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We consider the generalized shift operator, associated with the Dunkl operator Λα(f)(x) =
(d/dx)f(x) + ((2α + 1)/x)((f(x) − f(−x))/2), α > −1/2. We study the boundedness of the Dunkl-
type fractional maximal operator Mβ in the Dunkl-type Morrey space Lp,λ,α(R), 0 ≤ λ < 2α + 2.
We obtain necessary and sufficient conditions on the parameters for the boundedness Mβ, 0 ≤ β <
2α+ 2 from the spaces Lp,λ,α(R) to the spaces Lq,λ,α(R), 1 < p ≤ q < ∞, and from the spaces L1,λ,α(R)
to the weak spacesWLq,λ,α(R), 1 < q < ∞. As an application of this result, we get the boundedness
of Mβ from the Dunkl-type Besov-Morrey spaces Bs

pθ,λ,α
(R) to the spaces Bs

qθ,λ,α
(R), 1 < p ≤ q < ∞,

0 ≤ λ < 2α + 2, 1/p − 1/q = β/(2α + 2 − λ), 1 ≤ θ ≤ ∞, and 0 < s < 1.

1. Introduction

On the real line, the Dunkl operators Λα are differential-difference operators introduced in
1989 by Dunkl [1]. For a real parameter α > −1/2, we consider the Dunkl operator, associated
with the reflection group Z2 on R:

Λα

(
f
)
(x) :=

d

dx
f(x) +

2α + 1
x

(
f(x) − f(−x)

2

)
. (1.1)

In the theory of partial differential equations, together with weighted Lp,w(Rn) spaces,
Morrey spaces Lp,λ(Rn) play an important role. Morrey spaces were introduced by Morrey in
1938 in connection with certain problems in elliptic partial differential equations and calculus
of variations (see [2]).
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The Hardy-Littlewood maximal function, fractional maximal function, and fractional
integrals are important technical tools in harmonic analysis, theory of functions, and partial
differential equations. In the works [3–5], the maximal operator and in [6, 7] the fractional
maximal operator associated with the Dunkl operator on R were studied. In this work,
we study the boundedness of the fractional maximal operator Mβ (Dunkl-type fractional
maximal operator) in Morrey spaces Lp,λ,α(R) (Dunkl-type Morrey spaces) associated
with the Dunkl operator on R. We obtain the necessary and sufficient conditions for the
boundedness of the operator Mβ from the spaces Lp,λ,α(R) to Lq,λ,α(R), 1 < p ≤ q < ∞, and
from the spaces L1,λ,α(R) to the weak spaces WLq,λ,α(R), 1 < q < ∞.

The paper is organized as follows. In Section 2, we present some definitions and
auxiliary results. In Section 3, we give our main result on the boundedness of the operator
Mβ in Lp,λ,α(R). We obtain necessary and sufficient conditions on the parameters for the
boundedness of the operator Mβ from the spaces Lp,λ,α(R) to the spaces Lq,λ,α(R), 1 < p ≤ q <
∞, and from the spaces L1,λ,α(R) to the weak spaces WLq,λ,α(R), 1 < q < ∞. As an application
of this result, in Section 4 we prove the boundedness of the operator Mβ from the Dunkl-
type Besov-Morrey spaces Bs

pθ,λ,α
(R) to the spaces Bs

qθ,λ,α
(R), 1 < p ≤ q < ∞, 0 ≤ λ < 2α + 2,

1/p − 1/q = β/(2α + 2 − λ), 1 ≤ θ ≤ ∞, and 0 < s < 1.
Finally, we mention that, C will be always used to denote a suitable positive constant

that is not necessarily the same in each occurrence.

2. Preliminaries

Let α > −1/2 be a fixed number and μα be the weighted Lebesgue measure on R, given by

dμα(x) :=
(
2α+1Γ(α + 1)

)−1
|x|2α+1dx. (2.1)

For every 1 ≤ p ≤ ∞, we denote by Lp,α(R) = Lp(dμα)(R) the spaces of complex-valued
functions f , measurable on R such that

∥∥f
∥∥
p,α :=

(∫

R

∣∣f(x)
∣∣pdμα(x)

)1/p

< ∞ if p ∈ [1,∞),

∥∥f
∥∥
∞,α := ess sup

x∈R

∣∣f(x)
∣∣ if p = ∞.

