + x2i)

= · · · =M +
k − 3
2

f(xk) + f

(
k−1∑

i=1

xi + xk

)

− f
(

k−1∑

i=1

xi

)

+
k−1∑

i=1

f(xi) +
k − 1
2

f(xk)

= (k − 3)
k−1∑

i=1

f(xi) + (k − 2)f(xk) + f

(
k∑

i=1

xi

)

+
k−1∑

i=1

f(xi)

= f

(
k∑

i=1

xi

)

+ (k − 2)
k∑

i=1

f(xi).

(2.2)

The proof of the case that k is even is very similar and is omitted. Thus (1.7) and (1.8) are
equivalent.
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3. Generalized Hyers-Ulam-Rassias Stability of
the Functional Equation (1.8)

In this section, we assume that X and Y are a linear space and a complete non-Archimedean
normed space, respectively, over a scalar field K with a non-Archimedean nontrivial
valuation | · |.

Lemma 3.1. Assume that a mapping f : X → Y satisfies the following inequality:

∥
∥f
(
x + y + z

)
+ f(x) + f

(
y
)
+ f(z) − f(x + y

) − f(y + z
) − f(z + x)∥∥ ≤ ϕ(x, y, z), (3.1)

where ϕ : X ×X ×X → [0,∞) is an arbitrary mapping and x, y, z ∈ X. Then,

∥
∥
∥
∥f(x) −

2n + 1
22n+1

f(2nx) +
2n − 1
22n+1

f(−2nx)
∥
∥
∥
∥

≤ max

{

max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
ϕ
(
−2ix,−2ix, 2ix

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n

}

,

max

{∣
∣2i+1 + 1

∣
∣

|2|2i+3
(
ϕ
(
2ix, 2ix,−2ix

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n

}}

,

(3.2)

for all x ∈ X and n ∈ N.

Proof. If we replace x, y and z in (3.1) by 0, we get ‖f(0)‖ ≤ ϕ(0, 0, 0). Putting x = y = −z in
(3.1), it yields

∥
∥3f(x) + f(−x) − f(2x)∥∥ ≤ max

{
ϕ(x, x,−x), |2|ϕ(0, 0, 0)}. (3.3)

By substituting −x for x in (3.3), we get

∥
∥3f(−x) + f(x) − f(−2x)∥∥ ≤ max

{
ϕ(−x,−x, x), |2|ϕ(0, 0, 0)}. (3.4)

We use induction on n to prove our claim. By (3.3) and (3.4), we have

∥
∥
∥
∥f(x) −

(
3
8

)

f(2x) +
(
1
8

)

f(−2x)
∥
∥
∥
∥

≤ max
{∣
∣
∣
∣
3
8

∣
∣
∣
∣
∥
∥3f(x) + f(−x) − f(2x)∥∥,

∣
∣
∣
∣
1
8

∣
∣
∣
∣
∥
∥−3f(−x) − f(x) + f(−2x)∥∥

}

≤ max
{∣
∣
∣
∣
3
8

∣
∣
∣
∣
(
ϕ(x, x,−x), |2|ϕ(0, 0, 0)),

∣
∣
∣
∣
1
8

∣
∣
∣
∣
(
ϕ(−x,−x, x), |2|ϕ(0, 0, 0))

}

.

(3.5)
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This proves the validity of the inequality (3.2) for n = 1. Now, assume that inequality (3.2)
holds true for some n ∈ N. By using (3.3), (3.4), and the following relation

f(x) − 2n+1 + 1
22n+3

f
(
2n+1x

)
+
2n+1 − 1
22n+3

f
(
−2n+1x

)

= f(x) − 2n + 1
22n+1

f(2nx) +
2n − 1
22n+1

f(−2nx)

+
2n+1 + 1
22n+3

[
3f(2nx) + f(−2nx) − f

(
2n+1x

)]

− 2n+1 − 1
22n+3

[
3f(−2nx) + f(2nx) − f

(
−2n+1x

)]
,

(3.6)

we get inequality (3.2) for n + 1. This completes the proof.

