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1. Introduction

Dual integral equations involving Legendre functions have been solved by Babloian [1]. He
applied these equations to problems of potential theory and to a torsion problem. Later on
Pathak [2] and Mandal [3] who considered dual integral equations involving generalized
Legendre functions which have more general solution than the ones considered by Babloian
[1]. Recently, Singh et al. [4] considered dual integral equations involving generalized
Legendre functions, and their results are more general than those in [1-3].

In the analysis of mixed boundary value problems, we often encounter triple integral
equations. Triple integral equations involving Legendre functions have been studied by
Srivastava [5]. Triple integral equations involving Bessel functions have also been considered
by Cooke [6-9], Tranter [10], Love and Clements [11], Srivastava [12], and most of these
authors reduced the solution into a solution of Fredholm integral equation of the second
kind. The relevant references for dual and triple integral equations are given in the book of
Sneddon [13].

In this paper, a method is developed for solutions of two sets of triple integral
equations involving generalized Legendre functions in Sections 3 and 4. Each set of triple
integral equations is reduced to a Fredholm integral equation of the second kind which may
be solved numerically. The aim of this paper is to find a more general solution for the type of
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integral equations given in [1-5] and to develop an easier method for solving triple integral
equations in general.

2. Integral involved generalized Legendre functions and some useful results

We first summarize some known results needed in the paper.

We find from [14, equation (21), page 330] that

2

1 B [00)
;r<§ _ ‘u> [ sinh(ac)] ﬂjo pfl/zﬂ_(r/c) [cosh(ac)] cos(Tx)dT 2.1)

= c[cosh(ac) - Cosh(xc)]_”_l/zH(a -Xx),

where y < 1/2 and from [4], we obtain
\fZJr‘3/2F<% + ‘u> [ sinh(ac)]”

xfjl"(% —u+ 1€>F<% -u- 1£> sinh(fr) sin(xT)Pfl/zﬂ.(T/c) [cosh(ac)]dT (22)
= ¢[cosh(xc) - cosh(ac)]”_l/zH(x - a),

where p > —1/2 and H() denotes the Heaviside unit function. Furthermore, c = o/ f, f > 0

and P" 1/24i(/0) (cosh ac) is the generalized Legendre function defined in [15, page 370]. From

[4, 16], the generalized Mehler-Fock transform is defined by
¢ (cosh(ac)) = j Pf]/2+i(7'/c) [cosh(ac)| F(T)dr, (2.3)
0

and its inversion formula is

Fe) = (o3 i DYr(3-u-i7)
(2.4)

x jo Pfll/2+i(’r/c) [cosh(ac)] ¢ (cosh(ac)) sinh(ac)da.

Equations (2.1) and (2.2) are of form (2.3). From the inversion formula given by (2.4), (2.1),
and (2.2), it follows that

cos(xT) _ sinh(fT)I'(1/2-p+i(r/c))T(1/2 - pu—i(t/c))

T V2rI'(1/2 - p)
(2.5)
) Ioo [sinh(ac)]lefl/M(T/c) [cosh(ac)]da » 1
x [cosh(ac) — cosh(xc)]wl/2 ' 2’
. 1-
sin(x7) _ \/E 1 * [sinh(ac)] ”Pf1/2+i(r/c) (coshac)da P 1 26)
T 2T(1/2+m) ) [cosh(xc) — cosh(ac)] 12w 2



B. M. Singh et al. 3

The inversion theorem for Fourier cosine transforms and the results (2.1) and (2.2)
lead to

2 sinh*(ac) (¢ cos(rs)ds 1
Pt h =1/= = 2.7
“i/2ice o Leosh (@) \v/;cr(l/2 =#)J o [cosh(ac) - cosh(sc)]ml/z, e 27
V2re
" _
P71/2+i(‘r/c) [cosh(ac)] = [sinh”(ac) T (1/2+p) sin(f)I(1/2 —p +i(7/¢))T(1/2 —p —i(t/c))
y J‘°° sin(ts)ds s 1
a [cosh(sc) — cosh(ac)]l/z_”, 2’

(2.8)

If h(t) is monotonically increasing and differentiable for a < t < b and F'(t) # 0 in this
interval, then the solutions of the equations