(2.2)

For 1 ≤ p < ∞ we denote by WLp,α(R), the weak Lp,α(R) spaces defined as the set of
locally integrable functions f(x), x ∈ R with the finite norm

∥∥f
∥∥
WLp,α

:= sup
r>0

r
(
μα

{
x ∈ R :

∣∣f(x)
∣∣ > r

})1/p
. (2.3)

Note that

Lp,α ⊂ WLp,α,
∥∥f
∥∥
WLp,α

≤ ∥∥f∥∥p,α ∀f ∈ Lp,α(R). (2.4)
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For all x, y, z ∈ R, we put

Wα

(
x, y, z

)
:=
(
1 − σx,y,z + σz,x,y + σz,y,x

)
Δα

(
x, y, z

)
, (2.5)

where

σx,y,z :=

⎧
⎪⎨

⎪⎩

x2 + y2 − z2

2xy
if x, y ∈ R \ 0,

0 otherwise
(2.6)

and Δα is the Bessel kernel given by

Δα

(
x, y, z

)
:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dα

([(|x| + ∣∣y∣∣)2 − z2
][
z2 − (|x| − ∣∣y∣∣)2

])α−1/2

∣∣xyz
∣∣2α

if |z| ∈ Ax,y,

0 otherwise,

(2.7)

where dα = (Γ(α + 1))2/(2α−1
√
π Γ(α + 1/2)) and Ax,y = [||x| − |y||, |x| + |y|].

In the sequel we consider the signed measure νx,y, on R, given by

νx,y :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Wα

(
x, y, z

)
dμα(z) if x, y ∈ R \ 0,

dδx(z) if y = 0,

dδy(z) if x = 0.

(2.8)

For x, y ∈ R and f being a continuous function on R, the Dunkl translation operator
τx is given by

τxf
(
y
)
:=
∫

R

f(z)dνx,y(z). (2.9)

Using the change of variable z = Ψ(x, y, θ) =
√
x2 + y2 − 2xy cos θ, we have also (see

[8])

τxf
(
y
)
= Cα

∫π

0

[
f(Ψ) + f(−Ψ) +

x + y

Ψ
(
f(Ψ) − f(−Ψ)

)
]
dνα(θ), (2.10)

where dνα(θ) = (1 − cos θ) sin2αθ dθ and Cα = Γ(α + 1)/2
√
π Γ(α + 1/2).

Proposition 2.1 (see Soltani [9]). For all x ∈ R the operator τx extends to Lp,α(R), p ≥ 1 and we
have for f ∈ Lp,α(R),

∥∥τxf
∥∥
Lp,α

≤ 4
∥∥f
∥∥
Lp,α

. (2.11)
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Let B(x, r) = {y ∈ R : |y| ∈ ]max{0, |x| − r}, |x| + r[},r > 0, and bα =
[2α+1 (α + 1) Γ(α + 1)]−1. Then B(0, r) =] − r, r[ and μαB(0, r) = bαr

2α+2.
Now we define the Dunkl-type fractional maximal function (see [3–5]) by

Mβf(x) = sup
r>0

(
μαB(0, r)

)−1+β/(2α+2)
∫

B(0,r)
τx
∣
∣f
∣
∣(y
)
dμα

(
y
)
, 0 ≤ β < 2α + 2. (2.12)

If β = 0, then M = M0 is the Dunkl-type maximal operator.
In [3–5]was proved the following theorem (see also [10]).