In the following two theorems, the generalized Hyers-Ulam-Rassias stability of (1.7)
is proved under the approximately even and approximately odd conditions, respectively.

Theorem 3.2. Assume that a mapping f : X → Y satisfies the following inequality:

∥
∥f
(
x + y + z

)
+ f(x) + f

(
y
)
+ f(z) − f(x + y

) − f(y + z
) − f(z + x)∥∥ ≤ ϕ(x, y, z),

∥
∥f(x) − f(−x)∥∥ ≤ ψ(x),

(3.7)

where ϕ : X ×X ×X → [0,∞) and ψ : X → [0,∞) are mappings such that

lim
n→∞

ϕ
(
2nx, 2ny, 2nz

)

|2|2n
= 0,

ϕ̃
(
x, y, z

)
= lim

n→∞
max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
ϕ
(
2ix, 2iy, 2iz

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n

}

<∞,

lim
k→∞

lim
n→∞

max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
ϕ
(
2ix, 2iy, 2iz

)
, |2|ϕ(0, 0, 0)

)
: k ≤ i < n + k

}

= 0,

(3.8)

lim
n→∞

ψ(2nx)

|2|2n
= 0, (3.9)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : X → Y which satisfies (1.7)
and the inequality

∥
∥f(x) −Q(x)

∥
∥ ≤ max

{
ϕ̃(−x,−x, x), Φ̃(x, x,−x)

}
, (3.10)
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where

Φ̃
(
x, y, z

)
= lim

n→∞
max

{∣
∣2i+1 + 1

∣
∣

|2|2i+3
(
ϕ
(
2ix, 2iy, 2iz

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n

}

, (3.11)

for all x, y, z ∈ X. If moreover f is measurable or f(tx) is continuous in t for each fixed x ∈ X then
Q(tx) = t2Q(x), for all x ∈ X and t ∈ R .

Proof. It follows from (3.2), the second condition in (3.7) and Lemma 3.1, that

∥
∥
∥
∥f(x) −

f(2nx)
22n

∥
∥
∥
∥

=
∥
∥
∥
∥f(x) −

2n + 1
22n+1

f(2nx) +
2n − 1
22n+1

f(−2nx) −
(
2n − 1
22n+1

f(−2nx) − 2n − 1
22n+1

f(2nx)
)∥
∥
∥
∥

≤ max

{

max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
ϕ
(
−2ix,−2ix, 2ix

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n

}

,

max

{∣
∣2i+1 + 1

∣
∣

|2|2i+3
(
ϕ
(
2ix, 2ix,−2ix

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n

}

,
|2n − 1|
|2|2n+1

ψ(2nx)

}

.

(3.12)

By (3.12), for n ≥ m, we have

∥
∥
∥
∥
f(2nx)
22n

− f(2mx)
22m

∥
∥
∥
∥

=
1

|2|2m
∥
∥
∥
∥

1
22(n−m)

f
(
2n−m · 2mx) − f(2mx)

∥
∥
∥
∥

≤ 1

|2|2m
max

{

max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
ϕ
(
−2i+mx,−2i+mx, 2i+mx

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n −m

}

,

max

{∣
∣2i+1 + 1

∣
∣

|2|2i+3
(
ϕ
(
2i+mx, 2i+mx,−2i+mx

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n −m

}

,

|2n−m − 1|
∣
∣22(n−m)+1

∣
∣
ψ
(
2n−m · 2mx)

}

.

(3.13)

Replacing n,m with n + 1, n, respectively, in (3.13), we can easily get

∥
∥
∥
∥
∥

f
(
2n+1x

)

22(n+1)
− f(2nx)

22n

∥
∥
∥
∥
∥
≤ max

{
1

|2|3
(
ϕ(−2nx,−2nx, 2nx)

|2|2n
,
|2|ϕ(0, 0, 0)

|2|2n
)

,

|3|
|2|3
(
ϕ(2nx, 2nx,−2nx)

|2|2n
,
|2|ϕ(0, 0, 0)

|2|2n
)

,
1
|2|
ψ
(
2n+1x

)

|2|2(n+1)
}

.