J‘t%:g(t)’ a<t<b O0O<a<l, (2.9)
b
L%:gw, a<t<b0<a<l, (2.10)

are given by Sneddon [13] as

_sin(ra) d (Y W (t)g(t)dt
fx)=—— 5‘[“ ) hOT™ a<x<b, (2.11)
. b /
flxy = ZSintrw) d (7 KBs®at oy, (2.12)

7 A ) [n(t) - k()]
respectively, where the prime denotes the derivative with respect to .

3. Triple integral equations with generalized Legendre functions: set I

In this section, we will find solution of the following triple integral equations:

* . 1 T 1 T .
Jo TA(T) smh(Tf)F<§ -+ 1;)1’(5 —p1 - IE>Pfl/2+i(T/C) [cosh(ac)]dT =0, O<a<a,
(3.1)
j A(T)Pfi/ZH'(T/C) [cosh(ac)]dT = f(a), a<a<b, (3.2)
0

ht . 1 T 1 T
fo TA(T) smh(Tf)I’(E — Uz + 12>F<§ - Y3 — 12>Pf;’/2+i(r/c) [cosh(ac)]dT =0, b<a<oo,
(3.3)
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where A(7) is an unknown function to be determined, f(a) is a known function, and
p" 1/24i(2/0) [cosh(ac)] is the generalized Legendre function defined in Section 2 and -1/2 <
u1<1/2,-1/2 <pp <1/2, pu3 > -1/2.

The trial solution of (3.1), (3.2), and (3.3) can be written as

b
A(r) = IO¢(t) cos(tt)dt, (3.4)

where () is an unknown function to be determined. On integrating (3.4) by parts, we get

¢ (b) sin(7h)
-

1t
A(Tr) = ;J‘Otp’(t) sin(tt)dt, (3.5)

where the prime denotes the derivative with respect to t.

Substituting (3.5) into (3.3), interchanging the order of integrations and using (2.2),
we find that (3.3) is satisfied identically. Substituting (3.5) into (3.1) and using the integral
defined by (2.2), we obtain

b b '(t)dt
¥ (b) — —I y'(h) =0, O<a<a  (36)
[cosh(bc) — cosh(ac)] "“ " ) a[cosh(tc) — cosh(ac)] "~
Equation (3.6) is equivalent to the following integral equation:
b inh(tc) g (t)dt
d csinh(to)y () -0, O<a<a. 3.7)

da) . [cosh(tc) - Cosh(ctc)]1/2_”1

By substituting (3.4) into (3.2), interchanging the order of integrations and using the integral
defined by (2.1) we find that

: w(t)dt _4/2p(L_ . 2 1
Cfo [cosh(ac) — cosh(ifc)]l/zw2 ) ”r<2 M) [sinh(ac)] (@), a<a<b pz < 2
(3.8)

For obtaining the solution of the problem, we need to solve two Abel’s type integral equations
(3.7) and (3.8).
We assume that

d (* csinh(tc) g (t)dt
da), [cosh(tc) — c:osh(occ)]l/zf’ll

=¢(a), a<a<b. (3.9)
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The above equation is of the same form as (3.7) and defined in a different region. Equation
(3.9) is of form (2.12). Hence, the solution of the integral equation (3.9) can be written as

_cos (71711) J‘ P(a)da 1

1
p(t) = —<u<g,a<t<b. (3.10)
[cosh(ca) — c:osh(i‘c)]l/zw1 2 2

The solution of Abel’s type integral equations (2.11) together with (3.7) and (3.9) leads
to

_cos (m"ul) P(a)da

t) =
o a [cosh(ca) — cosh(tc)]

1 1
T <p1 < X O<t<a. (3.11)

Equations (3.10) and (3.11) mean that (3.7) is satisfied identically. Equation (3.8) can
be rewritten in the form

J‘“ (H)dt N J" p(t)dt
0 [cosh(ac) — cosh( tc)]1/2+#2 a [cosh(ac) - cosh(t‘c)]l/m42 (3.12)

= 1\Er(l — o) f(a) [sinh(ac)]*®, a<a<b.