Theorem 2.2. (1) If f ∈ L1,α(R), then for every β > 0

μα

{
x ∈ R : Mf(x) > β

} ≤ C

β

∥
∥f
∥
∥
L1,α

, (2.13)

where C > 0 is independent of f .
(2) If f ∈ Lp,α(R), 1 < p ≤ ∞, thenMf ∈ Lp,α(R) and

∥∥Mf
∥∥
Lp,α

≤ Cp

∥∥f
∥∥
Lp,α

, (2.14)

where Cp > 0 is independent of f .

Definition 2.3. Let 1 ≤ p < ∞, 0 ≤ λ ≤ 2α + 2. We denote by Lp,λ,α(R) Morrey space (≡
Dunkl-type Morrey space), associated with the Dunkl operator as the set of locally integrable
functions f(x), x ∈ R, with the finite norm

∥∥f
∥∥
p,λ,α = sup

x∈R,r>0

(

r−λ
∫

B(0,r)
τx
∣∣f
(
y
)∣∣pdμα

(
y
)
)1/p

. (2.15)

Note that Lp,0,α(R) = Lp,α(R), and if λ < 0 or λ > 2α + 2, then Lp,λ,α(R) = Θ, where Θ is
the set of all functions equivalent to 0 on R (see also [7]).

Definition 2.4. Let 1 ≤ p < ∞ and 0 ≤ λ ≤ 2α + 2. We denote byWLp,λ,α(R) a weak Dunkl-type
Morrey space as the set of locally integrable functions f(x), x ∈ R with finite norm

∥∥f
∥∥
WLp,λ,α

= sup
t>0

t sup
x∈R,r>0

(

r−λ
∫

{y∈B(0,r): τx |f(y)|>t}
dμα

(
y
)
)1/p

. (2.16)

We note that

Lp,λ,α(R) ⊂ WLp,λ,α(R),
∥∥f
∥∥
WLp,λ,α

≤ ∥∥f∥∥p,λ,α. (2.17)
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3. Main Results

The following theorem is our main result in which we obtain the necessary and sufficient
conditions for the Dunkl-type fractional maximal operatorMβ to be bounded from the spaces
Lp,λ,α(R) to Lq,λ,α(R), 1 < p < q < ∞ and from the spaces L1,λ,α(R) to the weak spaces
WLq,λ,α(R), 1 < q < ∞.

Theorem 3.1. Let 0 ≤ β < 2α + 2, 0 ≤ λ < 2α + 2, and 1 ≤ p ≤ (2α + 2 − λ)/β.

(1) If p = 1, then the condition 1 − 1/q = β/(2α + 2 − λ) is necessary and sufficient for the
boundedness of Mβ from L1,λ,α(R) toWLq,λ,α(R).

(2) If 1 < p < (2α + 2 − λ)/β, then the condition (1/p) − (1/q) = β/(2α + 2 − λ) is necessary
and sufficient for the boundedness of Mβ from Lp,λ,α(R) to Lq,λ,α(R).

(3) If p = (2α + 2 − λ)/β, thenMβ is bounded from Lp,λ,α(R) to L∞(R).

For 1 ≤ p, θ ≤ ∞, 0 ≤ λ < 2α+2, and 0 < s < 2, the Dunkl-type Besov-Morrey Bs
pθ,λ,α(R)

consists of all functions f in Lp,λ,α(R) so that

∥∥f
∥∥
Bs
pθ,λ,α

=
∥∥f
∥∥
Lp,λ,α

+

⎛

⎝
∫

R

∥∥τxf(·) − f(·)∥∥θLp,λ,α

|x|2α+2+sθ
dμα(x)

⎞

⎠

1/θ

< ∞. (3.1)

Besov spaces in the setting of the Dunkl operators were studied by Abdelkefi and Sifi
[11], Bouguila et al. [12], Guliyev and Mammadov [10], and Kamoun [13]. In the following
theorem, we prove the boundedness of the Dunkl-type fractional maximal operator in the
Dunkl-type Besov-Morrey spaces.

Theorem 3.2. For 1 < p ≤ q < ∞, 0 ≤ λ < 2α + 2, (1/p)− (1/q) = β/(2α+ 2 − λ), 1 ≤ θ ≤ ∞, and
0 < s < 1, the Dunkl-type fractional maximal operator Mβ is bounded from Bs

pθ,λ,α
(R) to Bs

qθ,λ,α
(R).