(3.14)
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The sequence {f(2nx)/22n} is a Cauchy sequence, since the right-hand side of the inequality
(3.14) tends to 0 as n tends to ∞. Therefore, we may apply a direct method for definition of
Q. Define

Q(x) = lim
n→∞

f(2nx)
22n

, (3.15)

for all x ∈ X. From the first condition in (3.7), it follows that

∥
∥
∥
∥
∥

f
(
2n
(
x + y + z

))

22n
+
f(2nx)
22n

+
f
(
2ny
)

22n
+
f(2nz)
22n

− f
(
2n
(
x + y

))

22n

−f
(
2n
(
y + z

))

22n
− f(2n(z + x))

22n

∥
∥
∥
∥
∥
≤ ϕ
(
2nx, 2ny, 2nz

)

|2|2n
,

(3.16)

for all x, y, z ∈ X and for all n ∈ N. Therefore, by letting n → ∞ in the last inequality, from
(3.8), it is clear thatQ is a solution of (1.7). Analogously, by the second condition in (3.7),Q is
even. By putting z = −y in (1.7) and taking account ofQ(0) = 0, we seeQ as an even solution
of (1.7) and so is quadratic. According to |2|n ≤ 1 for all n ∈ N, we get

|2n − 1|
|2|2n+1

ψ(2nx) ≤ max

{
|2n|

|2|2n+1
ψ(2nx),

1

|2|2n+1
ψ(2nx)

}

=
1

|2|2n+1
ψ(2nx). (3.17)

Then from (3.12) and definition of Q one may see that inequality (3.10) holds true.
Now, let T : X → Y be another quadratic mapping which satisfies (1.7) and inequality

(3.10). Obviously, we have

Q(2nx) = 4nQ(x), T(2nx) = 4nT(x), (3.18)

for all x ∈ X and n ∈ N. Hence, it follows from (3.10) that

‖Q(x) − T(x)‖ = |2|−2n‖Q(2nx) − T(2nx)‖

≤ |2|−2nmax
{∥
∥Q(2nx) − f(2nx)∥∥,∥∥T(2nx) − f(2nx)∥∥}

≤ max

{
ϕ̃(−2nx,−2nx, 2nx)

|2|2n
,
Φ̃(2nx, 2nx,−2nx)

|2|2n
}

,

(3.19)

for all x ∈ X and n ∈ N. Applying (3.8) and letting n → ∞ in the preceding inequality, we
immediately conclude the uniqueness of Q. The proof of the last assertion in the theorem
goes through in the same way as that of Theorem 1 [12].
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Theorem 3.3. Assume that a mapping f : X → Y satisfies the system of inequalities

∥
∥f
(
x + y + z

)
+ f(x) + f

(
y
)
+ f(z)

∥
∥ −f(x + y

) − f(y + z
) − f(z + x)∥∥ ≤ ϕ(x, y, z),

∥
∥f(x) + f(−x)∥∥ ≤ ψ(x),

(3.20)

for all x, y, z ∈ X, where ϕ : X × X × X → [0,∞) and ψ : X → [0,∞) are mappings with
conditions of Theorem 3.2. Then with the notations of Theorem 3.2, there exists a unique additive
mapping F : X → Y satisfying the inequality

∥
∥f(x) − F(x)∥∥ ≤ max

{
ϕ̃(−x,−x, x), Φ̃(x, x,−x)

}
(3.21)

for all x ∈ X.

Proof. From (3.2), the second condition in (3.20), and Lemma 3.1, we get

∥
∥
∥
∥f(x) −

f(2nx)
2n

∥
∥
∥
∥

=
∥
∥
∥
∥f(x) −

2n + 1
22n+1

f(2nx) +
2n − 1
22n+1

f(−2nx) −
(
2n − 1
22n+1

f(−2nx) + 2n − 1
22n+1

f(2nx)
)∥
∥
∥
∥

≤ max

{

max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
ϕ
(
−2ix,−2ix, 2ix

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n

}

,

max

{∣
∣2i+1 + 1

∣
∣

|2|2i+3
(
ϕ
(
2ix, 2ix,−2ix

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n

}

,
|2n − 1|
|2|2n+1

ψ(2nx)

}

.