Cc

Substituting the expression for ¢s(t) from (3.11) and (3.10) into the first and second integral
of (3.12) we obtain

I ! S(t)dt
a [COSh(ac) — COSh(tc)] 1/2+p,
a at ‘ P )t
e , t<b,
() Jo [cosh(ac) - COSh(tc)]l/Zﬂlz L [cosh(cu) B cosh(tc)]l/Z“‘Z a<t<
(3.13)
where
b
P(u)dt
S(t) = ’ |
X f ¢ [cosh(cu) - cosh(te)] /> (3.14)
F(a) - ~Y2TL (= ) f(@) [sinh(ao)] ™ (3.15)

c cos (p1r)

Assuming that the right-hand side of (3.13) is a known function of « it has the form of
(2.9), whose solution is given by

t .
cos (7rpy) d csmh(ca)F(a)dai/% 1), a<t<b, - 1 << 1
x dt) o [cosh(ct) - cosh(ca)] >

S() = S <H <3

(3.16)
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_cos (7pa) d (' csinh(ca)da a dp
at ]1/2-#2 1/2+po

I(t) =
® wodt), [cosh(ct) — cosh(ca) 0 (cosh(ca) — cosh(cp))

1 1
a<t<b, 5 <H2<3

. fb P(u)du !

a (cosh(cu) — cosh(cp))l/zwZ '
From the integral

4a t csinh(ca)da
dt}, [cosh(ct) - COSh(Ca)]l/Zfltz [cosh(ca) - COSh(Cp)]UzWZ

csinh(ct) [cosh(ca) — cosh(cp)] 12 1 1
= Y~ p<a<t,—§</42<§,
[cosh(ct) — cosh(cp)] [cosh(ct) — cosh(ca)]

we then obtain

¢ cos (ppr) sinh(ct) a (cosh(ca) — cosh(cp)) > *dp
ar [cosh(ct) — cosh(ca)] V22 ] [cosh(ct) — cosh(cp)]

. J‘b ¢(u)du
a [cosh(cu) — cosh(cp)]

I(t) =

1/2+pm "

Equation (3.14) is an Abel-type equation. Hence, its solution is

’ .
P(u) = _Mif CSlnh(CU)S(v)dvl/Zi , a<u<b, -3 < <y
b du), [cosh(vc) — cosh(uc)] /" ? ?

R(p) = J‘b ¢(u)du

a [cosh(cu) - cosh(cp)]l/zw1 .

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Substituting the expression for ¢(u) from (3.20) into (3.21), integrating by parts, and finally

interchanging the order of integrations in second integral, we arrive at

b .
R(p) = £ (pr) [[ 1 - J‘ S(v) sinh(cv)dv

ar ] /2=

cosh(ca) — cosh(cp)] a [cosh(cv) — cosh(ca)

- (% + m)JﬁS(v) sinh(cv)dv

y J‘v csinh(cu)du ]

a [cosh(cu) - cosh(cp)]g’/%”1 [cosh(cv) — cosh(cu)] 12

(3.22)
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The integral

J‘” csinh(cu)du

3/2+m [ 1/2-m

a [cosh(cu) — cosh(cp)] cosh(cv) — cosh(cu)]

- [cosh(cv) — cosh(ca)]/*
(w1 +1/2) [cosh(cv) — cosh(cp)] [cosh(ca) — cosh(cp)]

1
P<[1<'U, —§<#1<§

together with (3.22) leads to

R(p) = M(cosh(ac) - Cosh(pc))1/2—m
x f ' S(v) sinh(cv)dv
a [cosh(vc) — cosh(pc)] [cosh(ve) - cosh(ac)] /> '

From (3.19), (3.21), and (3.24), we obtain
b
I(t) = f S(W)K (v, t)dv,

where

c? cos (1) cos (arps) sinh(ct) sinh(cv)

Ky, t) =
(v, 1) a2 [cosh(ct) - cosh(ca)]l/Z—uz [cosh(cv) — Cosh(ca)]l/z_ﬂ1

a (cosh(ca) — cosh(cp))' ™ **dp
o [cosh(ct) — cosh(cp)] [cosh(cv) — cosh(cp)]