More precisely, there is a constant C > 0 such that

∥∥Mβf
∥∥
Bs
qθ,λ,α

≤ C
∥∥f
∥∥
Bs
pθ,λ,α

(3.2)

hold for all f ∈ Bs
pθ,λ,α

(R).

Remark 3.3. Note that Theorem 3.2 in the case λ = 0 was proved in [10].

4. Boundedness of the Dunkl-Type Fractional Maximal Operator in
the Dunkl-Type Morrey Spaces

In the following theorem, we obtain the boundedness of the Dunkl-type fractional maximal
operator Mβ in the Dunkl-type Morrey spaces Lp,λ,α(R).
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Theorem 4.1. Let 0 ≤ β < 2α + 2, 0 ≤ λ < 2α + 2, f ∈ Lp,λ,α(R), and 1 ≤ p ≤ (2α + 2 − λ)/β.

(1) If p = 1 and 1 − 1/q = β/(2α + 2 − λ), thenMβf ∈ WLq,λ,α(R) and

∥
∥Mβf

∥
∥
WLq,λ,α

≤ C
∥
∥f
∥
∥
1,λ,α, (4.1)

where C > 0 is independent of f .

(2) If 1 < p < (2α+ 2− λ)/β and (1/p)− (1/q) = β/(2α+ 2− λ), thenMβf ∈ Lq,λ,α(R) and

∥
∥Mβf

∥
∥
q,λ,α

≤ C
∥
∥f
∥
∥
p,λ,α, (4.2)

where C > 0 is independent of f .

(3) If p = (2α + 2 − λ)/β and q = ∞, thenMβf ∈ L∞(R) and

∥∥Mβf
∥∥
∞ ≤ b

−1/p(2α+2)
α

∥∥f
∥∥
p,λ,α. (4.3)

Proof. The maximal function Mf(x) may be interpreted as a maximal function defined on
a space of homogeneous type. By this we mean a topological space X equipped with a
continuous pseudometric ρ and a positive measure μ satisfying

μE(x, 2r) ≤ C0μE(x, r) (4.4)

with a constant C0 being independent of x and r > 0. Here E(x, r) = {y ∈ X : ρ(x, y) <
r}, ρ(x, y) = |x − y|. Let (X, ρ, μ) be a space of homogeneous type, where X = R, ρ(x, y) =
|x − y|, and dμ(x) = dμα(x). It is clear that this measure satisfies the doubling condition (4.4).
Define

Mμf(x) = sup
r>0

(
μE(x, r)

)−1
∫

E(x,r)

∣∣f
(
y
)∣∣dμ

(
y
)
. (4.5)

It is well known that the maximal operator Mμ is bounded from L1,λ(X, μ) to
WL1,λ(X, μ) and is bounded on Lp,λ(X, μ) for 1 < p < ∞, 0 ≤ λ < 2α + 2 (see [14, 15]).

The following inequality was proved in [6]

Mf(x) ≤ CMμf(x), (4.6)

where C > 0 is independent of f .
Then from (4.6)we get the boundedness of the operatorM from L1,λ,α(R) toWL1,λ,α(R)

and on Lp,λ,α(R), 1 < p < ∞. Thus in the case β = 0 we complete the proof of (1) and (2).



Abstract and Applied Analysis 7

Let t > 0, 0 < β < 2α + 2, f ∈ Lp,λ,α(R), 1 ≤ p ≤ (2α + 2 − λ)/β and (1/p) − (1/q) =
β/(2α + 2 − λ). Applying the Hölders inequality we have

Mβf(x) = max

{

sup
r≥t

(
μαB(0, r)

)β/(2α+2)−1
∫

B(0,r)
τx
∣
∣f
(
y
)∣∣dμα

(
y
)
,

sup
r<t

(
μαB(0, r)

)β/(2α+2)−1
∫

B(0,r)
τx
∣
∣f
(
y
)∣∣dμα

(
y
)
}

≤ b
β/(2α+2)
α max

{
b
−1/p
α tβ−(2α+2−λ)/p

∥
∥f
∥
∥
p,λ,α, t

βMf(x)
}
.