(3.22)

For n ≥ m, we have

∥
∥
∥
∥
f(2nx)

2n
− f(2mx)

2m

∥
∥
∥
∥

=
1

|2|m
∥
∥
∥
∥

1
2(n−m)

f
(
2n−m · 2mx) − f(2mx)

∥
∥
∥
∥

≤ 1
|2|m max

{

max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
ϕ
(
−2i+mx,−2i+mx, 2i+mx

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n −m

}

,

max

{∣
∣2i+1 + 1

∣
∣

|2|2i+3
(
ϕ
(
2i+mx, 2i+mx,−2i+mx

)
, |2|ϕ(0, 0, 0)

)
: 0 ≤ i < n −m

}

,

|2n−m − 1|
∣
∣22(n−m)+1

∣
∣
ψ
(
2n−m · 2mx)

}

.

(3.23)
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Therefore,

∥
∥
∥
∥
∥

f
(
2n+1x

)

2n+1
− f(2nx)

2n

∥
∥
∥
∥
∥
≤ max

{
1

|2|3
(
ϕ(−2nx,−2nx, 2nx)

|2|n ,
|2|ϕ(0, 0, 0)

|2|n
)

,

|3|
|2|3
(
ϕ(2nx, 2nx,−2nx)

|2|n ,
|2|ϕ(0, 0, 0)

|2|n
)

,
1

|2|2
ψ
(
2n+1x

)

|2|n+1
}

.

(3.24)

Conditions of ϕ and ψ and |4| ≤ |2| imply that sequence {f(2nx)/2n} is a Cauchy sequence.
Now, for any x ∈ X, define

F(x) = lim
n→∞

f(2nx)
2n

. (3.25)

Similarly, as in the proof of Theorem 3.2, due to (3.20), we may see that the mapping F

satisfies (1.7) and is an odd function. By putting z = −y in (1.7), considering the oddness
of F, and letting u = x + y, v = x − y, we get

2F
(u + v

2

)
= F(u) + F(v). (3.26)

According to [35], the mapping F is additive, since F(0) = 0. The validity of inequality (3.21)
follows directly from (3.22) and the definition of F. Now, let G : X → Y be another additive
mapping which satisfies (3.21). It then follows from (3.21) that

‖F(x) −G(x)‖ = |2|−n‖F(2nx) −G(2nx)‖

≤ |2|−nmax
{∥
∥F(2nx) − f(2nx)∥∥,∥∥G(2nx) − f(2nx)∥∥}

≤ max

{
ϕ̃(−2nx,−2nx, 2nx)

|2|n ,
Φ̃(2nx, 2nx,−2nx)

|2|n
}

,

(3.27)

for all x ∈ X and n ∈ N. This implies the uniqueness of F.

Remark 3.4. The approximately even condition guarantees the quadratic property of Q,
whereas the approximately odd condition guarantees the additive behavior of F.

Corollary 3.5. Let k ∈ N and k ≥ 3. Assume that a mapping f : Xk → Y satisfies the following
inequalities:

∥
∥
∥
∥
∥
∥
f

(
k∑

i=1

xi

)

+ (k − 2)
k∑

i=1

f(xi) −
k∑

i=1

k∑

j=1,j>i

f
(
xi + xj

)
∥
∥
∥
∥
∥
∥
≤ φ(x1, . . . , xk), (3.28)

∥
∥f(x) − f(−x)∥∥ ≤ ψ(x), (3.29)
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where φ : Xk → [0,∞) and ψ : X → [0,∞) are mappings such that

lim
n→∞

φ
(
2nx, 2ny, 2nz, 0, . . . , 0

)

|2|2n
= 0,

ϕ̃
(
x, y, z

)
= lim

n→∞
max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
φ
(
2ix, 2iy, 2iz, 0, . . . , 0