From (3.25), (3.16) can be written as

b .
S(t) +f S()K (v, t)dv = cos () ijt csinh(ca)F(a)da

at), [cosh(ct) — cosh(ca)] V2!

a<t<b.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Equation (3.27) is a Fredholm integral equation of the second kind with kernel K(v,t).
The kernel is defined by (3.26). The integral in (3.26) cannot be solved analytically, but for
particular values of y; and p, the values of K(v,t) can be found numerically. Hence, the
numerical solution of Fredholm integral equation (3.27) can be obtained for particular value
of f(a), u1, and y, to find numerical values of S(t). Making use of (3.20), (3.11), and (3.10), the
numerical results for ¢ () can be obtained. Finally, making use of (3.4) the numerical results

for A(T) can be obtained.
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4. Triple integral equations with generalized Legendre functions: set II

In this section, we will find the solution of the following triple integral equations:

f TA(T)Pﬂ/zn(r/c) [cosh(ac)]dT =0, O<a<a, (4.1)
0
" sinh(zyr( X ) ( i~ ) A(T)P" h(ac)]dr = b
. sinh(zf) 5 ~H2 i 5 ~H2 i (1) _1/2+i(T/C)[cos (ac)]dr = f(a), a<a<b,
(4.2)
f TA(T)Pff/ZH.(T/c) [cosh(ac)]dT =0, b<a, (4.3)
0
where py > -1/2,-1/2 < pp <1/2,-1/2 < pu3 <1/2.
We assume that
j TA(T)Pff/ZH.(T/C) [cosh(ac)|dT = M(a), O0<a<b. (4.4)
0

The inversion formula for generalized Mehler-Fock transforms (2.4) together with (4.3) and
(4.4) implies that

1 1
A(r) = % sinh(fT)r<E — s + z%)r(z — s - %)
) (4.5)
x J sinh(uc)Pflsmﬂ.(T/C) [cosh(uc)| M (u)du.
0

Multiplying (4.1) by [sinh(ac)]*™ /[cosh(xc) — cosh(ac)]"/* ™, integrating both sides
from 0 to x and with respect to &, and then using (2.6) we obtain

fwA(T) sin(xt)dr =0, O<x<a. (4.6)
0

Substituting the value of A(7) from (4.5) into (4.6), interchanging the order of integrations,
and using the integral (2.2), we get

J‘x sinh(uc) M (u)du

1
Vo, ,u3>—§,0<x<a. (4.7)

0 [cosh(xc) — cosh(uc)]

Substituting the value of A(7) from (4.5) into (4.2) and interchanging the order of integrations
we arrive at

b
f sinh(uc) M(u)Ky(u, a)du = f(a), a<a<b, (4.8)
0
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where

[ (o= )G (g (- i7)
Kz(u,zx)—J‘OJﬂF 2 Mo lc T > y2+1c T > ‘u3+1c r > U3 lc wo)

x sinh? (fT)Pflf/ZH(T/C) [cosh(uc)] Pflz/zﬂ'(T/c) [cosh(ac)]dr,

and then (2.8) and (2.2) imply that

Ky(u,a) = i
2 T T (/2 + uo)T(1/2 + ps) [ sinh(ac)]™ [ sinh (uc) |
y I * ds 410
max(au) [cosh(sc) — cosh(ac)] 124 [cosh(sc) — cosh(uc)] 127

>—1 >—1
U3 >’ H2 5

Equation (4.7) is an Abel-type equation and has the form (2.9). Hence, the solution of
(4.7) is

M(u) =0, O<u<a. (4.11)
Using (4.10) and (2.5), (4.8) can be written in the form

* ds

max(au) [cosh(sc) — cosh(ac)] V2 [cosh(sc) — cosh(uc)] 12

b
I [sinh(uc)]l_’“M(u)duJ

. H3
_ T(1/2+ p2)T(1/2 + pp) [ sinh(ac)] f(a) = Fi(a), say,a<a<b.