(4.7)

Therefore, for all t > 0, we get

Mβf(x) ≤ b
β/(2α+2)
α

(
b
−1/p
α tβ−(2α+2−λ)/p +

∥∥f
∥∥
p,λ,α, t

βMf(x)
)
. (4.8)

The minimum value of the right-hand side (4.8) is attained at

t =

(
2α + 2 − λ

p
b
−1/p
α

∥∥f
∥∥
p,λ,α

Mf(x)

)p/(2α+2−λ)
(4.9)

and hence

Mβf(x) ≤ b
β/(2α+2)−β/(2α+2−λ)
α

∥∥f
∥∥1−p/q
p,λ,α

(
Mf(x)

)p/q
. (4.10)

Then for 1 < p ≤ (2α + 2 − λ)/β from (4.10), we have

∥∥Mβf
∥∥
q,λ,α

= sup
r>0

(

r−λ
∫

B(0,r)
τx
(
Mβf(y)

)q
dμα(y)

)1/q

≤ b
β/(2α+2)−β/(2α+2−λ)
α

∥∥f
∥∥1−p/q
p,λ,α

(

r−λ
∫

B(0,r)
τx
(
Mf
(
y
))p

dμα(y)

)1/q

≤ b
β/(2α+2)−β/(2α+2−λ)
α

∥∥f
∥∥1−p/q
p,λ,α

∥∥Mf
∥∥p/q
p,λ,α

≤ C
∥∥f
∥∥
p,λ,α,

(4.11)

where C > 0 is independent of f .
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Also for p = 1 from (4.10) we have

∥
∥Mβf

∥
∥
WLq,λ,α

= sup
t>0

t sup
x∈R,r>0

(

r−λ
∫

{y∈B(0,r) : τxMβf(y)>t}
dμα(y)

)1/q

≤ sup
t>0

t sup
x∈R,r>0

⎛

⎝r−λ
∫

{
y∈B(0,r): τxMf(y)>b−βq/(2α+2−λ)+βq/(2α+2)α ‖f‖1−q

1,λ,α
tq
} dμα

(
y
)
⎞

⎠

1/q

≤ b
β/(2α+2−λ)−β/(2α+2)
α

∥
∥f
∥
∥1−1/q
1,λ,α

∥
∥Mf

∥
∥1/q
WL1,λ,α

≤ C
∥
∥f
∥
∥
1,λ,α,

(4.12)

where C > 0 is independent of f .
Therefore, the case β > 0 complete the proof of (1) and (2).
(3) Let p = (2α + 2 − λ)/β, f ∈ Lp,λ,α(R); then applying Hölders inequality, we obtain

(
μαB(0, r)

)−1+β/(2α+2)
∫

B(0,r)
τx
∣∣f
∣∣(y
)
dμα

(
y
)

≤ (μαB(0, r)
)−1+β/(2α+2)+1/p

(∫

B(0,r)
τx
∣∣f
(
y
)∣∣pdμα

(
y
)
)1/p

= b
−λ/p(2α+2)
α

(

r−λ
∫

B(0,r)
τx
∣∣f
(
y
)∣∣pdμα(y)

)1/p

≤ b
−λ/p(2α+2)
α

∥∥f
∥∥
p,λ,α.

(4.13)

Thus the case β > 0 completes the proof of (3).
Theorem 4.1 has been proved.

Proof of Theorem 3.1. Sufficiency part of the proof follows from Theorem 4.1.