)
, |2|φ(0, . . . , 0)

)
: 0 ≤ i < n

}

<∞,

lim
k→∞

lim
n→∞

max

{∣
∣2i+1−k − 1

∣
∣

|2|2i+3
(
φ
(
2ix, 2iy, 2iz, 0, . . . , 0

)
, |2|φ(0, . . . , 0)

)
: k ≤ i < n + k

}

= 0,

lim
n→∞

ψ(2nx)

|2|2n
= 0,

(3.30)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q : X → Y which satisfies (1.8)
and the following inequality:

∥
∥f(x) −Q(x)

∥
∥ ≤ max

{
ϕ̃(−x,−x, x), Φ̃(x, x,−x)

}
, (3.31)

where

ϕ
(
x, y, z

)
= max

{

φ
(
x, y, z, 0, . . . , 0

)
,
|2(k − 4)(k − 3)|
|(k − 2)(k − 1)| φ(0, . . . , 0)

}

,

ϕ̃
(
x, y, z

)
= lim

n→∞
max

{∣
∣2i+1 − 1

∣
∣

|2|2i+3
(
ϕ
(
2ix, 2iy, 2iz

)
, |2|ϕ(0, 0, 0)

)
, 0 ≤ i < n

}

,

Φ̃
(
x, y, z

)
= lim

n→∞
max

{∣
∣2i+1 + 1

∣
∣

|2|2i+3
(
φ
(
2ix, 2iy, 2iz,

)
, |2|φ(0, 0, 0)

)
, 0 ≤ i < n

}

.

(3.32)

Proof. By letting xi = 0, i = 1, . . . , k, in (3.28)we get

∥
∥f(0)

∥
∥ ≤ |2|

|(k − 1)(k − 2)|φ(0, . . . , 0), (3.33)

and also from (3.28) and (3.33) we have

∥
∥f(x1 + x2 + x3) + f(x1) + f(x2) + f(x3) − f(x1 + x2) − f(x2 + x3)

∥
∥

≤ max
{

φ(x1, x2, x3, 0, . . . , 0),
|2(k − 4)(k − 3)|
|(k − 2)(k − 1)| φ(0, . . . , 0)

}

.
(3.34)

Now by considering ϕ(x, y, z) = max{φ(x, y, z, 0, . . . , 0), (|2(k − 4)(k − 3)|/|(k − 2)(k − 1)|)φ(0,
. . . , 0)}, we may see that ϕ satisfies (3.8), and so using Theorem 3.2, we get (3.31).
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Remark 3.6. In the previous corollary, if one replaces (3.29) with

∥
∥f(x) + f(−x)∥∥ ≤ ψ(x), (3.35)

where ψ : X → [0,∞) is a mapping satisfying

lim
n→∞

ψ(2nx)

|2|2n
= 0, (3.36)

then using Theorem 3.3 and a similar argument with Corollary 3.5, we may find a unique
additive mapping F : X → Y which satisfies (1.8) and the inequality

∥
∥f(x) − F(x)∥∥ ≤ max

{
ϕ̃(−x,−x, x), Φ̃(x, x,−x)

}
. (3.37)

In the following theorem, using [29] Theorem 3.1, the generalizedHyers-Ulam-Rassias
stability of (1.8) is proved directly in non-Archimedean normed spaces. Note that the
conditions on φ in this theorem are different from the previous conditions.

Theorem 3.7. Let k > 2 be a positive integer, X a non-Archimedean vector space, and Y a
non-Archimedean Banach space. Let φ : Xk → [0,∞) be an even function. Define ϕ(x) =
φ(x, x,−x, 0, . . . , 0) for all x ∈ X. If

lim
m→∞

φ(2mx1, 2mx2, . . . , 2mxk)
|4|m = 0,

ϕ̃(x) = lim
m→∞

max

{
ϕ
(
2ix
)

|4|i
: 0 ≤ i < m

}

<∞,

lim
k→∞

lim
m→∞

max

{
ϕ
(
2ix
)

|4|i
: k ≤ i < m + k

}

= 0,

(3.38)

or

lim
m→∞

|2|mφ
( x1
2m

,
x2
2m

, . . . ,
xk
2m
)
= 0,

ϕ̃(x) = lim
m→∞

max
{

|2|iϕ
(
x

2i

)