cxr
(4.12)
Using the formula
b s b s s b
J duf ds =J dsJ‘ du+f dsJ‘ du, (4.13)
a max(a,u) a a b a
we can write (4.12) in the form
f” Si(s)ds Fy(a) J'°° ds
=I —
a [cosh(sc) - Cosh(acc)]l/z_”2 b [cosh(sc) — cosh(acc)]1/2_”2
(4.14)

a<a<b,

y J‘b M(u)[sinh(uc)]l_”3du

a [cosh(sc) - cosh(uc)]l/}”2 '
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where

s M(u)[sinh(uc)] " du
S = , b. 4.15
1(8) .[a [cosh(sc) - cosh(acc)]l/z_"2 aees (419

Assuming that the right-hand side of (4.14) is known function equation and (4.14) has
the form of (2.10), hence the solution of (4.14) can be written as

c d (* Fy(a) sinh(ac)da 1
Si(s) = == cos (rp —f +Li(s), a<s<b, —=<mw<z,
T ( )ds s [cosh(ac) - cosh(sc)]l/zw2 2 2
(4.16)
where
c d (b sinh(ac)da
Il(S) = — COS (.ﬂ"u2)d—f ( ) N
T §Js [cosh(ac) — cosh(sc)] "~
(4.17)
o dp b M(u) [sinh(cu)]l_”adzx
xf Yo J T a<s<b.
b [cosh(pc) — cosh(ac)] '“ "/ a[cosh(pc) — cosh(uc)] "~
Equation (4.17) is simplified to
I(s) = 5508 (7rp2) sinh(sc) = [cosh(cp) — cosh(be)] /> dp
S) =
' T [cosh(bc) - cosh(sc)]l/zw2 b [cosh(sc) — cosh(cp)]
(4.18)
b M(u) [sinh(cu)]l_’“du
xj T A<s<b.
a [cosh(cp) — cosh(cu)] "~
Let
b M(u)[sinh(cw)] " du
Ri(p) = f [ | T (4.19)
a [cosh(pc) — cosh(uc)] "~

Equation (4.15) is of the form of (2.9). Hence, its solution is

¢ cos (rpz) d S1(s) sinh(sc)ds

T du), [cosh(uc) - Cosh(sc)]l/ZJr”3 '

M (u) [sinh(cu)]l_”3 = a<u<b.  (4.20)
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Substituting the expression for M (u) from (4.20) into (4.19) and integrating by parts
and then using the following integral:

Ib csinh(uc)du
s (cosh(pc) - cosh(uc))™* ™ (cosh(uc) - cosh(sc)) />

—[cosh(bc) — cosh(cs)] 127

= (4.21)
(1/2 — p3) [cosh(cs) — cosh(cp)] [cosh(cp) — cosh(cb)] /> ,

s<b<p, —1<y2<

2 2’

we find that

Ri(p) = M(Cosh(cp) - c:osh(bc))l/zw3

X Ib S1(u) sinh(cu)du (4.22)
! [COSh(CP) B COSh(uc)] [COSh(bC) - COSh(Cu)] 1/2+p3 "

Making use of (4.18), (4.19), and (4.22), we find that

b
Ii(s) = —f S1(u)Ky(u, s)du, (4.23)
where

Ko, s) = c? cos (ruz) cos (arps) sinh(sc) sinh(uc)

a2 [cosh(bc) — cosh(sc)] /> [cosh(be) — cosh(cu)] />

(4.24)

[cosh(cp) — cosh(be)] " dp
» [cosh(sc) — cosh(cp)] [cosh(cp) — cosh(cu)]|

Using (4.17) and (4.23), (4.16) can be written in the form

b B b :
Si(s) + j S1(u)Ky(u, s)du = ;C cos (fﬂz)%f Fi(a) sinh(ac)da <s<b.

s [cosh(ac) - cosh(sc)]l/zﬂl2 '

(4.25)

Equation (4.25) is a Fredholm integral equation of the second kind with kernel defined
by (4.24). The Fredholm integral equation (4.25) may be solved to find numerical values of

S1(s) for particular values of f(a). And hence from (4.20) and (4.5), the numerical values for
A(T) can be obtained for particular values of f(a), p2, and ps.
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5. Conclusions

The solution of the two sets of triple integral equations involving generalized Legendre
functions is reduced to the solution of Fredholm integral equations of the second kind which
can be solved numerically.
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