Necessity. (1) Let 1 < p ≤ (2α + 2 − λ)/α and Mβ be bounded from Lp,λ,α(R) to Lq,λ,α(R).
Define ft(x) := f(tx), t > 0. Then

∥∥ft
∥∥
p,λ,α = t−(2α+2)/p sup

x∈R,r>0

(

r−λ
∫

B(0,tr)
τtx
∣∣f
(
y
)∣∣pdμα(y)

)1/p

= t−(2α+2−λ)/p
∥∥f
∥∥
p,λ,α

(4.14)
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and Mβft(x) = t−βMβf(tx),

∥
∥Mβft

∥
∥
Lq,λ,α

= t−β sup
x∈R,r>0

(

r−λ
∫

B(0,r)
τtx
∣
∣Mβf(y)

∣
∣q dμα(y)

)1/q

= t−β−(2α+2)/q sup
x∈R,r>0

(

r−λ
∫

B(0,tr)
τx
∣
∣Mβf(y)

∣
∣q dμα(y)

)1/q

= t−β−(2α+2−λ)/q
∥
∥Mβf

∥
∥
Lq,λ,α

.

(4.15)

By the boundedness of Mβ from Lp,λ,α(R) to Lq,λ,α(R),

∥∥Mβf
∥∥
Lq,λ,α

= rβ+(2α+2−λ)/q
∥∥Mβfr

∥∥
Lq,λ,α

≤ Crβ+(2α+2−λ)/q
∥∥fr
∥∥
p,λ,α

= Crβ+(2α+2−λ)/q−(2α+2−λ)/p
∥∥f
∥∥
p,λ,α,

(4.16)

where C depends only on p, β, λ, and α.
If 1/p > 1/q+β/(2α+2−λ), then for all f ∈ Lp,λ,α(R)we have ‖Mβf‖q,λ,α = 0 as r → 0,

which is impossible. Similarly, if 1/p < 1/q+β/(2α+2−λ), then for all f ∈ Lp,λ,α(R)we obtain
‖Mβf‖q,λ,α = 0 as r → ∞, which is also impossible.

Therefore, we get 1/p = 1/q + β/(2α + 2 − λ).

Necessity. Let Mβ be bounded from L1,λ,α(R) toWLq,λ,α(R). We have

∥∥Mβfr
∥∥
WLq,λ,α

= r−β−(2α+2−λ)/q
∥∥Mβf

∥∥
WLq,λ,α

. (4.17)

By the boundedness of Mβ from L1,λ,α(R) toWLq,λ,α(R) it follows that

∥∥Mβf
∥∥
WLq,λ,α

= rβ+(2α+2−λ)/q
∥∥Mβfr

∥∥
WLq,λ,α

≤ Crβ+(2α+2−λ)/q
∥∥fr
∥∥
1,λ,α

= Crβ+(2α+2−λ)/q−(2α+2)
∥∥f
∥∥
1,λ,α,

(4.18)

where C depends only on β, λ, and α.
If 1 < 1/q+ β/(2α+ 2−λ), then for all f ∈ L1,λ,α(R)we have ‖Mβf‖WLq,λ,α

= 0 as r → 0.
Similarly, if 1 > 1/q + β/(2α + 2 − λ), then for all f ∈ L1,λ,α(R) we obtain ‖Mβf‖WLq,λ,α

= 0 as
r → ∞.

Hence we get 1 = 1/q + β/(2α + 2 − λ). Thus the proof of Theorem 3.1 is completed.
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Proof of Theorem 3.2. For x ∈ R, let τx be the generalized translation by x. By definition of the
Besov spaces, it suffices to show that

∥
∥τxMβf −Mβf

∥
∥
Lq,λ,α

≤ C2
∥
∥τxf − f

∥
∥
Lp,λ,α

. (4.19)

It is easy to see that τx commutes withMβ, that is, τxMβf = Mβ(τxf). Hence we have

∣
∣τxMβf −Mβf

∣
∣ =
∣
∣Mβ

(
τxf
) −Mβf

∣
∣ ≤ Mβ

(∣∣τxf − f
∣
∣). (4.20)

Taking Lp,λ,α(R) norm on both ends of the above inequality, by the boundedness of Mβ from
Lp,λ,α(R) to Lq,λ,α(R), we obtain the desired result. Theorem 3.2 is proved.
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