: 1 ≤ i < m + 1
}

<∞,

lim
k→∞

lim
m→∞

max
{

|2|iϕ
(
x

2i

)

: 1 + k ≤ i < m + k + 1
}

= 0,

(3.39)

for all x1, x2, . . . , xk ∈ X, and a mapping f : X → Y satisfies f(0) = 0 and

∥
∥Df(x1, . . . , xk)

∥
∥ ≤ φ(x1, . . . , xk), (3.40)
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for all x1, x2, . . . , xk ∈ X, then there exists a unique function T : X → Y that satisfies functional
equation (1.8), and if condition (3.38) holds,

∥
∥fe(x) − Te(x)

∥
∥ ≤ 1

|2|3
ϕ̃(x), (3.41)

∥
∥fo(x) − To(x)

∥
∥ ≤ 1

|2|2
ϕ̃1(x), (3.42)

where ϕ̃1(x) = limm→∞ max{ϕ(2ix)/|2|i : 0 ≤ i < m} or, if condition (3.39) holds,

∥
∥fe(x) − Te(x)

∥
∥ ≤ 1

|2|3
ϕ̃(x), (3.43)

∥
∥fo(x) − To(x)

∥
∥ ≤ 1

|2|2
ϕ̃2(x), (3.44)

where ϕ̃2(x) = limm→∞ max{|2|iϕ(x/2i) : 1 ≤ i < m + 1}. The function T is given by

T(x) =

⎧
⎪⎨

⎪⎩

lim
m→∞

4−mfe(2mx) + 2−mfo(2mx) if conditions (3.38) hold,

lim
m→∞

4mfe(2−mx) + 2mfo(2−mx) if conditions (3.39) hold,
(3.45)

for all x ∈ X.

Proof. We will prove the theorem for a function φ satisfying condition (3.38) and accordingly
inequalities (3.41) and (3.42). A proof for conditions (3.39) and inequalities (3.43) and (3.44)
can be reproduced in a similar manner. Setting (x1, x2, . . . , xk) = (x, x,−x, 0, 0, . . . , 0) in (3.40)
and simplifying, we have

∥
∥3f(x) + f(−x) − f(2x)∥∥ ≤ ϕ(x). (3.46)

Replacing x by −x, we get

∥
∥3f(−x) + f(x) − f(−2x)∥∥ ≤ ϕ(−x) = ϕ(x). (3.47)

Then,

∥
∥4fe(x) − fe(2x)

∥
∥ =

1
|2|
∥
∥
(
3f(x) + f(−x) − f(2x)) + (3f(−x) + f(x) − f(−2x))∥∥

≤ max
{

1
|2|
∥
∥3f(x) + f(−x) − f(2x)∥∥, 1

|2|
∥
∥3f(−x) + f(x) − f(−2x)∥∥

}

≤ ϕ(x)
|2| ,
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∥
∥2fo(x) − fo(2x)

∥
∥ =

1
|2|
∥
∥
(
3f(x) + f(−x) − f(2x)) − (3f(−x) + f(x) − f(−2x))∥∥

≤ max
{

1
|2|
∥
∥3f(x) + f(−x) − f(2x)∥∥, 1

|2|
∥
∥3f(−x) + f(x) − f(−2x)∥∥

}

≤ ϕ(x)
|2| .

(3.48)

Rewrite the inequality on fe as ‖fe(x) − fe(2x)/4‖ ≤ (1/|2|3)ϕ(x) for all x ∈ X. Then by
replacing x by 2mx and dividing both sides by 4m we have

∥
∥
∥
∥
∥

fe(2mx)
4m

− fe
(
2m+1x

)

4m+1

∥
∥
∥
∥
∥
≤ 1

|2|3
ϕ(2mx)
|4|m . (3.49)

Thus

∥
∥
∥
∥fe(x) −

fe(2mx)
4m

∥
∥
∥
∥ ≤ 1

|2|3
max

{
ϕ
(
2ix
)

|4|i
: 0 ≤ i < m

}

, (3.50)

for every positive integer m. If we rewrite the inequality for fo as ‖fo(x) − fo(2x)/2‖ ≤
(1/|2|2)ϕ(x) and repeat the same steps as in the case of fe, we will have

∥
∥
∥
∥
∥

fo(2mx)
2m

− fo
(
2m+1x

)

2m+1

∥
∥
∥
∥
∥
≤ 1

|2|2
ϕ(2mx)
|2|m , (3.51)

∥
∥
∥
∥fo(x) −

fo(2mx)
2m

∥
∥
∥
∥ ≤ 1

|2|2
max

{
ϕ
(
2ix
)

|2|i
: 0 ≤ i < m

}

, (3.52)

for every positive integer m. By definition of φ, relations (3.49) and (3.38), the sequence
{fe(2mx)/4m} is a Cauchy sequence in a Banach space. Let Te(x) = limm→∞(fe(2mx)/4m)
for all x ∈ X, thus

∥
∥fe(x) − Te(x)

∥
∥ ≤ 1

|2|3
lim
m→∞

max

{
ϕ
(
2ix
)

|4|i
: 0 ≤ i < m

}

. (3.53)

By similar way we have

∥
∥fo(x) − To(x)

∥
∥ ≤ 1

|2|2
lim
m→∞

max

{
ϕ
(
2ix
)

|2|i
: 0 ≤ i < m

}

. (3.54)
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Define T(x) = Te(x) + To(x), for all x ∈ X. In order to show that T satisfies (1.8), it is enough
to show that Te and To satisfy (1.8). For convenience, define Dfe and Dfo as the even part
and the odd part of Df in (1.8), respectively. For Te, consider

1
|4|m
∥
∥Dfe(2mx1, . . . , 2mxk)

∥
∥ =

1
|4|m|2|

∥
∥Df(2mx1, . . . , 2mxk) +Df(−2mx1, . . . ,−2mxk)

∥
∥

≤ 1
|4|m|2|φ(2

mx1, . . . , 2mxk).

(3.55)

Asm tend to infinity, the left-hand side approaches DTe(x1, . . . , xk) and by conditions (3.38),
the right-hand side approaches 0. Thus, DTe(x1, . . . , xk) = 0. A similar argument shows that
DTo(x1, . . . , xk) = 0 since

lim
m→∞

1
|2|mφ(2

mx1, . . . , 2mxk) = 0. (3.56)

Hence, T = Te+To satisfies (1.8) as desired. Now using Theorem 1.1, one can see that Te and To
are quadratic and additive, respectively. Also lettingm → ∞ in (3.50) one may obtain (3.43).

To prove the uniqueness of T , suppose that there exists another function S : X → Y
that satisfies (1.8) and inequalities (3.41) and (3.42) with S instead of T . Then,

‖S(x) − T(x)‖ ≤ max{‖Se(x) − Te(x)‖, ‖So(x) − To(x)‖}. (3.57)

It is straightforward to show that every solution of the quadratic functional equation f(x +
y) + f(x − y) = 2f(x) + 2f(y) has the quadratic property f(nx) = n2f(x) and every solution
of the linear functional equation f(x+y) = f(x)+f(y) has the linear property f(nx) = nf(x)
for every positive integer n and for every x in the domain. We thus obtain

‖S(x) − T(x)‖ ≤ lim
m→∞

max
{

1
|4|m
∥
∥Se(2mx) − fe(2mx)

∥
∥,

1
|2|m
∥
∥So(2mx) − fo(2mx)

∥
∥
}

≤ lim
m→∞

max

{
1

|2|3|4|m
ϕ̃(2mx),

1

|2|2|2|m
ϕ̃1(2mx)

}

,

(3.58)

for all x ∈ X. This completes the proof.

Corollary 3.8. If |2| < 1, a mapping f : X → Y satisfies f(0) = 0 and the inequality

∥
∥Df(x1, x2, . . . , xk)

∥
∥ ≤ ε, (3.59)

for some ε > 0 and for all x1, x2, . . . , xk ∈ X, then there exists a unique mapping T : X → Y that
satisfies functional equation (1.8) and for all x ∈ X,

∥
∥fe(x) − Te(x)

∥
∥ ≤ ε

|2| ,
∥
∥fo(x) − To(x)

∥
∥ ≤ ε

|2| . (3.60)
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Proof. Let φ(x1, x2, . . . , xk) = ε. Then condition (3.39) in Theorem 3.7 holds. Hence, it follows
from Theorem 3.7 that there exists a unique mapping T : X → Y such that

∥
∥fe(x) − Te(x)

∥
∥ ≤ 1

|2|3
lim
m→∞

max
{

|4|iϕ
(
x

2i

)

: 1 ≤ i < m + 1
}

=
1

|2|3
|4|ε,

∥
∥fo(x) − To(x)

∥
∥ ≤ 1

|2|3
lim
m→∞

max
{

|2|iϕ
(
x

2i

)

: 1 ≤ i < m + 1
}

=
1

|2|2
|2|ε.

(3.61)

Corollary 3.9. Let p be a positive real number with 0 < p < 1 or p > 2 and |2| < 1. If a mapping
f : X → Y satisfies the inequality,

∥
∥Df(x1, x2, . . . , xk)

∥
∥ ≤ ε

n∑

i=1

‖xi‖p, (3.62)

for some ε > 0 and for all x1, x2, . . . , xk ∈ X, then there exists a unique mapping T : X → Y that
satisfies functional equation (1.8) and for all x ∈ X,

∥
∥fe(x) − Te(x)

∥
∥ ≤ 3ε

|2|3
‖x‖p, ∥

∥fo(x) − To(x)
∥
∥ ≤ 3ε

|2|2
‖x‖p, for p > 2,

∥
∥fe(x) − Te(x)

∥
∥ ≤ 3ε

|2|p+1
‖x‖p, ∥

∥fo(x) − To(x)
∥
∥ ≤ 3ε

|2|p+1
‖x‖p, for 0 < p < 1.

(3.63)

Proof. Substituting x1 = x2 = · · · = xk = 0 into (3.62), we get

f(0) + (k − 2)kf(0) =

(
n

2

)

f(0). (3.64)

It follows that 1 + k(k − 2) >
(
k
2

)
, since k > 2. Hence, f(0) = 0. Let φ(x1, x2, . . . , xn) =

ε
∑n

i=1 ‖xi‖p. If 0 < p < 1, then condition (3.39) in Theorem 3.7 holds, and it follows that

∥
∥fe(x) − Te(x)

∥
∥ ≤ 1

|2|3
(

|4|ε
(∥
∥
∥
x

2

∥
∥
∥
p
+
∥
∥
∥
x

2

∥
∥
∥
p
+
∥
∥
∥
∥
−x
2

∥
∥
∥
∥

p))

=
3ε

|2|p+1
‖x‖p,

∥
∥fo(x) − To(x)

∥
∥ ≤ 1

|2|2
(

|2|ε
(∥
∥
∥
x

2

∥
∥
∥
p
+
∥
∥
∥
x

2

∥
∥
∥
p
+
∥
∥
∥
∥
−x
2

∥
∥
∥
∥

p))

=
3ε

|2|p+1
‖x‖p.

(3.65)

If p > 2, we apply Theorem 3.7 with condition (3.38) to get a similar result.
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Universitatis Babeş-Bolyai, vol. 43, no. 3, pp. 89–124, 1998.
[7] J. Aczél and J. Dhombres, Functional Equations in Several Variables, vol. 31 of Encyclopedia of Mathematics

and Its Applications, Cambridge University Press, Cambridge, UK, 1989.
[8] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, vol. 34 of

Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, Mass, USA, 1998.
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